首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to establish the time of initiation and the determinants of renal function decline in type 1 diabetes. Until now, such decline has been assumed to be a late-occurring event associated with proteinuria. A total of 267 patients with normoalbuminuria and 301 patients with microalbuminuria were followed for 8 to 12 yr. Linear trends (slopes) in GFR were estimated by serial measurement of serum cystatin C. Cases of early renal function decline were defined by loss in cystatin C GFR that exceeded -3.3%/yr, a threshold that corresponds to the 2.5th percentile of the distribution of GFR slopes in an independent nondiabetic normotensive population. Cases of early renal function decline occurred in 9% (mean slope -4.4; range -5.9 to -3.3%/yr) of the normoalbuminuria group and 31% (mean slope -7.1; range -23.8 to -3.3%/yr) of the microalbuminuria group (P < 0.001). Risk for early renal function decline depended on whether microalbuminuria regressed, remained stable, or progressed, rising from 16 to 32 and 68%, respectively (P < 0.001). In multivariate analysis, risk for decline was higher after age 35 yr or when glycosylated hemoglobin exceeded 9% but did not vary with diabetes duration, smoking, BP, or angiotensin-converting enzyme inhibitor treatment. Contrary to the existing paradigm of diabetic nephropathy, progressive renal function decline in type 1 diabetes is an early event that occurs in a large proportion of patients with microalbuminuria. Together with testing for microalbuminuria, clinical protocols using cystatin C to diagnose early renal function decline and track response to therapeutic interventions should be developed.  相似文献   

2.
A decline in renal function suggests progression of chronic kidney disease. This can be determined by measured GFR (e.g., iothalamate clearance), serum creatinine (SCr)-based GFR estimates, or creatinine clearance. A cohort of 234 patients with autosomal dominant polycystic kidney disease and baseline creatinine clearance>70 ml/min were followed annually for four visits. Iothalamate clearance, SCr, and creatinine clearance were obtained at each visit. Estimated GFR (eGFR) was determined with the Modification of Diet in Renal Disease (MDRD) and Cockcroft-Gault equations. Renal function slopes had a mean residual SD of 10.7% by iothalamate clearance, 8.2% by MDRD equation, 7.7% by Cockcroft-Gault equation, and 14.8% by creatinine clearance. By each method, a decline in renal function (lowest quintile slope) was compared among baseline predictors. Hypertension was associated with a decline in iothalamate clearance (odds ratio [OR] 5.8; 95% confidence interval [CI] 2.3 to 14), eGFR (OR [MDRD] 2.0 [95% CI 1.0 to 4.2] or OR [Cockcroft-Gault] 1.9 [95% CI 0.9 to 3.9]), and creatinine clearance (OR 2.0; 95% CI 1.0 to 4.2). Each doubling of kidney volume at baseline was associated with a decline in iothalamate clearance (OR 2.4; 95% CI 1.5 to 3.7), eGFR (OR 1.7 [95% CI 1.1 to 2.6] or 2.1 [95% CI 1.4 to 3.3]), and creatinine clearance (OR 1.7; 95% CI 1.1 to 2.5). Predictor associations were strongest with measured GFR. Misclassification from changes in non-GFR factors (e.g., creatinine production, tubular secretion) conservatively biased associations with eGFR. Misclassification from method imprecision attenuated associations with creatinine clearance.  相似文献   

3.
BACKGROUND: Assessment of renal function in patients with renal transplants is of great importance. Various studies have reported cystatin C as an easily and rapidly assessable marker that can be used for accurate information on renal function impairment. To date, no study is available to define the role of cystatin C in patients with renal transplants. METHODS: Thirty steady-state patients (50% male/50% female) with status post-kidney transplantation were studied. To assess renal function, cystatin C, creatinine clearance, serum creatinine, beta2-microglobulin (beta2M), and [125I]iothalamate clearance were determined. Correlations and non-parametric ROC curves for accuracy, using a cut-off glomerular filtration rate (GFR) of 60 ml/min, were obtained for the different markers allowing for calculations of positive predictive values (PPV), positive likelihood ratios (PLR), specificity and sensitivity, respectively. Further, to evaluate the usefulness of these markers for monitoring, intraindividual coefficients of variation (CVs) for cystatin C and creatinine measurements were compared in 85 renal transplant patients. Measurements consisted of at least six pairs of results, which were obtained at different time points during routine follow-up. RESULTS: Cystatin C correlated best with GFR (r=0.83), whereas serum creatinine (r=0.67), creatinine clearance (r=0.57) and beta2M (r=0.58) all had lower correlation coefficients. The diagnostic accuracy of cystatin C was significantly better than serum creatinine (P=0.025), but did not differ significantly from creatinine clearance (P=0.76) and beta2M (P=0.43). At a cut-off of 1.64 mg/l, cystatin C has a PPV of 93%, PLR of 6.4, specificity 89% and sensitivity 70%, respectively. For beta2M, PPV 83%, PLR 1.7, specificity 67% and sensitivity 75% was seen at a cut-off of 3.57 mg/l. Accordingly, at a cut-off of 125 micromol/l for serum creatinine, a PPV 76%, PLR 1.4, specificity 44% and sensitivity 80% was revealed. Finally, at a cut-off of 66 ml/min/1.73 m2 for creatinine clearance, the following characteristics were found: PPV 94%, PLR 7.7, specificity 89% and sensitivity 85%. The intraindividual variation of creatinine was significantly lower than that of cystatin C (P<0.001). With increasing concentrations, their ratios of CV tended towards a value of 1, demonstrating identical variability at low GFR. CONCLUSION: Together, our data show that in patients with renal transplants, cystatin C, in terms of PPV and PLR, has a similar diagnostic value as creatinine clearance. However, it is superior to serum determinations of creatinine and beta2M. The intraindividual variation of cystatin C is greater than that of creatinine. This might be due to the better ability of cystatin C to reflect temporary changes especially in mildly impaired GFR, most critical for early detection of rejection and other function impairment. Thus, cystatin C allows for rapid and accurate assessment of renal function (GFR) in renal transplants and is clearly superior to the commonly used serum creatinine.  相似文献   

4.
AIMS: Acute renal failure (ARF), defined by a rapid decrease of glomerular filtration rate (GFR), is associated with high mortality. Early and accurate detection of decreasing GFR is critical to prevent the progression of ARF and to potentially improve its outcome. Serum creatinine, the conventional GFR marker, has major limitations. We prospectively evaluated whether serum cystatin C detected a rapid GFR decrease earlier and more accurately than serum creatinine. METHODS: In ten patients undergoing nephrectomy for living related kidney transplantation, serum creatinine and cystatin C were determined daily. The decrease of GFR was quantitated preoperatively by creatinine clearance and MAG3 scintigraphy. The GFR decrease was defined by a 50-100% increase of cystatin C or creatinine from preoperative values. Ten patients without renal impairment served as controls. RESULTS: Initially, patients had a creatinine clearance of 105 +/- 14 ml/min/1.73 m2. Due to nephrectomy, patients lost 45 +/- 3% of their renal function. Serum cystatin C significantly increased already one, serum creatinine two days after nephrectomy. Cystatin C demonstrated an increase by 50-100% 1.4 +/- 0.9 days earlier than creatinine (p = 0.009). Serum cystatin C performed well detecting the GFR decrease with higher diagnostic values compared to creatinine. This was indicated by a sensitivity of 50, 70 and 80% of cystatin C to detect the GFR decrease on the three days following nephrectomy. CONCLUSIONS: Serum cystatin C detects rapid GFR decreases one to two days earlier than creatinine. Cystatin C is an early and accurate marker to detect rapid GFR decreases as in ARF.  相似文献   

5.
Chronic kidney disease is currently on the rise and not only leads to ESRD necessitating dialysis or transplantation but also increases cardiovascular disease risk. Measurement of the GFR, the gold standard for assessing kidney function, is expensive and cumbersome. Several prediction formulas that are based on serum creatinine are currently used to estimate the GFR, but none has been validated in a large cohort of individuals with diabetes. The performance of two commonly used formulas, the abbreviated Modification of Diet in Renal Disease (MDRD) study formula for the GFR and the Cockcroft-Gault estimate of creatinine clearance, were examined against GFR measured by the renal clearance of iothalamate in 1286 individuals with type 1 diabetes from the Diabetes Control and Complications Trial (DCCT). The performance of these formulas was assessed by computing bias, precision, and accuracy. The DCCT participants had normal serum creatinine, unlike the MDRD patients, and somewhat lower creatinine excretion than subjects in the original cohort Cockcroft Gault, which led to biased and highly variable estimates of GFR when these formulas were applied to the DCCT subjects. The MDRD substantially underestimated iothalamate GFR, whereas the Cockcroft Gault formula underestimated it when it was <120 ml/min per 1.73 m(2) and overestimated it when iothalamate GFR was >130 ml/min per 1.73 m(2). Overall, only one third of the formula's estimates were within +/-10% of iothalamate GFR. By underestimating GFR, these formulas were likely to flag early declines in kidney function. Refitting the MDRD formula to the DCCT data gave a more accurate and unbiased prediction of GFR from serum creatinine; percentage of estimate within 10% of measured GFR increased to 56%. A substantial variability in the estimates, however, remained.  相似文献   

6.
BACKGROUND: Estimation of the glomerular filtration rate (GFR) is essential for the evaluation of patients with chronic kidney disease (CKD). Recently, serum cystatin C was proposed as a new endogenous marker of GFR and in our study its diagnostic accuracy was compared with that of other markers of GFR. METHODS: In this study, 164 patients with CKD stages 2-3 (GFR 30-89 ml/min/1.73 m2), who had performed 51Cr-labelled ethylenediaminetetra-acetic acid clearance, were enrolled. In each patient, serum creatinine and serum cystatin C were determined. Creatinine clearance was calculated using the Cockcroft-Gault (C&G) and the modification of diet in renal disease (MDRD) formulas. RESULTS: The mean 51CrEDTA clearance was 57 ml/min/1.73 m2, the mean serum creatinine 149 micromol/l and the mean serum cystatin C 1.74 mg/l. We found significant correlation between 51CrEDTA clearance and serum creatinine (R = -0.666), serum cystatin C (R = -0.792), reciprocal of serum creatinine (R = 0.628), reciprocal of serum cystatin C (R = 0.753) and calculated creatinine clearance from the formulas C&G (R = 0.515) and MDRD formulas (R = 0.716). The receiver operating characteristic (ROC) curve analysis (cut-off for GFR 60 ml/min/1.73 m2) showed that serum cystatin C had a significantly higher diagnostic accuracy than serum creatinine (P = 0.04) and calculated creatinine clearance from the C&G formula (P < 0.0001), though only in female patients. No difference in diagnostic accuracy was found between serum cystatin C and creatinine clearance calculated from the MDRD formula. CONCLUSIONS: Our results indicate that serum cystatin C is a reliable marker of GFR in patients with mildly to moderately impaired kidney function and has a higher diagnostic accuracy than serum creatinine and calculated creatinine clearance from the C&G formula in female patients.  相似文献   

7.
BACKGROUND: The measurement of renal functional reserve (acute change in glomerular filtration rate [GFR] after protein load) allows the detection of sub-clinical renal dysfunction and has prognostic implications in diabetes. Our aim was to test cystatin C as an index of GFR and renal functional reserve. METHODS: GFR was measured by C(Sinistrin) at baseline and after protein load in 28 diabetic patients with serum creatinine <1.2 mg/dL. The C(Sinistrin) was compared with cystatin C, serum creatinine, creatinine clearance, and Cockcroft-Gault formula. RESULTS: Baseline C(Sinistrin) ranged from 67-172 mL/min. Regression analysis showed an overall low relationship between C(Sinistrin) and the indirect markers of GFR. The highest correlation with C(Sinistrin) was obtained for cystatin C clearance (R(2) = 0.58, r = 0.76, p < 0.001), the 1/serum cystatin C (R(2) = 0.58, r = 0.76, p < 0.001), and serum cystatin C (R(2) = 0.52, r = 0.72, p < 0.001). Renal functional reserve was preserved in 6 of 28 patients. There was no significant change in cystatin C in response to protein load. CONCLUSION: Wide variation in baseline GFR emphasizes the need for the early detection of renal dysfunction. Cystatin C correlated best with C(Sinistrin) at baseline, but did not detect renal functional reserve.  相似文献   

8.
BACKGROUND: Pancreas transplant alone (PTA) has become accepted therapy for select nonuremic patients with type 1 diabetes mellitus. However, PTA may lead to significant complications including a decline in native renal function. This study examines trends in native renal function during the first posttransplant year in PTA recipients with a spectrum of pretransplant glomerular filtration rates (GFR). METHODS: Renal function was studied in 23 recipients of bladder-drained PTA who underwent transplantation from April 1998 through September 2001. GFR was measured by corrected iothalamate clearance at the time of transplant evaluation and 1 year posttransplant and also calculated using the Cockcroft-Gault method at the transplant evaluation; at the day of transplantation; and at 1, 6, and 12 months posttransplant. RESULTS: Iothalamate clearance decreased in the first year in 96% of patients (22 of 23). The mean measured GFR decreased from 84 +/- 33 mL/min/1.73 m2 pretransplant to 52 +/- 26 mL/min/1.73 m2 at 1 year (P <0.001). Calculated creatinine clearance declined in the majority of patients at both 1 and 12 months after PTA, but some patients, including a few with low GFR, maintained stable renal function. Calculated GFR generally correlated well with measured GFR in most patients, with a few notable exceptions. One patient (baseline GFR, 42 mL/min/1.73 m2) developed renal failure in the first year after transplant and required kidney transplantation. CONCLUSIONS: Bladder-drained PTA results in a decline in native renal function in the majority of patients regardless of the pretransplant GFR. These data suggest the need for strategies to prevent or minimize the decline in renal function after PTA.  相似文献   

9.
BACKGROUND: Glomerular filtration rate (GFR) is the best overall index of renal function in health and disease. Inulin and 51Cr-EDTA plasma clearances are considered the gold standard methods for estimating GFR. Unfortunately, these methods require specialized technical personnel over a period of several hours and high costs. In clinical practice, serum creatinine is the most widely used index for the noninvasive assessment of GFR. Despite its specificity, serum creatinine demonstrates an inadequate sensitivity, particularly in the early stages of renal impairment. Recently, cystatin C, a low molecular mass plasma protein freely filtered through the glomerulus and almost completely reabsorbed and catabolized by tubular cells, has been proposed as a new and very sensitive serum marker of changes in GFR. This study was designed to test whether serum cystatin C can replace serum creatinine for the early assessment of nephropathy in patients with type 2 diabetes. METHODS: The study was performed on 52 Caucasian type 2 diabetic patients. Patients with an abnormal albumin excretion rate (AER) were carefully examined to rule out non-diabetic renal diseases by ultrasonography, urine bacteriology, microscopic urine analysis, and kidney biopsy. Serum creatinine, serum cystatin C, AER, serum lipids, and glycosylated hemoglobin (HbA1c) were measured. GFR was estimated by the plasma clearance of 51Cr-EDTA. In addition the Cockcroft and Gault formula (Cockcroft and Gault estimated GFR) was calculated. RESULTS: Cystatin C serum concentration progressively increased as GFR decreased. The overall relationship between the reciprocal cystatin C and GFR was significantly stronger (r = 0.84) than those between serum creatinine and GFR (r = 0.65) and between Cockcroft and Gault estimated GFR and GFR (r = 0.70). As GFR decreased from 120 to 20 mL/min/1.73 m2, cystatin C increased more significantly that serum creatinine, giving a stronger signal in comparison to that of creatinine over the range of the measured GFR. The maximum diagnostic accuracy of serum cystatin C (90%) was significantly better than those of serum creatinine (77%) and Cockcroft and Gault estimated GFR (85%) in discriminating between type 2 diabetic patients with normal GFR (>80 mL/min per 1.73 m2) and those with reduced GFR (<80 mL/min/1.73 m2). In particular, the cystatin C cut-off limit of 0.93 mg/L corresponded to a false-positive rate of 7.7% and to a false-negative rate of 1.9%; the serum creatinine cut-off limit of 87.5 micromol/L corresponded to a false-positive rate of 5.8% and to a false-negative rate of 17.0%. CONCLUSIONS: Cystatin C may be considered as an alternative and more accurate serum marker than serum creatinine or the Cockcroft and Gault estimated GFR in discriminating type 2 diabetic patients with reduced GFR from those with normal GFR.  相似文献   

10.
Although many assume that measurement of glomerular filtration rate (GFR) using a marker such as iothalamate (iGFR) is superior to equation-estimated GFR (eGFR), each of these methods has distinct disadvantages. Because physicians often use renal function to guide the screening for various CKD-associated complications, one method to compare the clinical utility of iGFR and eGFR is to determine the strength of their association with CKD-associated comorbidities. Using a subset of 1214 participants in the Chronic Renal Insufficiency Cohort (CRIC) Study, we determined the cross-sectional associations between known complications of CKD and iGFR, eGFR estimated from serum creatinine (eGFR_Cr), and eGFR estimated from cystatin C (eGFR_cysC). We found that none of the measures of renal function strongly associated with CKD complications and that the relative strengths of associations varied according to the outcome of interest. For example, iGFR demonstrated better discrimination than eGFR_Cr and eGFR_cysC for outcomes of anemia and hemoglobin concentration; however, both eGFR_Cr and eGFR_cysC demonstrated better discrimination than iGFR for outcomes of hyperphosphatemia and phosphorus level. iGFR and eGFR had similar strengths of association with hyperkalemia/potassium level and with metabolic acidosis/bicarbonate level. In conclusion, iothalamate measurement of GFR is not consistently superior to equation-based estimations of GFR in explaining CKD-related comorbidities. These results raise questions regarding the conventional view that iGFR is the "gold standard" measure of kidney function.  相似文献   

11.
BACKGROUND: Progressive renal function loss during long-term follow up is common after lung transplantation and close monitoring is warranted. Since changes in creatinine generation and excretion may occur after lung transplantation, the reliability of creatinine-based methods of renal function assessment to serial measurements of glomerular filtration rate (GFR) were compared in this population. METHODS: Renal function with serial measurements of GFR by iothalamate clearance every 6 months after transplantation was studied in a cohort of 40 lung transplant recipients with at least 24 months of follow up, transplanted between November 1990 and October 1995 in this center. The correlation between the rate of renal function loss calculated from the slope of GFR and the following creatinine-based indices: 1/S-creatinine, Cockcroft clearance and Levey estimation were analyzed. The absolute difference between GFR and Cockcroft clearance and Levey estimation pre- post-transplantation at several points was also studied. RESULTS: The slopes of 1/S-creatinine (r = 0.85), Cockcroft clearance (r = 0.86), and the Levey estimation (r = 0.84) correlated significantly with the slope of GFR as measured by iothalamate clearance. However, all creatinine-based slopes underestimate the rate of GFR loss. Cockcroft clearance and the reciprocal value of serum creatinine do not detect small GFR losses. During long-term follow up a time-dependent discrepancy between Cockcroft clearance, Levey estimation and GFR was observed which may partially explain the observations for this population. CONCLUSION: Creatinine-based slopes correlate with GFR slopes after lung transplantation, but consistently underestimate the rate of GFR decline. The Levey estimation is the most sensitive method used to detect small GFR losses and may be preferable when no GFR measurement is available. In special conditions when an accurate renal function assessment is needed true GFR may be necessary.  相似文献   

12.
Traditionally, creatinine clearance is used as an estimation of the glomerular filtration rate (GFR) because of its relative ease and low cost. Errors in collection limit its usefulness. Estimation of GFR using 99mTc diethylene-triamine pentaacetic acid (Tc-DTPA) by direct scintigraphic determination of fractional radionuclide accumulation within each kidney does not require blood or urine sampling, takes 10 to 15 minutes to perform, and has been reported to give a GFR that correlates with 24-hour urinary creatinine clearance (CC) in hospitalized patients (r = 0.95). To assess its usefulness in the outpatient diabetic with nephropathy, 24 patients with type I diabetes underwent 56 iothalamate clearances during water diuresis and 56 simultaneous Tc-DTPA GFR estimations. GFR was also estimated from 24-hour urinary CC, 100/creatinine, and by the formula of Cockcroft and Gault. Tc-DTPA GFR estimation by direct renal scanning correlated relatively poorly with iothalamate GFR (r = 0.74) in this patient population when all levels of iothalamate GFR were compared (n = 56), but improved (r = 0.80) when iothalamate GFR values greater than or equal to 120 mL/min were excluded from analysis (n = 45). Given all levels of iothalamate GFR, the best correlation was obtained with the estimation using the equation of Cockcroft and Gault (r = 0.86).  相似文献   

13.
Cystatin C as a marker for glomerular filtration rate in pediatric patients   总被引:24,自引:5,他引:19  
Cystatin C is a non-glycated 13-kilodalton basic protein produced by all nucleated cells. The low molecular mass and the basic nature of cystatin C, in combination with its stable production rate, suggest that the glomerular filtration rate (GFR) is the major determinant of cystatin C concentration in the peripheral circulation. Recently published studies have shown that cystatin C correlates more strongly than creatinine with GFR measured using the 51Cr-EDTA clearance. The aim of this study was to evaluate serum cystatin C as a marker for GFR in children. GFR was determined on medical indications using the 51Cr-EDTA technique in pediatric patients (2–16 years) in our renal unit. Simultaneously their cystatin C and creatinine concentrations were also measured. Of our 52 patients, 19 had a reduced renal function (<GFR 89 ml/min per 1.73 m2) based on the 51Cr-EDTA clearance. The correlation of cystatin C with the isotopic measurement of GFR tended to be stronger (r=0.89, P=0.073) than that of creatinine (r=0.80). Receiver operating characteristic analysis showed that the diagnostic accuracy of cystatin C was better (P=0.037) than that of creatinine in discriminating between subjects with normal renal function and those with reduced GFR. This study demonstrates that serum cystatin C has an increased diagnostic accuracy for reduced GFR when compared with serum creatinine. Hence, cystatin C seems to be an attractive alternative for the estimation of GFR in children. Received: 13 May 1998 / Revised: 22 September 1998 / Accepted: 22 October 1998  相似文献   

14.
Creatinine-based glomerular filtration rate (GFR) estimators perform poorly in renal transplant recipients. Cystatin C might be a better alternative to serum creatinine in assessing renal graft function. We compared several cystatin C-based equations with the modification diet renal disease (MDRD) equation in 120 adult renal transplant recipients for whom the GFR was measured by the gold standard inulin clearance. Mean inulin-measured GFR was 52.6 mL/min/1.73 m (range, 13-119). The Hoek, Rule, Le Bricon, and Filler cystatin C-based formulas showed significantly better performances (accuracy 30% of 82%, 81%, 78%, and 71%), than the MDRD equation (58%, Mac Nemar test, P<0.01). Sensitivity to detect a GFR below 60 mL/min/1.73 m was significantly higher for the Hoek and the Rule equations (0.95, 95% CI 0.91-1) than for the MDRD equation (0.76, 95% CI 0.67-0.85). These data confirm that cystatin C as a GFR marker offers significant advantages over creatinine in renal transplantation.  相似文献   

15.
Glomerular filtration rate (GFR) estimates from serum creatinine has not been generalizable across all populations. Cystatin C has been proposed as an alternative marker for estimating GFR. The objective of this study was to compare cystatin C with serum creatinine for estimating GFR among different clinical presentations. Cystatin C and serum creatinine levels were obtained from adult patients (n=460) during an evaluation that included a GFR measurement by iothalamate clearance. Medical records were abstracted for clinical presentation (healthy, native chronic kidney disease or transplant recipient) at the time of GFR measurement. GFR was modeled using the following variables: cystatin C (or serum creatinine), age, gender and clinical presentation. The relationship between cystatin C and GFR differed across clinical presentations. At the same cystatin C level, GFR was 19% higher in transplant recipients than in patients with native kidney disease (P<0.001). The association between cystatin C and GFR was stronger among native kidney disease patients than in healthy persons (P<0.001 for statistical interaction). Thus, a cystatin C equation was derived using only patients with native kidney disease (n=204). The correlation with GFR (r(2)=0.853) was slightly higher than a serum creatinine equation using the same sample (r(2)=0.827), the Modification of Diet in Renal Disease equation (r(2)=0.825) or the Cockcroft-Gault equation (r(2)=0.796). Averaged estimates between cystatin C and serum creatinine equations further improved correlation (r(2)=0.891). Cystatin C should not be interpreted as purely a marker of GFR. Other factors, possibly inflammation or immunosuppression therapy, affect cystatin C levels. While recognizing this limitation, cystatin C may improve GFR estimates in chronic kidney disease patients.  相似文献   

16.
BACKGROUND: A sensitive, feasible and reproducible marker for renal function is necessary to evaluate the clinical efficacy of enzyme replacement therapy (ERT) in Fabry nephropathy. Serum creatinine has some limitations and cystatin C has been proposed, in other nephropathies, as a useful marker of renal function. The use of cystatin C as a marker of glomerular filtration rate (GFR) was investigated in Fabry patients receiving ERT. METHODS: Renal function was evaluated with serum creatinine, serum cystatin C and estimated GFR (through Modification of Diet in Renal Disease [MDRD], Cockcroft-Gault [C&G] and Hoek formulae) in 21 Fabry patients receiving ERT with agalsidase alfa for 3 years and in 13 Fabry patients receiving agalsidase alfa for 4 years. RESULTS: During years of ERT while serum creatinine remained stable, cystatin C values showed a significant, increasing trend right from the first year of ERT. CONCLUSIONS: In Fabry disease, cystatin C is a sensitive and reliable marker of renal function, and it should be taken into account when evaluating GFR trends during ERT.  相似文献   

17.
The performance of serum cystatin C as a screening marker of reduced creatinine clearance in renal transplantation was evaluated and compared to serum creatinine. In addition we studied whether cystatin C accurately reflects creatinine clearance over the entire range of transplant function. Serum cystatin C, serum creatinine, and creatinine clearance were measured in 110 adult renal transplant recipients. Cystatin C detected reduced creatinine clearance with the high sensitivity of 95 %. Serum cystatin C and serum creatinine did not differ regarding 90 and 95 % sensitivity, derived from the receiver-operating characteristics plot. We demonstrated a strong correlation and linear association between 1/cystatin C and creatinine clearance over the entire range of transplant function, equivalent to that of 1/creatinine. In summary, serum cystatin C accurately reflects creatinine clearance over the entire range of transplant function and is as efficacious as serum creatinine to detect reduced creatinine clearance in renal transplant recipients. Received: 5 June 1999 Revised: 8 March 2000 Accepted: 20 April 2000  相似文献   

18.
BACKGROUND: Cystatin C is a proteinase inhibitor with a low molecular weight. The serum levels of cystatin C are mainly dependent on glomerular filtration rate (GFR) making cystatin C an endogenous parameter of GFR. The aim of the study was to elucidate the applicability of serum cystatin C as a parameter of GFR in patients with normal to moderately impaired kidney function and to estimate a reference interval for serum cystatin C. PATIENTS AND METHODS: Forty-six patients (25 males and 21 females) aged 22 to 83 years with various kidney diseases and 250 blood donors (164 males and 86 females) aged 19 to 64 years were included. Cystatin C was measured by an automated particle-enhanced nephelometric immunoassay, serum creatinine by an enzymatic and by Jaffé method, urine creatinine by an enzymatic method, and GFR by 99mTc-DTPA clearance. RESULTS: Serum levels ofcystatin C and creatinine showed increments with decreasing values of 99mTc-DTPA clearance and a linear relationship was found between 99mTc-DTPA clearance and l/serum cystatin C, l/serum creatinine (enzymatic method), and creatinine clearance. Comparison of the non-parametric receiver-operating characteristic (ROC) plots for serum cystatin C (area under the curve (AUC) = 0.996; SE = 0.005), serum creatinine (enzymatic method) (AUC = 0.899; SE = 0.044), serum creatinine (Jaffé method) (AUC = 0.870; SE = 0.051), measured creatinine clearance (AUC = 0.959; SE = 0.025), and estimated creatinine clearance (0.950; SE = 0.029) revealed significant differences for serum cystatin C and serum creatinine (enzymatic and Jaffé method) (p values: 0.03 and 0.01). No significant differences were demonstrated between serum cystatin C and measured and estimated creatinine clearance (p value: 0.14 and 0.12). The non-parametric reference interval for serum cystatin C was calculated to be 0.51-1.02 mg/l (median: 0.79 mg/l; range: 0.33 - 1.07 mg/l). CONCLUSION: Serum cystatin C seems to be a better parameter of GFR than serum creatinine in adults with various types of kidney disease with normal to moderately impaired kidney function.  相似文献   

19.
BACKGROUND: It is well known that serum creatinine may be used as a marker of renal function only if taking into account factors that influence creatinine production, such as age, gender, and weight. Serum cystatin C has been proposed as a potentially superior marker than serum creatinine, because serum cystatin C level is believed to be produced at a constant rate and not to be affected by such factors. However, there are limited data on factors that may influence serum cystatin C levels, and there are limited data comparing cystatin C-based estimates of renal function with creatinine-based estimates that adjust for such factors, especially in individuals with normal, or mildly reduced, renal function. METHODS: This was a cross-sectional study of 8058 inhabitants of the city of Groningen, The Netherlands, 28 to 75 years of age. Serum cystatin C and serum creatinine levels were measured, and creatinine clearance was determined from the average of two separate 24-hour urine collections. We performed multivariate analyses to identify factors independently associated with serum cystatin C levels after adjusting for creatinine clearance. Then, partial Spearman correlations were obtained after adjusting for factors that may influence serum cystatin C and creatinine levels. We also compared the goodness-of-fit (R(2)) of different multivariate linear regression models including serum cystatin C level and serum creatinine level for the outcome of creatinine clearance. RESULTS: Older age, male gender, greater weight, greater height, current cigarette smoking, and higher serum C-reactive protein (CRP) levels were independently associated with higher serum cystatin C levels after adjusting for creatinine clearance. After adjusting for age, weight, and gender, the partial Spearman correlations between creatinine and, respectively, serum cystatin C level and serum creatinine level were -0.29 (P < 0.001) and -0.42 (P < 0.001), respectively. The R(2) values for serum cystatin C level and serum creatinine level adjusted for age, weight, and gender were 0.38 and 0.42, respectively. The addition of cigarette smoking and serum CRP levels did not improve the R(2) value for the multivariate serum cystatin C-based model. CONCLUSION: Serum cystatin C appears to be influenced by factors other than renal function alone. In addition, we found no evidence that multivariate serum cystatin C-based estimates of renal function are superior to multivariate serum creatinine-based estimates.  相似文献   

20.
Background. Researches have recently reported that serum cystatin C is a more sensitive marker of changes in glomerular filtration rate (GFR) than serum creatinine. We conducted this study to evaluate the significance of serum cystatin C as a more sensitive marker of GFR for early detection of renal impairment in special groups of patients with type 2 diabetes mellitus (DM). Methods. The present study included 40 patients with type 2 DM divided into four equal groups based on their urinary albumin excretion and renal function: group 1 was normoalbuminuric, group 2 was microalbuminuric, group 3 was macroalbuminuric, and group 4 was macroalbuminuric with renal dysfunction. All patients underwent a thorough history, full clinical examination, fasting, and renal function tests. Post-prandial blood glucose levels, glycosylated hemoglobin A1c (HbA1c), proteins, albumin in 24 hr urine, and serum cystatin C were collected. Results. Serum cystatin C and creatinine were significantly higher in macrolbuminuric type 2 diabetic patients with renal dysfunction (group 4: 2.26 ± 1.28, 4.21 ± 2.38 mg/dl, respectively; p < 0.001) than macrolbuminuric type 2 diabetic patients with normal renal function (group 3: 1.04 ± 0.24, 0.96 ± 0.20 mg/dl, respectively), the microalbuminuric group (0.87 ± 0.28, 0.71 ± 0.12 mg/dl, respectively), as well as the normoalbuminuric group (0.55 ± 0.41, 0.60 ± 0.18 mg/dl, respectively). ROC plots demonstrated that area under the curve (AUC) of cystatin C (0.74) was greater than that for creatinine clearance (cr.cl) (0.67) and serum creatinine (s‐cr) (0.74); therefore, the sensitivity and diagnostic accuracy of cystatin c was better than cr. cl., and both were better than s-cr. Serum cystatin C showed significant correlation in groups 2–4 with s-cr, cr.cl, and 24 hr urine albumin, but no correlation was found in group 1. Conclusion. Serum cystatin C is a reliable and easily performed marker for GFR to detect renal impairment in patients with type 2 DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号