首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Background: The Meyer-Overton rule predicts that an anesthetic's potency will correlate with its oil solubility. A group of halogenated volatile compounds that disobey this rule has been characterized. These compounds do not induce anesthesia in rats at partial pressures exceeding those predicted by the Meyer-Overton rule to be anesthetic. The observation that potentiation of GABAA receptor responses by anesthetic and nonanesthetic halogenated volatile compounds correlates with their abilities to induce general anesthesia suggests that this receptor is involved in the mechanism of general anesthesia. However, the GABAA receptor is only one member of a superfamily of structurally similar ligand-gated ion channels. This study compares the actions of both anesthetic and nonanesthetic halogenated volatile compounds on another member of this superfamily of receptors, the nicotinic acetylcholine receptor (nAcChoR).

Methods: The actions of both anesthetic and nonanesthetic compounds on desensitization kinetics were characterized from the time-dependent binding of the fluorescent acetylcholine analogue, Dns-C6 -Cho, to the nAcChoR.

Results: At concentrations predicted by the Meyer-Overton rule to be equianesthetic, the anesthetics isoflurane and enflurane were significantly more effective than the nonanesthetics 1,2-dichlorohexafluorocyclobutane and 2,3-dichlorooctafluorobutane in enhancing the fraction of receptors preexisting in the slow desensitized state and increasing the apparent rates of agonist-induced fast and slow desensitization.  相似文献   


2.
Background: Isoflurane increases the apparent agonist affinity of ligand-gated ion channels. This action reflects a reduction in the receptor's agonist dissociation constant and/or the preopen/open channel state equilibrium. To evaluate the effect of isoflurane on each of these kinetic constants in the nicotinic acetylcholine receptor, the authors analyzed isoflurane's actions on (1) the binding of the fluorescent agonist Dns-C6-Cho to the nicotinic acetylcholine receptor's agonist self-inhibition site and (2) the desensitization kinetics induced by the binding of the weak partial agonist suberyldicholine.

Methods: The dissociation constant for Dns-C6-Cho binding to the self-inhibitory site was determined using stopped-flow fluorescence spectroscopy. The values of the kinetic constants for agonist binding, channel gating, and desensitization were determined by modeling the suberyldicholine concentration-dependence of the apparent rate of desensitization.

Results: Isoflurane did not significantly alter the dissociation constant for Dns-C6-Cho binding to the self-inhibitory site even at a concentration as high as 1.5 mM, the highest concentration studied. At this concentration, isoflurane substantially reduced the dissociation constant for suberyldicholine binding to its channel opening site by 97% from 17 +/- 5 [mu]M to 0.5 +/- 0.2 [mu]M, whereas the preopen/open channel state equilibrium was reduced only from 19.1 to 5 +/- 1.  相似文献   


3.
BACKGROUND: Isoflurane increases the apparent agonist affinity of ligand-gated ion channels. This action reflects a reduction in the receptor's agonist dissociation constant and/or the preopen/open channel state equilibrium. To evaluate the effect of isoflurane on each of these kinetic constants in the nicotinic acetylcholine receptor, the authors analyzed isoflurane's actions on (1) the binding of the fluorescent agonist Dns-C6-Cho to the nicotinic acetylcholine receptor's agonist self-inhibition site and (2) the desensitization kinetics induced by the binding of the weak partial agonist suberyldicholine. METHODS: The dissociation constant for Dns-C6-Cho binding to the self-inhibitory site was determined using stopped-flow fluorescence spectroscopy. The values of the kinetic constants for agonist binding, channel gating, and desensitization were determined by modeling the suberyldicholine concentration-dependence of the apparent rate of desensitization. RESULTS: Isoflurane did not significantly alter the dissociation constant for Dns-C6-Cho binding to the self-inhibitory site even at a concentration as high as 1.5 mM, the highest concentration studied. At this concentration, isoflurane substantially reduced the dissociation constant for suberyldicholine binding to its channel opening site by 97% from 17 +/- 5 microM to 0.5 +/- 0.2 microM, whereas the preopen/open channel state equilibrium was reduced only from 19.1 to 5 +/- 1. CONCLUSIONS: Isoflurane increases the apparent agonist affinity of the nicotinic acetylcholine receptor primarily by reducing the agonist dissociation constant of the site responsible for channel opening rather than altering channel gating kinetics.  相似文献   

4.
Background: The nAcChoR is the prototypical member of a superfamily of ligand-gated ion channels that are all relevant targets of anesthetics and undergo desensitization upon prolonged exposure to agonist. This study was designed to investigate the effects of representative normal alcohols on the apparent rate of acetylcholine-induced nAcChoR desensitization.

Methods: Nicotinic acetylcholine receptors were obtained from the electroplax organ of Torpedo nobiliana. The apparent rate of acetylcholine-induced desensitization in the presence and absence of normal alcohols was measured using stopped-flow fluorescence.

Results: Normal alcohols as long as octanol (the longest studied) increased the apparent rate of desensitization induced by low concentrations of acetylcholine, shifting the agonist concentration-response curve for desensitization to the left. Ethanol, butanol, and, to a lesser extent, hexanol increased the maximal rate of desensitization induced by high, saturating concentrations of agonist. Beyond hexanol, heptanol and octanol had no effect on this maximal apparent rate of desensitization, even at concentrations that approach those that directly induce desensitization in the absence of agonist.  相似文献   


5.
BACKGROUND: The nAcChoR is the prototypical member of a superfamily of ligand-gated ion channels that are all relevant targets of anesthetics and undergo desensitization upon prolonged exposure to agonist. This study was designed to investigate the effects of representative normal alcohols on the apparent rate of acetylcholine-induced nAcChoR desensitization. METHODS: Nicotinic acetylcholine receptors were obtained from the electroplax organ of Torpedo nobiliana. The apparent rate of acetylcholine-induced desensitization in the presence and absence of normal alcohols was measured using stopped-flow fluorescence. RESULTS: Normal alcohols as long as octanol (the longest studied) increased the apparent rate of desensitization induced by low concentrations of acetylcholine, shifting the agonist concentration-response curve for desensitization to the left Ethanol butanol, and, to a lesser extent, hexanol increased the maximal rate of desensitization induced by high, saturating concentrations of agonist. Beyond hexanol, heptanol and octanol had no effect on this maximal apparent rate of desensitization, even at concentrations that approach those that directly induce desensitization in the absence of agonist. CONCLUSION: Normal alcohols ranging from ethanol to octanol increase the apparent affinity of nAcChoR for agonist with potencies that are proportional to their hydrophobicities. However, normal alcohol effects on the rate constant for desensitization show a cutoff beyond hexanoL This suggests that the effects of normal alcohols on the apparent agonist affinity and rate constant for desensitization of nAcChoR may be modulated by distinct sites that have different steric constraints; the site(s) responsible for increasing the maximal rate of desensitization are predicted to be smaller than those that increase the apparent agonist affinity.  相似文献   

6.
Background: Although it has been suggested that anesthetics alter protein conformational states by binding to nonpolar sites within the interior regions of proteins, the rate and extent to which anesthetics penetrate membrane proteins has not been characterized. The authors report the use of steady-state and stopped-flow spectroscopy to characterize the interactions of halothane with receptor membranes.

Methods: Steady-state and stopped-flow fluorescence spectroscopy was used to characterize halothane quenching of nicotinic acetylcholine receptor (nAcChoR)-rich membrane intrinsic fluorescence and the rate of isoflurane-induced nAcChoR desensitization.

Results: At equilibrium, halothane quenched only 54 +/- 1.4% of all tryptophan fluorescence. Diethyl ether failed to reduce fluorescence quenching by halothane, suggesting that it does not bind to the same protein sites as halothane. Stopped-flow fluorescence traces defined two kinetic components of quenching: a fast component that occurred in less than 1 ms followed by a slower biphasic fluorescence decay. Protein unfolding with sodium dodecyl sulfate reduced halothane's Stern-Volmer quenching constant, eliminated the biphasic decay, and rendered fluorescence accessible to quenching by halothane within 1 ms. Functional studies indicate that anesthetic-induced desensitization of nAcChoR occurs in less than 2 ms.  相似文献   


7.
BACKGROUND: Although ether, alcohol, and halogenated alkane anesthetics potentiate agonist actions or increase the apparent agonist affinity of ligand-gated ion channels at clinically relevant concentrations, the effects of nonhalogenated alkane anesthetics on ligand-gated ion channels have not been studied. The current study assessed the abilities of two representative nonhalogenated alkane anesthetics (cyclopropane and butane) to potentiate agonist actions or increase the apparent agonist affinity of two representative ligand-gated ion channels: the nicotinic acetylcholine receptor and y-aminobutyric acid type A (GABA(A)) receptor. METHODS: Nicotinic acetylcholine receptors were obtained from the electroplax organ of Torpedo nobiliana, and human GABA(A) receptors (alpha1beta2gamma2L) were expressed in human embryonic kidney 293 cells. The Torpedo nicotinic acetylcholine receptors apparent agonist affinity in the presence and absence of anesthetic was assessed by measuring the apparent rates of desensitization induced by a range of acetylcholine concentrations. The GABA(A) receptor's apparent agonist affinity in the presence and absence of anesthetic was assessed by measuring the peak currents induced by a range of GABA concentrations. RESULTS: Neither cyclopropane nor butane potentiated agonist actions or increased the apparent agonist affinity (reduced the apparent agonist dissociation constant) of the Torpedo nicotinic acetylcholine receptor or GABA(A) receptor. At clinically relevant concentrations, cyclopropane and butane reduced the apparent rate of Torpedo nicotinic acetylcholine receptor desensitization induced by low concentrations of agonist. CONCLUSIONS: Our results suggest that the in vivo central nervous system depressant effects of nonhalogenated alkane anesthetics do not result from their abilities to potentiate agonist actions on ligand-gated ion channels. Other targets or mechanisms more likely account for the anesthetic activities of nonhalogenated alkane anesthetics.  相似文献   

8.
Background: Although ether, alcohol, and halogenated alkane anesthetics potentiate agonist actions or increase the apparent agonist affinity of ligand-gated ion channels at clinically relevant concentrations, the effects of nonhalogenated alkane anesthetics on ligand-gated ion channels have not been studied. The current study assessed the abilities of two representative nonhalogenated alkane anesthetics (cyclopropane and butane) to potentiate agonist actions or increase the apparent agonist affinity of two representative ligand-gated ion channels: the nicotinic acetylcholine receptor and [gamma]-aminobutyric acid type A (GABAA) receptor.

Methods: Nicotinic acetylcholine receptors were obtained from the electroplax organ of Torpedo nobiliana, and human GABAA receptors ([alpha]1[beta]2[gamma]2L) were expressed in human embryonic kidney 293 cells. The Torpedo nicotinic acetylcholine receptors apparent agonist affinity in the presence and absence of anesthetic was assessed by measuring the apparent rates of desensitization induced by a range of acetylcholine concentrations. The GABAA receptor's apparent agonist affinity in the presence and absence of anesthetic was assessed by measuring the peak currents induced by a range of GABA concentrations.

Results: Neither cyclopropane nor butane potentiated agonist actions or increased the apparent agonist affinity (reduced the apparent agonist dissociation constant) of the Torpedo nicotinic acetylcholine receptor or GABAA receptor. At clinically relevant concentrations, cyclopropane and butane reduced the apparent rate of Torpedo nicotinic acetylcholine receptor desensitization induced by low concentrations of agonist.  相似文献   


9.
Background: Volatile general anesthetics increase agonist-mediated ion flux through the gamma-aminobutyric acidA, glycine, and 5-hydroxytryptamine3 (5-HT3) receptors. This action reflects an anesthetic-induced increase in the apparent agonist affinity of these receptors. In contrast, volatile anesthetics block ion flux through the nicotinic acetylcholine receptor (nAcChoR). The authors tested the hypothesis that in addition to blocking ion flux through the nAcChoR, isoflurane also increases the apparent affinity of the nAcChoR for agonist.

Methods: Nicotinic acetylcholine receptors were obtained from the electroplax organ of Torpedo nobiliana. The apparent agonist affinity of the nAcChoR was determined using a new stopped-flow fluorescence assay. This assay derives the apparent agonist affinity of the nAcChoR from the apparent rates with which agonists convert nAcChoRs from the resting state to the desensitized state.

Results: Isoflurane significantly increased the apparent affinity (decreased the apparent dissociation constant) of acetylcholine for the nAcChoR at clinically relevant concentrations. The apparent dissociation constant decreased exponentially with the isoflurane concentration from a control value of 44 +/- 4 [micro sign]M to 1.0 +/- 0.1 [micro sign]M in the presence of 1.5 mM isoflurane, the highest concentration studied.  相似文献   


10.
BACKGROUND: Cloning and heterologous expression of ion channels allow biophysical and molecular studies of the mechanisms of volatile anesthetic interactions with human heart sodium channels. Volatile anesthetics may influence the development of arrhythmias arising from cardiac sodium channel dysfunction. For that reason, understanding the mechanisms of interactions between these anesthetics and cardiac sodium channels is important. This study evaluated the mechanisms of volatile anesthetic actions on the cloned human cardiac sodium channel (hH1a) alpha subunit. METHODS: Inward sodium currents were recorded from human embryonic kidney (HEK293) cells stably expressing hH1a channels. The effects of halothane and isoflurane on current and channel properties were evaluated using the whole cell voltage-clamp technique. RESULTS: Halothane at 0.47 and 1.1 mM and isoflurane at 0.54 and 1.13 mM suppressed the sodium current in a dose- and voltage-dependent manner. Steady state activation was not affected, but current decay was accelerated. The voltage dependence of steady state fast and slow inactivations was shifted toward more hyperpolarized potentials. The slope factor of slow but not fast inactivation curves was reduced significantly. Halothane increased the time constant of recovery from fast inactivation. The recovery from slow inactivation was not affected significantly by either anesthetic. CONCLUSIONS: In a heterologous expression system, halothane and isoflurane interact with the hH1a channels and suppress the sodium current. The mechanisms involve acceleration of the transition from the open to the inactivated state, stabilization of the fast and slow inactivated states, and prolongation of the inactivated state by delayed recovery from the fast inactivated to the resting state.  相似文献   

11.
BACKGROUND: It is well established that neuronal nicotinic acetylcholine receptors (nAChRs) are sensitive to inhalational anesthetics. The authors previously reported that halothane potently blocked alpha4beta2-type nAChRs of rat cortical neurons. However, the effect of isoflurane, which is widely used clinically, on nAChRs largely remains to be seen. The authors studied the effects of isoflurane as compared with sevoflurane and halothane on the human alpha4beta2 nAChRs expressed in human embryonic kidney cells. METHODS: The whole-cell and single-channel patch clamp techniques were used to record currents induced by acetylcholine. RESULTS: Isoflurane, sevoflurane, and halothane suppressed the acetylcholine-induced currents in a concentration-dependent manner with 50% inhibitory concentrations of 67.1, 183.3, and 39.8 microM, respectively, which correspond to 0.5 minimum alveolar concentration or less. When anesthetics were coapplied with acetylcholine, isoflurane and sevoflurane decreased the apparent affinity of receptor for acetylcholine, but halothane, in addition, decreased the maximum acetylcholine current. When isoflurane was preapplied and coapplied, its inhibitory action was independent of acetylcholine concentration. Isoflurane blocked the nAChR in both resting and activated states. Single-channel analyses revealed that isoflurane at 84 microM decreased the mean open time and burst duration without inducing "flickering" during channel openings. Isoflurane increased the mean closed time. As a result, the open probability of single channels was greatly reduced by isoflurane. CONCLUSIONS: Isoflurane, sevoflurane, and halothane potently blocked the alpha4beta2 nAChR. Isoflurane suppression of whole-cell acetylcholine currents was a result of decreases in the open time, burst duration, and open probability and an increase in the closed time of single channels. The high sensitivity of neuronal nAChRs to inhalational anesthetics is expected to play an important role in several stages of anesthesia.  相似文献   

12.
Background: Halothane and isoflurane have been shown to induce disparate effects on different brain structures in animals. In humans, various methods for measuring cerebral blood flow (CBF) have produced results compatible with a redistribution of CBF toward deep brain structures during isoflurane anesthesia in humans. This study was undertaken to examine the effects of halothane and isoflurane on the distribution of CBF.

Methods: Twenty ASA physical status patients (four groups, five in each) anesthetized with either isoflurane or halothane (1 MAC) during normo- or hypocapnia (PaCO2 5.6 or 4.2 kPa (42 or 32 mmHg)) were investigated with a two-dimensional CBF measurement (CBFxenon, intravenous133 xenon washout technique) and a three-dimensional method for measurement of the regional CBF (rCBF) distribution with single photon emission computer-aided tomography (SPECT;99m Tc-HMPAO). In the presentation of SPECT data, the mean CBF of the brain was defined as 100%, and all relative flow values are related to this value.

Results: The mean CBFxenon level was significantly influenced by the PaCO2 as well as by the anesthetic used. At normocapnia, patients anesthetized with halothane had a mean CBFxenon of 40 plus/minus 3 (SE) ISI units. With isoflurane, the flow was significantly (P < 0.01, 33 plus/minus 3 ISI units) less than with halothane. Hypocapnia decreased mean CBFxenon (P < 0.0001) during both anesthetics (halothane 24 plus/minus 3, isoflurane 13 plus/minus 2 ISI units). The effects on CBFxenon, between the anesthetics, differed significantly (P < 0.01) also during hypocapnia. There were significant differences in rCBF distribution measured between the two anesthetics (P < 0.05). During isoflurane anesthesia, there was a relative increase in flow values in subcortical regions (thalamus and basal ganglia) to 10-15%, and in pons to 7-10% above average. Halothane, in contrast, induced the highest relative flow levels in the occipital lobes, which increased by approximately 10% above average. The rCBF level was increased approximately 10% in cerebellum with both anesthetics. Changes in PaCO2 did not alter the rCBF distribution significantly.  相似文献   


13.
Background: This study was performed to elucidate and compare the effects of sevoflurane and of isoflurane on the nicotinic acetylcholine receptor of mouse myotubes. The experiments were done with special reference to anesthetic concentrations considerably less than those used for clinical anesthesia.

Methods: The patch-clamp technique was used to record acetylcholine-activated currents from the embryonic type of the nicotinic acetylcholine receptor in the outside-out mode. A piezo-driven liquid filament switch was used for the ultrafast application of acetylcholine alone or in combination with isoflurane or sevoflurane. In addition, the patches were preexposed to either anesthetic, preceding the activation with acetylcholine.

Results: The current elicited by acetylcholine was reduced reversibly and in a concentration-dependent manner by both anesthetics, which were equally effective. Preexposure of the patches to isoflurane or sevoflurane showed an additional inhibition that was present at micromolar concentrations. The time courses of current decay could be fitted by single exponentials for isoflurane. At higher concentrations of sevoflurane, the current decay became biexponential. In contrast to isoflurane, sevoflurane increased the time constants of desensitization when applied in low concentrations.  相似文献   


14.
Background: Preliminary studies suggest that desflurane and isoflurane potentiate the action of muscle relaxants equally. However, variability between subjects may confound these comparisons. A crossover study was performed in volunteers on the ability of desflurane and isoflurane to potentiate the neuromuscular effect of vecuronium, to influence its duration of action, and on the magnitude and time course of reversal of potentiation when anesthesia was withdrawn.

Methods: Adductor pollicis twitch tension was monitored in 16 volunteers given 1.25 MAC desflurane on one occasion, and 1.25 MAC isoflurane on another. In eight subjects, vecuronium bolus dose potency was determined using a two-dose dose-response technique; the vecuronium infusion dose requirement to achieve 85% twitch depression also was determined. Also in these subjects, the magnitude and time course of spontaneous neuromuscular recovery were determined when the anesthetic was withdrawn while maintaining a constant vecuronium infusion. In the other eight subjects, the time course of action of 100 micro gram/kg vecuronium was determined.

Results: Vecuronium's ED50 and infusion requirement to maintain 85% twitch depression were 20% less during desflurane, compared to isoflurane, anesthesia; vecuronium plasma clearance was similar during the two anesthetics. After 100 micro gram/kg vecuronium, onset was faster and recovery was longer during desflurane anesthesia. When the end-tidal anesthetic concentration was abruptly reduced from 1.25 to 0.75 MAC, twitch tension increased similarly ([nearly equal] 15% of control), and time for the twitch tension to reach 90% of the final change was similar ([nearly equal] 30 min) with both anesthetics. Decreasing anesthetic concentration from 0.75 to 0.25 MAC increased twitch tension by 46 plus/minus 10% and 25 plus/minus 7% of control (mean plus/minus SD, P < 0.001) with desflurane and isoflurane, respectively; 90% response times for these changes were 31 plus/minus 10 min and 18 plus/minus 7 min (P < 0.05), respectively.  相似文献   


15.
Background: The mechanisms of action of general anesthetics are not completely understood. Many general anesthetics are reported to potentiate gamma-aminobutyric acid (GABAA) and glycine receptors in the central nervous system (CNS) and to inhibit the muscle-type nicotinic acetylcholine receptor (nAChR). The effects of general anesthetics on another family of ligand-gated ion channel in the CNS, the nAChRs, have not been defined.

Methods: Two types of CNS acetylcholine receptor, the alpha4beta2 receptor or the alpha7 homomeric receptor, were expressed heterologously in Xenopus laevis oocytes. Using the standard two-microelectrode voltage-clamp technique, peak acetylcholine-gated current was measured before and after coapplication of isoflurane or propofol.

Results: Coapplication of either isoflurane or propofol with acetylcholine resulted in potent, dose-dependent inhibition of the alpha4beta2 receptor current with median inhibitory concentrations of 85 and 19 micro Meter, respectively. The inhibition of the alpha4beta2 receptor by both isoflurane and propofol appears to be competitive with respect to acetylcholine. The alpha7 receptor current was not effected by either anesthetic.  相似文献   


16.
To determine the cardiovascular actions of drugs commonly combined with inhalation anesthetics, we administered one drug from each of several classes of adjuvants to seven swine already anesthetized with equipotent concentrations (1.2 MAC) of desflurane, formerly I-653, a new inhaled anesthetic, or isoflurane. Succinylcholine (1 and 2 mg/kg), atracurium (0.6 mg/kg), and atropine (5 micrograms/kg) plus edrophonium (5 mg/kg) had no cardiovascular effects. Fentanyl was given in amounts that decreased MAC for the inhaled anesthetics by 25%-35%. A dose of 50 micrograms/kg IV had no cardiovascular effects during either anesthetic, whereas 100 micrograms/kg IV modestly increased systemic vascular resistance without changing other variables. Naloxone (100 micrograms/kg IV) during infusion of fentanyl decreased systemic vascular resistance and increased cardiac output during both desflurane and isoflurane anesthesia, increased heart rate during only isoflurane anesthesia, and did not affect mean arterial blood pressure during either anesthetic. Thiopental (2.5 and 5.0 mg/kg IV) decreased mean aortic blood pressure, cardiac output, stroke volume, and systemic vascular resistance during both anesthetics without altering heart rate or left- or right-sided cardiac filling pressures. The addition of 60% nitrous oxide caused no cardiovascular changes during desflurane anesthesia, but increased systemic vascular resistance and decreased cardiac output and stroke volume during isoflurane without altering heart rate or cardiac preload. We conclude that the usual clinical doses of adjuvants commonly administered during anesthesia have no untoward cardiovascular actions during 1.2 MAC desflurane or isoflurane anesthesia in swine.  相似文献   

17.
Background: General anesthetics are thought to produce their hypnotic effects mainly by acting at ligand-gated ionic channels in the central nervous system (CNS). Although it is well established that volatile anesthetics significantly modify the activity of the acetylcholine nicotinic receptors of the neuromuscular junction, little is known about their actions on the acetylcholine receptors in the CNS. In this study, the effects of halothane and isoflurane on the regulation of dopamine (DA) (gamma-aminobutyric acid [GABA]) depolarization-evoked release mediated by nicotinic (muscarinic) presynaptic receptors were studied in the rat striatum.

Methods: Assay for GABA (dopamine) release consisted of3 H-GABA (sup 3 H-DA)-preloaded synaptosomes with artificial cerebrospinal fluid (0.5 ml/min, 37 degrees Celsius) and measuring the radioactivity obtained from 1-min fractions for 18 min, first in the absence of any treatment (spontaneous release, 8 min), then in the presence of depolarizing agents combined with vaporized halothane and isoflurane (0.5-5%, 5 min), and finally with no pharmacologic stimulation (5 min). The depolarizing agents were potassium chloride (KCl; 9 mM) alone or with acetylcholine (10 sup -6 - 10 sup -4 M) and/or atropine (10 sup -5 M) for experiments with3 H-GABA, and KCl (15 mM) and nicotine (10 sup -7 - 5 x 10 sup -4 M) alone or with mecamylamine (10 sup -5 M) for experiments with3 H-DA.

Results: Potassium chloride induced a significant, Ca2+ -dependent release of both3 H-GABA and3 H-DA. Nicotine produced a concentration-related, mecamylamine-sensitive3 H-DA release that was significantly attenuated by nicotine (10 sup -7 M) preincubation. Acetylcholine elicited a dose-dependent, atropine-sensitive reduction of the KCl-evoked3 H-GABA release. Halothane and isoflurane significantly decreased the nicotine-evoked3 H-DA release but had only limited depressant effects on the KCl-stimulated3 H-DA and no action on the KCl-induced3 H-GABA release. The effects of acetylcholine on3 H-GABA release were reversed by halothane but not by isoflurane.  相似文献   


18.
Background: Numerous classes of anesthetic agents have been shown to enhance the effects mediated by the postsynaptic gamma-aminobutyric acid A (GABAA) receptor-coupled chloride channel in the mammalian central nervous system. However, presynaptic actions of anesthetics potentially relevant to clinical anesthesia remain to be clarified. Therefore, in this study, the effects of intravenous and volatile anesthetics on both the uptake and the depolarization-evoked release of GABA in the rat stratum were investigated.

Methods: Assay for specific GABA uptake was performed by measuring the radioactivity incorporated in purified striatal synaptosomes incubated with3 H-GABA (20 nM, 5 min, 37 degrees Celsius) and increasing concentrations of anesthetics in either the presence or the absence of nipecotic acid (1 mM, a specific GABA uptake inhibitor). Assay for GABA release consisted of superfusing3 H-GABA preloaded synaptosomes with artificial cerebrospinal fluid (0.5 ml *symbol* min sup 1, 37 degrees Celsius) and measuring the radioactivity obtained from 0.5 ml fractions over 18 min, first in the absence of any treatment (spontaneous release, 8 min), then in the presence of either KCl alone (9 mM, 15 mM) or with various concentrations of anesthetics (5 min), and finally, with no pharmacologic stimulation (5 min). The following anesthetic agents were tested: propofol, etomidate, thiopental, ketamine, halothane, enflurane, isoflurane, and clonidine.

Results: More than 95% of3 H-GABA uptake was blocked by a 10 sup 3 -M concentration of nipecotic acid. Propofol, etomidate, thiopental, and ketamine induced a dose-related, reversible, noncompetitive, inhibition of3 H-GABA uptake: IC50 = 4.6 plus/minus 0.3 x 105 M, 5.8 plus/minus 0.3 x 10 sup -5 M, 2.1 plus/minus 0.4 x 10 sup -3 M, and 4.9 plus/minus 0.5 x 10 sup -4 M for propofol, etomidate, thiopental, and ketamine, respectively. Volatile agents and clonidine had no significant effect, even when used at concentrations greater than those used clinically. KCl application induced a significant, calcium-dependent, concentration-related, increase from basal3 H-GABA release, +34 + 10% (P < 0.01) and +61 plus/minus 13% (P < 0.001), respectively, for 9 mM and 15 mM KCl. The release of3 H-GABA elicited by KCl was not affected by any of the anesthetic agents tested.  相似文献   


19.
Long-lasting changes in the synaptic efficacy of signaling between neurons in the central nervous system are thought to be involved in memory consolidation and recall. Such long-lasting changes were first demonstrated by Bliss et al. in 1973. They found that high frequency stimulation to the hippocampus produced an increase in the amplitude of excitatory postsynaptic potentials, which lasted at least for hours. This phenomenon is known as long-term potentiation (LTP). LTP occurs in many synaptic pathways, and some forms of LTP appear to be triggered by the influx of calcium through NMDA receptors. General anesthetics are thought to affect LTP, since clinically relevant concentrations of volatile anesthetics seem to modify ligand-gated ion channels such as glutamate receptors and GABA(A) receptors. Previous studies have shown that volatile anesthetics such as isoflurane and sevoflurane enhance GABA(A) receptor-mediated inhibition, suggesting that general anesthesia is produced, at least in part, by enhancing neural inhibition mediated by GABA(A) receptors. This review focuses on recent research concerning the effects of volatile anesthetics on synaptic transmission, synaptic plasticity, and clinically important diseases imparing synaptic transmission in the central nervous system.  相似文献   

20.
BACKGROUND: There is substantial and growing literature on the actions of general anesthetics on a variety of neurotransmitter-gated ion channels, with the greatest attention being focused on inhibitory gamma-amino butyric acid type A receptors. In contrast, glutamate receptors, the most important class of fast excitatory neurotransmitter-gated receptor channels, have received much less attention, and their role in the production of the anesthetic state remains controversial. METHODS: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors formed from a variety of different subunits were expressed in Xenopus oocytes and HEK-293 cells, and their sensitivities to the inhalational general anesthetics xenon, isoflurane, and halothane were determined using two-electrode voltage clamp and patch clamp techniques. The effects of desensitization on anesthetic sensitivity were investigated using cyclothiazide and site-directed mutagenesis. An ultrarapid application system was also used to mimic rapid high-concentration glutamate release at synapses. RESULTS: The authors show that xenon can potently inhibit AMPA receptors when assayed using bath application of kainate. However, when the natural neurotransmitter l-glutamate is used under conditions in which the receptor desensitization is blocked and the peak of the glutamate-activated response can be accurately measured, the pattern of inhibition changes markedly. When desensitization is abolished by a single-point mutation (L497Y in GluR1 and the equivalent mutation L505Y in GluR4), the xenon inhibition is eliminated. When AMPA receptors are activated by glutamate using an ultrarapid application system that mimics synaptic conditions, sensitivity to xenon, halothane, and isoflurane is negligible. CONCLUSIONS: AMPA receptors, when assayed in heterologous expression systems, showed a sensitivity to inhalational anesthetics that was minimal when glutamate was applied rapidly at high concentrations. Because these are the conditions that are most relevant to synaptic transmission, the authors conclude that AMPA receptors are unlikely to play a major role in the production of the anesthetic state by inhalational agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号