首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is a common perception that Asians have lower bone density than Caucasians. However, such relationships could be confounded by bone size. In this study, the skeletal status of a convenience sample of 482 men and 887 women living in Hong Kong is compared with published data for Caucasians living in Rochester, Minnesota. Areal bone mineral density (BMD, g/cm2) and volumetric bone mineral apparent density (BMAD, g/cm3) were determined for the lumbar spine and proximal femur, using the Hologic QDR 2000 instrument. Cross-calibration was performed by measuring a common phantom, and the Hong Kong data were adjusted by a multiplication factor. Lumbar spine and femoral neck BMD and BMAD of Chinese men and women were all significantly lower (P<0.001 by t-test) than those of Caucasians, but the differences in BMAD were on average only about half the size of the differences in BMD. For instance, in postmenopausal Chinese women, BMD at the femoral neck and lumbar spine were 15.2% and 18.8% lower respectively, but BMAD at the femoral neck and lumbar spine were only 7.8% and 12.4% lower respectively. Similar trends were observed in men. After adjusting for age, body height and weight, the difference in BMAD between Caucasians and Chinese was further reduced and only statistically significant among postmenopausal women and among men younger than age 50 years for the lumbar spine. For instance, the adjusted BMAD in postmenopausal Chinese women at the femoral neck and lumbar spine were 3.9% (P=0.03 by ANCOVA) and 7.3% (P<0.001 by ANCOVA) lower respectively, while the adjusted BMAD at the lumbar spine for Chinese men younger than 50 years was 11.7% lower (P<0.01 by ANCOVA). Predictors of BMAD in Hong Kong Chinese women include body weight, age at menarche, cigarette smoking, and oral contraceptive use (P<0.001), while body weight was the only independent predictor of BMAD in Hong Kong Chinese men (P<0.001). We conclude that bone density is lower in Hong Kong Chinese men and women than in Caucasians, although such differences were attenuated by adjustments for bone size, body weight and height.  相似文献   

2.
Bone Density in an Immigrant Population from Southeast Asia   总被引:9,自引:0,他引:9  
The epidemiology of bone loss in populations of Asian heritage is still poorly known. This study compared the skeletal status of a convenience sample of 396 Southeast Asian immigrants (172 Vietnamese, 171 Cambodians and 53 Laotians) residing in Rochester, Minnesota in 1997 with 684 white subjects previously recruited from an age-stratified random sample of community residents. Areal bone mineral density (BMD, g/cm2) and volumetric bone mineral apparent density (BMAD, g/cm3) were determined for lumbar spine and proximal femur using the Hologic QDR 2000 instrument for the white population and the QDR 4500 for Southeast Asian subjects; the machines were cross-calibrated from data on 20 volunteers. Lumbar spine BMD was 7% higher in white than Southeast Asian women ( p < 0.001), and similar results were observed for the femoral neck; lumbar spine BMD was 12% higher in white than nonwhite men ( p < 0.001). Race-specific discrepancies were reduced by calculating BMAD: for premenopausal women, lumbar spine and femoral neck differences between whites and Southeast Asians were eliminated; for postmenopausal women the lumbar spine differences persisted ( p < 0.0001), while femoral neck BMAD was actually higher for Southeast Asians. There were no race-specific differences in femoral neck BMAD among men of any age ( p= 0.312), but lumbar spine BMAD was less for younger ( p= 0.042) but not older ( p= 0.693) Southeast Asian men. There were differences among the Southeast Asian subgroups, but no clear pattern emerged. Predictors of lumbar spine BMAD in Southeast Asian women were age ( p < 0.001), weight ( p= 0.015) and gravidity ( p= 0.037). Even after adjusting for bone size using BMAD, 32% and 9% of Southeast Asian women and men, respectively, would be considered to have osteoporosis at the femoral neck and 25% and 4%, respectively, at the lumbar spine. These findings indicate a need for culturally sensitive educational interventions for Southeast Asians and for physicians to pursue diagnosis and treatment to prevent osteoporosis-related disabilities in this population. Received: 12 October 2000 / Accepted: 15 February 2001  相似文献   

3.
Ascorbic acid is a required cofactor in the hydroxylations of lysine and proline necessary for collagen formation; its role in bone cell differentiation and formation is less well characterized. This study examines the cross-sectional relation between dietary vitamin C intake and bone mineral density (BMD) in women from the Postmenopausal Estrogen/Progestin Interventions Trial. BMD (spine and hip) was measured using dual energy X-ray absorptiometry (DXA). The PEPI participants (n = 775) included in this analysis were Caucasian and ranged in age from 45 to 64 years. At the femoral neck and total hip after adjustment for age, BMI, estrogen use, smoking, leisure physical activity, calcium and total energy intake, each 100 mg increment in dietary vitamin C intake, was associated with a 0.017 g/cm2 increment in BMD (P= 0.002 femoral neck; P= 0.005 total hip). After adjustment, the association of vitamin C with lumbar spine BMD was similar to that at the hip, but was not statistically significant (P= 0.08). To assess for effect modification by dietary calcium, the analyses were repeated, stratified by calcium intake (>500 mg/day and ≤500 mg/day). For the femoral neck, women with higher calcium intake had an increment of 0.0190 g/cm2 in BMD per 100 mg vitamin C (P= 0.002). No relation between BMD and vitamin C was evident in the lower calcium stratum. Similar effect modification by calcium was observed at the total hip: the β coefficient in the higher calcium stratum was similar to that for the total sample (β= 0.0172, P= 0.01), but no statistically significant relation between total hip BMD and vitamin C was found in the lower calcium subgroup. Although the relation between vitamin C and lumbar spine BMD was of marginal statistical significance in the total sample, among women ingesting higher calcium, a statistically significant association was observed (β= 0.0199, P= 0.024). These data are consistent with a positive association of vitamin C with BMD in postmenopausal women with dietary calcium intakes of at least 500 mg. Received: 12 September 1997 / Accepted: 27 January 1998  相似文献   

4.
Variations in Bone Density among Persons of African Heritage   总被引:3,自引:0,他引:3  
The epidemiology of bone loss in populations of African heritage is still poorly known. We compared a convenience sample of 47 African-American (AA) residents of Rochester, Minnesota (32 women, 15 men) and 66 recent immigrants from Somalia (all women) with 684 white subjects (349 women, 335 men) previously recruited from an age-stratified random sample of community residents. Areal bone mineral density (BMD, g/cm2) and volumetric bone mineral apparent density (BMAD, g/cm3) were determined for lumbar spine and proximal femur using the Hologic QDR 2000 for white subjects and the QDR 4500 for the others; the instruments were cross-calibrated from data on 20 volunteers. Lumbar spine BMD was 18% higher in AA (p<0.001) and 4% lower in Somali (p= 0.147) than white women. Femoral neck BMD was 27% higher in AA women but also 11% greater in Somali women (both p<0.001) compared with whites. Lumbar spine BMD was 6% higher (p= 0.132) and femoral neck BMD 21% higher (p<0.001) in AA than white men. No Somali men were studied. After correcting for bone size differences, both lumbar spine (p<0.01) and femoral neck BMAD (p<0.001) were greater for Somali than white women, but the difference between Somali and AA women persisted. Lumbar spine and femoral neck BMAD values also remained significantly greater for AA women (both p<0.001) and men (p<0.05; p<0.001) compared with whites. Weight was associated with BMAD at both skeletal sites in all groups, but adjustment for differences in weight did not reduce the discrepancy in BMAD values between Somali and AA women or between the latter group and whites. This heterogeneity among different ethnic groups of African heritage may provide an opportunity for research to better explain race-specific differences in bone metabolism. Received: 4 September 2001 / Accepted: 11 January 2002  相似文献   

5.
Background. It has been suggested that the vitamin D receptor (VDR) gene BsmI-polymorphism is a genetic determinant of bone metabolism. Design. To test this hypothesis, the relationship between VDR genotypes, bone mineral density (baseline and after 18 months) and parameters of calcium metabolism and bone turnover were investigated prospectively in 88 haemodialysed patients not receiving active vitamin D metabolites. Methods. Whole body, lumbar spine and femoral neck bone mineral density (BMD) were assessed by dual energy X-ray absorptiometry (DEXA). In addition calcium, phosphorus, 25(OH)D3, 1,25(OH)2D3, osteocalcin serum concentrations, alkaline phosphatase activity and intact, 1,84 PTH levels were measured. Results. VDR genotype BB, Bb and bb were found in 27, 49 and 24% of patients. Initial BMD (g/cm2) of whole body, lumbar spine and femoral neck did not differ between genotypes (whole body: BB 1.055 ± 0.120, Bb 1.082 ± 0.102, bb 1.128 ± 0.120; lumbar spine: BB 1.075 ± 0.199, Bb 1.079 ± 0.185, bb 1.099 ± 0.170; femoral neck: BB 0.808 ± 0.160, Bb 0.862 ± 0.127, bb 0.842 ± 0.125; mean ± SD), but the decrease of whole body and femoral neck BMD during 18 months was significantly (P < 0.02) different between the genotype groups (whole body: BB -0.048 ± 0.028, Bb -0.031 ± 0.029, bb -0.024 ± 0.023; femoral neck BB -0.044 ± 0.069, Bb -0.032 ± 0.081, bb -0.012 ± 0.029 g/cm2). Conclusions. This preliminary study suggests faster mineral loss in BB genotype of VDR in haemodialysed patients.  相似文献   

6.
In South Africa, appendicular and lumbar spine bone mineral density (BMD) have been found to be similar in black and white women. However, femoral BMD has been found to be higher in black than in white women. Two different techniques were used to recalculate BMD to eliminate the possible confounding influence of ethnic differences in height on areal BMD measurements. Volumetric bone mineral apparent density (BMAD) values were calculated and bone mineral content (BMC) was corrected for body and bone size. This report analyses differences in BMD (corrected for height and weight), BMAD, BMC (corrected for body and bone size), femoral neck axis length (FNAL), mineral homeostasis and bone turnover (BT) in a group of 20 to 49-year-old premenopausal (105 whites and 74 blacks) and 45 to 64-year-old postmenopausal (50 whites and 65 blacks) female South African nurses. The corrected BMD and BMC findings were congruous, showing that both pre- and postmenopausal blacks and whites have similar distal radius and lumbar spine bone mass but that whites have lower femoral neck bone mass than blacks. In contrast, BMAD findings suggest that pre- and postmenopausal whites have lower bone mass at the lumbar spine and femoral neck than blacks but similar bone mass at the distal radius to blacks. There is a greater rate of decline in BMD in postmenopausal whites than in blacks. BMD at the femoral neck was 12.1% lower in premenopausal whites and 16.5% lower in postmenopausal whites than in blacks. There was a positive association between femoral neck BMD and weight in premenopausal blacks (R 2=0.5,p=0.0001) but not in whites. Blacks had shorter FNAL than whites in both the pre- and postmenopausal groups. Blacks had lower serum 25-hydroxyvitamin D (25-(OH)D) and higher 1,25-dihydroxyvitamin D (1,25-(OH)2D) levels than whites. There were no ethnic differences in biochemical markers of bone formation (serum alkaline phosphatase and osteocalcin) or bone resorption (urine hydroxyproline and pyridinoline), or in dietary calcium intake in either the pre- or postmenopausal groups. In the postmenopausal group, whites had higher ionized serum calcium (p=0.003), similar serum albumin, lower serum parathyroid hormone (p=0.003) and higher urinary calcium excretion (p=0.0001) than blacks. These results suggest that the higher peak femoral neck BMD in South African blacks than in whites might be determined by greater weight-bearing in blacks and that the significantly lower femoral neck BMD in postmenopausal whites than in blacks is determined by lower peak femoral neck BMD and a faster postmenopausal decline in BMD in whites. The higher incidence of femoral neck fractures in South African whites than in blacks is probably determined by the lower femoral neck BMD and longer FNAL in whites. The greater rate of decline in BMD in postmenopausal whites than in blacks is associated with an increase in urinary calcium excretion in whites. Measurement of biochemical markers of BT has not contributed to the understanding of ethnic differences in BMD and skeletal metabolism in our subjects.  相似文献   

7.
Bone mineral density and prevalent vertebral fractures in men and women   总被引:2,自引:0,他引:2  
To test the hypothesis that the association between bone mineral density (BMD) and estimated volumetric BMD and prevalent vertebral fractures differs in men and women, we studied 317 Caucasian men and 2,067 Caucasian women (average age 73 years). A total of 43 (14%) men and 386 (19%) women had a vertebral fracture identified on lateral spine radiographs using vertebral morphometry. Hip and spine areal BMD was about 1/3 standard deviation lower among men and women with a vertebral fracture. A 0.10 g/cm2 decrease in areal BMD was associated with 30–40% increased odds of having a fracture in men and 60–70% increased likelihood in women. Low bone mineral apparent density (BMAD) was also associated with 40–50% increased odds of a vertebral fracture in both genders. The probability of a man having a fracture was observed at higher absolute areal BMD values than observed for women (P=values for interaction of BMD × gender: trochanter, P=0.05; femoral neck, P=0.10; total hip, P=0.09). In contrast, the probability of fracture was similar in men and women across the range of estimated volumetric BMD (BMAD). In conclusion, low BMD and low BMAD are associated with increased odds of vertebral fracture in both men and women. Measures of bone mass that partially correct for gender differences in bone size may yield universal estimates of fracture risk. Prospective studies are needed to confirm this observation.  相似文献   

8.
Geographic Differences in Bone Mineral Density of Mexican Women   总被引:13,自引:2,他引:11  
The aim of this study was to generate standard curves for normal spinal and femoral neck bone mineral density (BMD) in Mexican women using dual-energy X-ray absorptiometry (DXA), to analyze geographic differences and to compare these with “Hispanic” reference data to determine its applicability. This was a cross-sectional study of 4460 urban, clinically normal, Mexican women, aged 20–90 years, from 10 different cities in Mexico (5 in the north, 4 in the center and 1 in the southeast) with densitometry centers. Women with suspected medical conditions or who had used drugs affecting bone metabolism, were excluded. Lumbar spine BMD was significantly higher (1.089 ± 0.18 g/cm2) in women from the northern part of Mexico, with intermediate values in the center (1.065 ± 0.17 g/cm2) and lower values (1.013 ± 0.19 g/cm2) in the southeast (p<0.0001). Similarly, femoral neck BMD was significantly higher in women from the north (0.895 ± 0.14 g/cm2), intermediate in the center (0.864 ± 0.14 g/cm2) and lower (0.844 ± 0.14 g/cm2) in the southeast part of Mexico (p<0.0001). Northern Mexican women tend to be taller and heavier than women from the center and, even more, than those from the southeast of Mexico (p<0.0001). However, these differences in BMD remained significant after adjustment for weight (p<0.0001). A significant loss (p<0.0001) in BMD was observed from 40 to 69 years of age at the lumbar spine and up to the eighth decade at the femoral neck. Higher and lower lumbar spine values, as compared with the “Hispanic” population, were observed in Mexican mestizo women from the northern and southeastern regions, respectively. In conclusion, there are geographic differences in weight and height of Mexican women, and in BMD despite adjustment for weight. Received: 1 September 1999 / Accepted: 20 October 1999  相似文献   

9.
This longitudinal study examined whether bone mineral density (BMD) of the lumbar spine and proximal femur is maintained in premenopausal caddies (n = 6; mean age 37.8 years) in comparison with desk workers (n = 6; mean age 40.8 years) at the same golf club. BMD was followed for 12 months using dual-energy X-ray absorptiometry (DXA) and bone metabolic markers and athletic ability were also examined. Longitudinally, for caddies, the change per year in BMD of the lumbar spine was +0.009 g/cm2, while that of the proximal femur was +0.022 g/cm2, showing significant differences (P < 0.05 by signed-rank test). Their athletic ability, in terms of leg-press power, also significantly increased, whereas bone metabolic markers, such as serum alkaline phosphatase, 1,25-(OH)2 vitamin D3, parathyroid hormone and the deoxypyridiniline/creatinine ratio, did not show significant changes. For desk workers, the change per year in BMD of the lumbar spine was +0.011 g/cm2, while that of the proximal femur was −0.006 g/cm2. Their BMD, athletic ability and bone metabolic markers did not show significant changes. These findings support the results of our previous study, that premenopausal women can achieve continuous gain in femoral neck BMD by regular intense athletic activity, and suggest that this is also true by the continuous extensive walking of golf caddies. Received: May 17, 2000 / Accepted: August 22, 2000  相似文献   

10.
Summary We previously demonstrated that muscle-building exercise is associated with increases in serum Gla-protein, serum 1,25(OH)2D, and urinary cyclic AMP. These studies were interpreted to mean that this form of exercise increases bone formation and modifies the vitamin D-endocrine system to provide more calcium for bone. The present investigation was carried out in normal young adult white men to determine the effects of exercise on bone mineral density at weight-bearing and nonweight-bearing sites. Twelve men who had regularly engaged in muscle-building exercises (use of weights, exercise machines, or both) for at least 1 year and 50 age-matched controls (aged 19–40 years) were studied. The body weights of the two groups were not different from each other (78±2 vs. 74±1 kg, NS). Bone mineral density (BMD) of the lumbar spine, trochanter, and femoral neck was measured by dual-photon absorptiometry, and BMD of the midradius was measured by single-photon absorptiometry. It was found that muscle-building exercise was associated with increased BMD at the lumbar spine (1.35±0.03 vs. 1.22±0.02 g/cm2,P<0.01), trochanter (0.99±0.04 vs. 0.86±0.02 g/cm2,P<0.01), and femoral neck (1.18 ±0.03 vs. 1.02±0.02 g/cm2,P<0.001) but not at the midradius (0.77±0.02 vs. 0.77±0.01 g/cm2, NS). These studies provide additional evidence that muscle-building exercise is associated with increases in BMD at weight-bearing sites but not at nonweight-bearing sites.  相似文献   

11.
The effect of 18 months of training on the ovarian hormone concentrations and bone mineral density (BMD) accrual was assessed longitudinally in 14 adolescent rowers and 10 matched controls, aged 14–15 years. Ovarian hormone levels were assessed by urinary estrone glucuronide (E1G) and pregnanediol glucuronide (PdG) excretion rates, classifying the menstrual cycles as ovulatory or anovulatory. Total body (TB), total proximal femur (PF), femoral neck (FN) and lumbar spine (LS) (L2–4) bone mass were measured at baseline and 18 months using dual-energy X-ray densitometry. Results were expressed as bone mineral content (BMC), BMD and bone mineral apparent density (BMAD). Five rowers had anovulatory menstrual cycles compared with zero prevalence for the control subjects. Baseline TB BMD was significantly higher in the ovulatory rowers, with PF BMD, FN BMD and LS BMD similar for all groups. At completion, the LS bone accrual of the ovulatory rowers was significantly greater (BMC 8.1%, BMD 6.2%, BMAD 6.2%) than that of the anovulatory rowers (BMC 1.1%, BMD 3.9%, BMAD 1.6%) and ovulatory controls (BMC 0.5%, BMD 1.1%, BMAD 1.1%). No difference in TB, PF or FN bone accrual was observed among groups. This study demonstrated an osteogenic response to mechanical loading, with the rowers accruing greater bone mass than the controls at the lumbar spine. However, the exercise-induced osteogenic benefits were less when rowing training was associated with low estrogen and progesterone metabolite excretion. Received: 8 December 1998 / Accepted: 15 March 1999  相似文献   

12.

Summary

We provide the first reference values for bone mineral content and bone mineral density according to age and sex in Iranian children and adolescents. The prevalence of hypovitaminosis D was high, and levels of physical activity were low in our sample. Multiple regression analyses showed age, BMI, and Tanner stage to be the main indicators of bone mineral apparent density.

Purpose

Normal bone structure is formed in childhood and adolescence. The potential determinants which interact with genetic factors to influence bone density include gender, nutritional, lifestyle, and hormonal factors. This study aimed to evaluate bone mineral content (BMC) and the bone mineral density (BMD) and factors that may interfere with it in Iranian children.

Methods

In this cross-sectional study, 476 healthy Iranian children and adolescents (235 girls and 241 boys) aged 9–18 years old participated. BMC and BMD of the lumbar spine, femoral neck, and total body were measured by dual-energy X-ray absorptiometry using a Hologic Discovery device, and bone mineral apparent density (BMAD) of the lumbar spine and the femoral neck were calculated.

Results

We present percentile curves by age derived separately for BMC, BMD, and BMAD of the lumbar spine, left femoral neck, and total body excluding the head for boys and girls. Maximum accretion of BMC and BMD was observed at ages of 11–13 years (girls) and 12–15 years (boys).The prevalence of hypovitaminosis D was high and physical activity was low in our participants. However, in multiple regression analyses, age, BMI, and Tanner stage were the main indicators of BMD and BMAD

Conclusion

These normative data aid in the evaluation of bone density in Iranian children and adolescents. Further research to evaluate the evolution of BMD in Iranian children and adolescents is needed to identify the reasons for significant differences in bone density values between Iranian populations and their Western counterparts.  相似文献   

13.
The Canadian Multicentre Osteoporosis Study (CaMos) is a prospective cohort study which will measure the incidence and prevalence of osteoporosis and fractures, and the effect of putative risk factors, in a random sample of 10 061 women and men aged ≥25 years recruited in approximately equal numbers in nine centers across Canada. In this paper we report the results of studies to establish peak bone mass (PBM) which would be appropriate reference data for use in Canada. These reference data are used to estimate the prevalence of osteoporosis and osteopenia in Canadian women and men aged ≥50 years. Participants were recruited via randomly selected household telephone listings. Bone mineral density (BMD) of the lumbar spine and femoral neck were measured by dual-energy X-ray absorptiometry using Hologic QDR 1000 or 2000 or Lunar DPX densitometers. BMD results for lumbar spine and femoral neck were converted to a Hologic base. BMD of the lumbar spine in 578 women and 467 men was constant to age 39 years giving a PBM of 1.042 ± 0.121 g/cm2 for women and 1.058 ± 0.127 g/cm2 for men. BMD at the femoral neck declined from age 29 years. The mean femoral neck BMD between 25 and 29 years was taken as PBM and was found to be 0.857 ± 0.125 g/cm2 for women and 0.910 ± 0.125 g/cm2 for men. Prevalence of osteoporosis, as defined by WHO criteria, in Canadian women aged ≥50 years was 12.1% at the lumbar spine and 7.9% at the femoral neck with a combined prevalence of 15.8%. In men it was 2.9% at the lumbar spine and 4.8% at the femoral neck with a combined prevalence of 6.6%. Received: 23 April 1999 / Accepted: 14 April 2000  相似文献   

14.
Because previous studies of high-dose methotrexate usage have demonstrated an effect on bone formation and resorption, this study was done to determine whether long-term, low-dose use of methotrexate for the treatment of rheumatoid arthritis causes bone loss. Bone mineral density (BMD) of the lumbar spine and hip was measured in 10 Caucasian postmenopausal women who had never received methotrexate and 10 Caucasian postmenopausal women who had received the drug for 3 or more years. There were no significant differences in BMD at the lumbar spine (L2–L4) between patients who had used long-term methotrexate compared with patients never treated with methotrexate (1.08 ± 0.08 g/cm2 versus 0.98 ± 0.14 g/cm2, respectively; P= 0.08). Similarly, there were no significant differences in BMD at the femoral neck between methotrexate users and nonusers (0.81 ± 0.08 g/cm2 versus 0.76 ± 0.15 g/cm2, respectively; P= 0.42). These results suggest that long-term low-dose methotrexate treatment for rheumatoid arthritis is not associated with accelerated bone loss. Received: 16 October 1997 / Accepted: 9 July 1998  相似文献   

15.
16.
No previous longitudinal studies of calcium intake, anthropometry and bone health in young children with a history of avoiding cows milk have been undertaken. We report the 2-year changes of a group of 46 Caucasian children (28 girls, l8 boys) aged 8.1±2.0 years (mean ± SD) who had low calcium intakes at baseline and were short in stature, with elevated body mass index, poor skeletons and lower Z scores for both areal bone mineral density (BMD, in grams per square centimeter) and volumetric density (bone mineral apparent density, BMAD, in grams per cubic centimeter), compared with a reference population of milk drinkers. At follow-up, adverse symptoms to milk had diminished and modest increases in milk consumption and calcium intake had occurred. Total body bone mineral content (BMC) and bone area assessed by dual energy X-ray absorptiometry had increased (P<0.05), and calcium intake from all sources was associated with both these measures (P<0.05). However, although some catch-up in height had taken place, the group remained significantly shorter than the reference population (Z scores –0.39±1.14), with elevated body mass index (Z scores 0.46±1.0). The ultradistal radius BMC Z scores remained low (–0.31±0.98). The Z scores for BMD had improved to lie within the normal range at predominantly cortical sites (33% radius, neck of femur and hip trochanter) but had worsened at predominantly trabecular sites (ultradistal radius and lumbar spine), where values lay below those of the reference group (P<0.05). Similarly, although volumetric BMAD Z scores at the 33% radius had normalized, BMAD Z scores at the lumbar spine remained below the reference population at follow-up (–0.67±1.12, P<0.001). Our results demonstrate persisting height reduction, overweight and osteopenia at the ultradistal radius and lumbar spine in young milk avoiders over 2 years of follow-up.  相似文献   

17.
The hypothesis that a history of one or more weight reductions and regains (weight cycling) is associated with lower site-specific bone mineral density (BMD) was examined in 169 premenopausal women, aged 29–46 years. Data on the previous 10-years' weight cycling history, present weight-bearing physical exercise, number of deliveries, present use of contraceptive pills or hormone-releasing coils, age at menarche and present menstrual status were collected by a self-administered questionnaire. Dietary intake was calculated from food records. The areal BMD (g/cm2) was measured with dual-energy X-ray absorptiometry (norland XR-26). The lumbar spine (L2–4) BMD, adjusted to weight and age at menarche (ANCOVA), was 0.062 g/cm2 (95% confidence interval: 0.015 to 0.011 g/cm2;p=0.01) higher in the non-cyclers (n=68) than in subjects with reported weight-cycling history (n=101). The corresponding difference for femoral neck BMD was 0.019 g/cm2 (–0.018 to 0.056;p=0.30), for trochanter BMD 0.013 g/cm2 (–0.025 to 0.05 g/cm2;p=0.50) and for distal radius BMD 0.022 g/cm2 (0.006 to 0.397 g/cm2;p=0.008). A pairwise comparison of 34 weight-matched subjects (non-cycler vs cycler) gave similar BMD differences as found in the above (ANCOVA) analyses. The results suggest that weight cycling might be associated with lower spine and distal radius BMD.  相似文献   

18.
Little is known about the influence of high-performance training on the bone quality of the lumbar spine, in particular, the effects on bone mineral density (BMD) in athletes with high weight-bearing demands on the spine. Measurements were therefore performed in internationally top-ranked high-performance athletes of different disciplines (weight lifters, boxers, and endurance-cyclists). The measurements were carried out by dual-energy X-ray absorptiometry, and the results compared with the measurements of 21 age-matched male controls. The BMD of the high-performance weight lifters was greater than that of the controls by 24% (0.252 g/cm2) on the AP view and by 23% (0.200 g/cm2) on the lateral view (P<0.01), while difference in BMD between the boxers and the controls was+17% (0.174 g/cm2) on the AP view and +19% (0.174 g/cm2) on the lateral view. The BMD of the lumbar spine in all endurance cyclists was lower than that in the controls (AP view-10%, 0.105 g/cm2; lateral view-8%, 0.067 g/cm2; P>0.05). The results show that training program stressing axial loads of the skeleton may lead to a significant increase of BMD in the lumbar spine of young individuals. Other authors' findings that the BMD of endurance athletes may decrease are confirmed. Nevertheless the 10% BMD loss of cyclists was surprisingly high.  相似文献   

19.
A Prospective Study of Bone Loss in Menopausal Australian-Born Women   总被引:8,自引:4,他引:4  
Two hundred and twenty-four women (74 pre-, 90 peri-, 60 post-menopausal), aged 46–59 years, from a population-based cohort participated in a longitudinal study of bone mineral density (BMD). BMD was measured by dual-energy X-ray absorptiometry (DXA) at the lumbar spine and femoral neck and the time between bone scans was on average 25 (range 14–41) months. The aim of the study was to assess changes in BMD in relation to changes in normal menopausal status. During the study period women who were between 3 and 12 months past their last menstrual period (n= 22, late perimenopausal) at the time of the second bone scan had a mean (SE) annual change in BMD of 70.9% (0.4%) at the lumbar spine and 70.7% (0.6%) at the femoral neck (both p50.05 compared with women who remained premenopausal). In the women who became postmenopausal (n= 42) the mean annual changes in BMD were 72.5% (0.2%) at the lumbar spine and 71.7% (0.2%) at the femoral neck (both p50.0005), and in the women who remained postmenopausal (n= 60) they were 70.7% (0.2%) per year and 70.5% (0.3%) per year respectively (both p50.05), compared with women who remained premenopausal. In the 1–3 years after the final menstrual period (FMP) there was greater bone loss from the lumbar spine than the femoral neck (p50.05). In women who were menstruating at the time of the second bone scan and whose FMP could be dated prospectively (n= 35), higher baseline oestradiol levels were associated with less lumbar spine bone loss (p50.005). In the women who remained postmenopausal there was an association between baseline body mass index (BMI) and percentage change per year in femoral neck BMD (p50.05), such that women with higher BMI had less bone loss. In conclusion, during the time of transition from peri- to post-menopause, women had accelerated BMD loss at both the hip and spine. Received: 23 June 1997 / Accepted: 5 November 1997  相似文献   

20.
Summary Precision of dual-photon absorptiometry (DPA) measurements was determined in a lumbar spine phantom and in humans. Approximately half of the measurements were made before and half after a153gadolinium source change. The phantom was measured with different amounts of acrylic, which simulates human soft tissue, in order to evaluate the influence of body thickness on bone mineral density (BMD). Results of scans analyzed with two software versions from Lunar Radiation Corp., the widely used 08B and a prototype 08C, are compared. DPA with a cold source significantly overestimated BMD in the phantom in the presence of large amounts (more than 25 cm) of soft tissue equivalent with version 08B but not with the newer version 08C. Similiarly, in nine subjects, there was a significant decrease in spine BMD after a source change when scans were analyzed with version 08B (mean difference 0.026 g/cm2,P=0.002) but not with 08C (0.01 g/cm2,P=0.234). No systematic effect of source change on femoral BMD measurements was observed. The SD of the mean difference of two measurements of the nine subjects was 0.019 g/cm2 (1.6% of the mean value) for the spine with software version 08B and 0.024 g/cm2 (2.0%) with version 08C, 0.03 g/cm2 (3.3%) for the femur neck, 0.03 g/cm2 (4.0%) for the greater trochanter, and 0.04 g/cm2 (4.9%) for Ward's triangle region of the proximal femur. The spine phanton was scanned on two other commercial bone densitometers in order to assess inter-instrument variation. Phantom measurements of L2-4 BMD made on two Lunar Radiation Corp model DP3 scanners which differed by 2% were 10 and 12% higher than those with a Norland Corp. model 2600 scanner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号