首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Hu K  Zhang C  Long L  Long X  Feng L  Li Y  Xiao B 《Neuroscience letters》2011,488(3):252-257
Although microRNAs are expressed extensively in the central nervous system in physiological and pathological conditions, their expression in neurological disorder of epilepsy has not been well characterized. Here we investigated microRNA expression pattern in post status epilepticus rats (24h after status). Rat MicroRNA array and differential analysis had detected 19 up-regulated microRNAs and 7 down-regulated microRNAs in rat hippocampus, and four randomly selected deregulated microRNAs (microRNA-34a, microRNA-22, microRNA-125a, microRNA-21) were confirmed by qRT-PCR, then their expression alterations in rat peripheral blood were analyzed. We found that these four deregulated microRNAs were also differentially expressed in rat peripheral blood, and trends for their blood expression alterations were just the same as their counterparts in rat hippocampus. Thus, our results have not only characterized the microRNA expression profile in post status epilepticus rat hippocampus but also demonstrated that some rat hippocampal microRNAs were probably associated with rat peripheral blood microRNAs. Moreover, targets of these deregulated microRNAs were analyzed using bioinformatics and the identified enriched MAPK pathway and long-term potentiation pathway might have been involved in molecular mechanisms concerning neuronal death, inflammation and epileptogenesis.  相似文献   

2.
3.
miRNA-132: a dynamic regulator of cognitive capacity   总被引:1,自引:0,他引:1  
Within the central nervous system, microRNAs have emerged as important effectors of an array of developmental, physiological, and cognitive processes. Along these lines, the CREB-regulated microRNA miR-132 has been shown to influence neuronal maturation via its effects on dendritic arborization and spinogenesis. In the mature nervous system, dysregulation of miR-132 has been suggested to play a role in a number of neurocognitive disorders characterized by aberrant synaptogenesis. However, little is known about the inducible expression and function of miR-132 under normal physiological conditions in vivo. Here, we begin to explore this question within the context of learning and memory. Using in situ hybridization, we show that the presentation of a spatial memory task induced a significant ~1.5-fold increase in miR-132 expression within the CA1, CA3, and GCL excitatory cell layers of the hippocampus. To examine the role of miR-132 in hippocampal-dependent learning and memory, we employ a doxycycline-regulated miR-132 transgenic mouse strain to drive varying levels of transgenic miR-132 expression. These studies revealed that relatively low levels of transgenic miR-132 expression, paralleling the level of expression in the hippocampus following a spatial memory task, significantly enhanced cognitive capacity. In contrast, higher (supra-physiological) levels of miR-132 (>3-fold) inhibited learning. Interestingly, both the impaired cognition and elevated levels of dendritic spines resulting from supra-physiological levels of transgenic miR-132 were reversed by doxycycline suppression of transgene expression. Together, these data indicate that miR-132 functions as a key activity-dependent regulator of cognition, and that miR-132 expression must be maintained within a limited range to ensure normal learning and memory formation.  相似文献   

4.
Diabetes has been associated with cognitive and memory impairments, and with alterations in color and contrast perception, suggesting that hippocampus and retina are particularly affected by this disease. A few studies have shown that diabetes differentially affects neurotransmitter release in different brain regions and in retina, and induces structural and molecular changes in nerve terminals in both hippocampus and retina. We now detailed the impact over time of diabetes (2, 4 and 8 weeks of diabetes) on a large array of exocytotic proteins in hippocampus and retina.The exocytotic proteins density was evaluated by immunoblotting in purified synaptosomes and in total extracts of hippocampus and retina from streptozotocin-induced diabetic and age-matched control animals. Diabetes affected differentially the content of synaptic proteins (VAMP-2, SNAP-25, syntaxin-1, synapsin-1 and synaptophysin) in hippocampal and retinal nerve terminals. Changes were more pronounced and persistent in hippocampal nerve terminals. In general, the alterations in retina occurred earlier, but were transitory, with the exception of synapsin-1, since its content decreased at all time points studied. The content of synaptotagmin-1 and rabphilin 3a in nerve terminals of both tissues was not affected. In total extracts, no changes were detected in the retina, whereas in hippocampus SNAP-25 and syntaxin-1 content was decreased, particularly when more drastic changes were also detected in nerve terminals. These results show that diabetes affects the content of several exocytotic proteins in hippocampus and retina, mainly at the presynaptic level, but hippocampus appears to be more severely affected. These changes might influence neurotransmission in both tissues and may underlie, at least partially, previously detected physiological changes in diabetic humans and animal models. Since diabetes differentially affects exocytotic proteins, according to tissue and insult duration, functional studies will be required to assess the physiological impairment induced by diabetes on the exocytosis in central synapses.  相似文献   

5.
6.
Dendritic spine plasticity in hippocampus   总被引:2,自引:0,他引:2  
Gazzaley A  Kay S  Benson DL 《Neuroscience》2002,111(4):853-862
Most excitatory input in the hippocampus and cerebral cortex impinges on dendritic spines. Alterations in dendritic spine density or shape are suspected to be morphological manifestations of changes in physiology or behavior. The links between spine plasticity and physiological responses have probably been best studied in the hippocampus in the context of changes in the circulating levels of steroid hormones or long-term potentiation. Here we review and present data which indicate that both the age of the preparation and the timing of the analysis can dramatically effect the results obtained. Collectively the data suggest that different cellular and morphological strategies may be utilized at different ages and under different circumstances to effect similar physiological responses or behaviors.  相似文献   

7.
目的利用cDNA表达阵列构建遗传性癫痫大鼠海马基因表达谱,寻找其中的差异表达基因,为从分子水平探讨癫痫的发病机理打下基础。方法采用32P-α-dATP逆转录标记探针与cDNA阵列杂交,构建P77PMC大鼠和Wistar大鼠海马基因表达谱,用图象分析仪分析两者基因表达谱差异。结果在P77PMC大鼠海马中共发现有15个差异表达基因,其中12个基因表达上调,3个基因表达下调。并用逆转录-聚合酶链反应进一步证实了结果的可靠性。结论P77PMC大鼠与正常Wistar大鼠海马中存在多个差异表达基因,这些差异表达的基因可能在癫痫的发生中具有重要作用。  相似文献   

8.
CA1 is the major output area for the hippocampus, and current evidence shows that it is excited primarily from ipsilateral and contralateral CA3 pyramidal cells in the rat. Direct connections from the midline thalamic nuclei to the hippocampus have been described anatomically, but the physiological role of these connections has not been reported until the recent observation that these inputs may have a mild excitatory effect (subthreshold for population spikes). In this study, we report a more powerful excitatory effect of thalamic stimulation on the response of the CA1 neurons in the urethane-anesthetized rat. Electrical stimulation to the midline thalamus induced responses similar to responses from stimulation of the contralateral hippocampus (CA3), with well-developed field excitatory postsynaptic potentials and large population spikes. The latency of the CA1 response suggested that the thalamic connection was monosynaptic, and there was a laminar CA1 response profile that depended on the site of stimulation (contralateral CA3 or thalamus). In an initial examination of possible differences in the physiological effects of these two pathways on the CA1 region, we tested both sites for long-term potentiation of CA1, for the effects of repetitive stimulation on CA1 responses (e.g., possible augmenting responses) and for the effect of paired-pulse stimulation. In these three measures, there were clear and statistically significant differences between the effects of CA3 and thalamic stimulation on CA1 responses. This study demonstrates that the well-described thalamic connection to the hippocampus allows for the direct and powerful excitation of the CA1 region. This thalamohippocampal connection bypasses the trisynaptic/commissural pathway that has been thought to be the exclusive excitatory drive to CA1. In addition, preliminary data indicate that the thalamus and CA3 inputs have different physiological effects on CA1 pyramidal cells.  相似文献   

9.
The adrenal gland releases mineralocorticoids (MCs) and glucocorticoids (GCs) in response to a variety of stimuli, including stress. Once released, these adrenal steroids mediate a plethora of physiological responses in both the periphery and the central nervous system. The collective actions of GCs in the brain are paradoxical, however, in that basal levels of GCs are essential for neuronal development, plasticity and survival, while stress levels of GCs produce neuronal loss. Aging represents another contradictory function of GCs in the brain, since lifelong exposure to GCs has been implicated as a causative factor in senescent neuronal loss. In addition, glucocorticoids have also been shown to intensify neuronal damage in the hippocampus during ischemia and excitotoxicity through mechanisms that modulate synaptic glutamate concentrations. Conversely, the absence of adrenal steroids has been shown to regulate both neurogenesis and neuronal loss in the dentate gyrus of the hippocampus. Evidence continues to accumulate which suggests that GC-induced neuronal death in all these physiological and pathophysiological settings occurs by apoptosis. Accordingly, this review will examine the pharmacological, cellular and molecular mechanisms through which glucocorticoids mediate or contribute to neuronal remodeling and, ultimately, neuronal death.  相似文献   

10.
Signal detection in the CNS relies on a complex interaction between the numerous synaptic inputs to the detecting cells. Two effects, stochastic resonance (SR) and coherence resonance (CR) have been shown to affect signal detection in arrays of basic neuronal models. Here, an array of simulated hippocampal CA1 neurons was used to test the hypothesis that physiological noise and electrical coupling can interact to modulate signal detection in the CA1 region of the hippocampus. The array was tested using varying levels of coupling and noise with different input signals. Detection of a subthreshold signal in the network improved as the number of detecting cells increased and as coupling was increased as predicted by previous studies in SR; however, the response depended greatly on the noise characteristics present and varied from SR predictions at times. Careful evaluation of noise characteristics may be necessary to form conclusions about the role of SR in complex systems such as physiological neurons. The coupled array fired synchronous, periodic bursts when presented with noise alone. The synchrony of this firing changed as a function of noise and coupling as predicted by CR. The firing was very similar to certain models of epileptiform activity, leading to a discussion of CR as a possible simple model of epilepsy. A single neuron was unable to recruit its neighbors to a periodic signal unless the signal was very close to the synchronous bursting frequency. These findings, when viewed in comparison with physiological parameters in the hippocampus, suggest that both SR and CR can have significant effects on signal processing in vivo.  相似文献   

11.
12.
Corticotropin-releasing hormone, a major neuromodulator of the neuroendocrine stress response, is expressed in the immature hippocampus, where it enhances glutamate receptor-mediated excitation of principal cells. Since the peptide influences hippocampal synaptic efficacy, its secretion from peptidergic interneuronal terminals may augment hippocampal-mediated functions such as learning and memory. However, whereas information regarding the regulation of corticotropin-releasing hormone's abundance in CNS regions involved with the neuroendocrine responses to stress has been forthcoming, the mechanisms regulating the peptide's levels in the hippocampus have not yet been determined. Here we tested the hypothesis that, in the immature rat hippocampus, neuronal stimulation, rather than neuroendocrine challenge, influences the peptide's expression. Messenger RNA levels of corticotropin-releasing hormone in hippocampal CA1, CA3 and the dentate gyrus, as well as in the hypothalamic paraventricular nucleus, were determined after cold, a physiological challenge that activates the hypothalamic pituitary adrenal system in immature rats, and after activation of hippocampal neurons by hyperthermia. These studies demonstrated that, while cold challenge enhanced corticotropin-releasing hormone messenger RNA levels in the hypothalamus, hippocampal expression of this neuropeptide was unchanged. Secondly, hyperthermia stimulated expression of hippocampal immediate-early genes, as well as of corticotropin-releasing hormone. Finally, the mechanism of hippocampal corticotropin-releasing hormone induction required neuronal stimulation and was abolished by barbiturate administration. Taken together, these results indicate that neuronal stimulation may regulate hippocampal corticotropin-releasing hormone expression in the immature rat, whereas the peptide's expression in the hypothalamus is influenced by neuroendocrine challenges.  相似文献   

13.
Various heterotrimeric G protein betagamma subunits (Gbetagamma) are region-specifically expressed in brain where associated with "stress-axis", however, the role of Gbetagamma-mediated signaling in regulating stress is unknown. This study was designed to examine the changes of Gbetagamma expression and Gbetagamma-mediated signaling in rat brain by stress. Experimental stress was induced by immobilization (2h/day for 7 days) and the level of mRNAs and proteins for Gbeta(1-5), and the phosphorylation of PKB/Akt (phosphatidylinositol 3-kinase-linked protein kinase B) and ERK1/2 (extracellular signal-regulated kinase 1/2) were measured in five different regions of rat brain including frontal cortex, striatum, hypothalamus, hippocampus, and cerebellum. As compared in not-handled non-stressed animals, the expression of both mRNAs and proteins for Gbeta(1-5) in brain regions associated with stress was increased in stressed animals. Especially, a significant increase in Gbetas immunoreactivity in the caudate putamen, the paraventricular nucleus of the hypothalamus (PVN), and the dentate gyrus of the hippocampus (DG) of stressed rats was observed. Stress significantly induced the phosphorylation of PKB/Akt and ERK1/2 in striatum, hypothalamus and hippocampus. Therefore, these results suggest that stress may activate, at least in part, the Gbetagamma-mediated PKB/Akt and ERK1/2 signaling pathway by increasing the expression of Gbetas to regulate the physiological responses.  相似文献   

14.
Microarray gene expression analysis offers great promise to help us understand the molecular events of experimental carcinogenesis, but have such promises been fulfilled? Studies of gene expression profiles of rodent are being published and demonstrate that yes, indeed, gene array data is furthering our understanding of tumor biology. Recent studies have identified differentially expressed genes in rodent mammary, colon, lung, and liver tumors. Although relatively few genes on the rodent arrays have been fully characterized, information has been generated to better identify signatures of histologic type and grade, understand invasion and metastasis, identify candidate biomarkers of early development, identify gene networks in carcinogenesis, understand responses to therapy, and decifer overlap with molecular events in human cancers. Data from mouse lung, mammary gland, and liver tumor studies are reviewed as examples of how to approach and interpret gene array data. Methods of gene array data analysis were also applied for discovery of genes involved in the regression of mouse liver tumors induced by chlordane, a nongenotoxic murine hepatocarcinogen. Promises are beginning to be fulfilled and it is clear that pathologists and toxicologists, in collaboration with molecular biologists, bioinformatists,and other scientists are making great strides in the design, analysis, and interpretation of microarray data for cancer studies.  相似文献   

15.
16.
The hippocampus is involved in fear conditioning, although the molecular events underlying this function are still under investigation. The authors analyzed the expression of the Zenk proto-oncogene product within the pigeon (Columba livia) hippocampus after training with a classical aversive conditioning protocol using tone-shock associations. Control groups were trained with shock or tone alone or were only exposed to the experimental chamber and manipulated. Experimental pigeons showed significant increases of Zenk expression in the ventromedial region of the hippocampus, whereas both the experimental and shock groups had increased Zenk expression in the dorsal region. The expression of Zenk in specific neuronal populations within the pigeon hippocampus may be indicative of plasticity-associated aversive classical conditioning.  相似文献   

17.
实验性铅中毒对大鼠海马神经生长因子基因表达的影响   总被引:1,自引:0,他引:1  
柯开富  沈宓  丁斐 《解剖学报》2005,36(3):246-249
目的观察实验性铅中毒对大鼠海马神经生长因子(NGF)基因表达的影响,探讨铅致学习记忆损害的分子毒理学机制。方法逆转录-多聚酶链反应(RT-PCR)和原位杂交法。结果正常大鼠海马组织可表达NGF mRNA,铅染毒后海马NGF mRNA含量显著下降。海马组织中神经生长因子mRNA表达量与铅染毒时间呈负相关。结论铅可使海马组织神经生长因子基因表达下降。  相似文献   

18.
Kim JE  Kwak SE  Kim DS  Won MH  Kwon OS  Choi SY  Kang TC 《Neuroscience》2006,137(1):317-326
Calcium-binding proteins (CBPs), such as parvalbumin and calbindin D-28k, are useful markers of specific neuronal types in the CNS. In recent studies, expression of CBPs may be indicative of a deactivated neuronal state, particularly epilepsy. However, it is controversial whether altered expression of CBPs in the hippocampus practically indicate neuronal activity. Therefore, the present study was performed to investigate the extent of profiles of expression of CBPs in the rat hippocampus affected by several episodes induced by electroconvulsive shock. In the present study, following electroconvulsive shock expression of CBPs were reduced in the hippocampus in a stimulus-dependent manner, and recovered to the control level at 6 h after electroconvulsive shock. However, paired-pulse responses of the dentate gyrus were transiently impaired by electroconvulsive shock, and immediately normalized to baseline value. In addition, effects of electroconvulsive shock on expression of CBPs and paired-pulse responses were prevented by pretreatment of vigabatrin. These findings suggest that reduced expression of CBPs induced by seizure activity may be indicative of hyperactivity of CBP positive neurons, which is a practical consequence of the abnormal discharge, and that they may play an important role in regulating seizure activity.  相似文献   

19.
Mast cells as a source of multifunctional cytokines   总被引:48,自引:0,他引:48  
Mast cells have been implicated in the expression of a wide variety of biological responses, including immediate hypersensitivity reactions, host responses to parasites and neoplasms, immunologically non-specific inflammatory and fibrotic conditions, angiogenesis, and tissue remodeling and wound healing. However, the molecular basis for the action of the mast cell in many of these responses is obscure. In this review, John Gordon, Parris Burd and Stephen Galli suggest that the production of a broad panel of multifunctional cytokines may represent an important mechanism by which mast cells influence physiological, immunological and pathological processes.  相似文献   

20.
确切证据表明,活性氧(ROS)参与了淋巴细胞内一系列生理或病理活动的调节。尽管对ROS调节免疫功能的分子机制仅有初步认识,抑制性信号分子如酪氨酸磷酸酶或NF-κB抑制分子I-κB的氧化失活,可能是淋巴细胞内氧化还原信号调节的关键点。根据细胞类型、氧化应激程度及自由基产生的胞内区域的不同,ROS发挥不同生物学效应。本文综述了ROS在淋巴细胞信号转导中的作用,并分析了其在正常和病理免疫应答中可能扮演的角色。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号