首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stair negotiation is an essential skill required for independent mobility, and is described by older adults as a challenging task that is associated with high fall risk. Little is known about the age-related changes in joint kinetics and the relative contribution of lower limb joint moments during stair negotiation. This study characterized lower extremity joint kinetics and their variability associated with stair ascent and descent in young and older adults. Twenty three young and 32 older adults (>55 years) participated. Three dimensional, bilateral gait analysis provided ankle, knee, and hip moment profiles, which in the sagittal plane were summed to provide the support moment. In addition, intra- and inter-subject coefficients of variation were calculated for ensemble averaged curves. Age-related differences were found in the magnitudes of the moment contributions during event transitions for stair ascent and descent. Within groups, the moment profiles were generally consistent. Ankle and knee moments predominantly contributed to extensor support in the sagittal plane. In the frontal plane, proximal joint abductor moments maintained lateral stability and were larger at the hip in older adults. Understanding age-related alterations in movement control during functional tasks can help inform the rehabilitation management and assessment of patient populations.  相似文献   

2.
3.
Previous research on the biomechanics of stair negotiation has ignored the effect of the approaching speed. We examined if initiating stair ascent with a comfortable self-selected speed can affect the lower-extremity joint moments and powers as compared to initiating stair ascent directly in front of the stairs. Healthy young adults ascended a custom-built staircase instrumented with force platforms. Kinematics and kinetics data were collected simultaneously for two conditions: starting from farther away and starting in front of the stairs and analyzed at the first and second ipsilateral steps. Results showed that for the first step, participants produced greater peak knee extensor moment, peak hip extensor and flexor moments and peak hip positive power while starting from farther away. Also, for both the conditions combined, participants generated lesser peak ankle plantiflexor, greater peak knee flexor moment, lesser peak ankle negative power and greater peak hip negative power while encountering the first step. These results identify the importance of the starting position in experiments dealing with biomechanics of stair negotiation. Further, these findings have important implications for studying stair ascent characteristics of other populations such as older adults.  相似文献   

4.
Novak AC  Li Q  Yang S  Brouwer B 《Gait & posture》2011,34(3):384-390
Older adults present with altered movement patterns during stair negotiation although the extent to which modifications in pattern and speed influence mechanical efficiency is unknown. This study evaluated mechanical energy transfers attributed to active force production during stair negotiation in young and older adults to provide insight into age-related changes in mechanical efficiency. Secondary analysis on data obtained from 23 young (23.7 ± 3.0 years) and 32 older adults (67.0 ± 8.2 years) during self-paced stair ascent and descent was conducted. Mechanical energy expenditures (MEE) during concentric transfer, eccentric transfer and no-transfer phases were determined for the ankle, knee and hip power profiles in the sagittal plane. Mechanical energy compensations (MEC) were also determined at each joint. During ascent, MEEs were similar for young and older adults although older adults compensated ankle muscles to a lesser extent during concentric muscle action. Controlling for cadence eliminated this difference. During descent, older adults demonstrated lower energy expenditures at the ankle and hip and similar expenditures at the knee compared to young adults. Changes in joint MEE in the older group resulted in reduced energy compensation at the ankle during concentric and eccentric activity and at the knee during eccentric activity. These age-related differences in mechanical energy transfers and related adjustments in MEC were not a function of the slower cadence in older adults and suggest a loss in mechanical efficiency. These results provide a benchmark against which physical impairments in older adults may be explored.  相似文献   

5.
Samuel D  Rowe P  Hood V  Nicol A 《Gait & posture》2011,34(2):239-244
Age-related decline in physical capabilities may lead to older adults experiencing difficulty in performing everyday activities due to high demands placed on the muscles of their lower extremity. This study aimed to determine the biomechanical functional demand in terms of joint moments and maximal muscle capabilities at the knee and hip joints while older adults performed stair ascent (SA) and stair descent (SD). Eighty-four healthy older adults aged 60-88 years were tested. A torque dynamometer attached to a purpose-built plinth was utilized to measure muscle moments at the knee and hip joints. Participants also underwent full body 3-D biomechanical assessment of stair ascent and descent using an 8-camera VICON system (120 Hz) with 3 Kistler force plates. Stair negotiation required knee extensor moments in excess of the maximum isometric muscle strength available (SA 103%, SD 120%). For the hip, the levels of demand were high, but were slightly lower than those of the knee joint. Stair negotiation placed a high level of demand on the knee extensors with demand in SA reaching maximal isometric capacity and demand in SD exceeding maximal isometric capacity. The levels of demand leave little reserve capacity for the older adult to draw on in unexpected situations or circumstances.  相似文献   

6.
This study compared the effects of a unilateral solid ankle-foot orthosis (AFO), hinged AFO and no AFO (shoe) worn by healthy adults on pelvic angles, lower extremity joint angles, moments and powers, and temporal-spatial gait characteristics during stair locomotion. A convenience sample of 19 healthy adults participated in this repeated measures design with subjects serving as their own controls. Subjects ambulated on stairs wearing a left shoe and either a right solid AFO, hinged AFO or shoe. Kinematic and kinetic data were collected with motion analysis equipment and a force plate for the three conditions. Pelvic angles and right hip, knee and ankle angles, moments and powers during stance were compared to determine differences among the conditions. Subjects wearing either orthosis walked slower during stair locomotion and with a shorter right single limb support time during descent. Sagittal knee and ankle angles, moments and powers were similar in individuals wearing a hinged AFO or shoe during pull-up (PU) in ascent and controlled lowering (CL) in descent. Decreased ankle dorsiflexion angle, plantar flexion power, knee flexion angle and extensor moment were seen in subjects wearing a solid AFO as compared to a hinged AFO during PU in ascent and CL in descent. Findings contributed to understanding how biomechanical changes imposed at the ankle by a unilateral solid AFO resulted in more kinetic and kinematic compensations than the hinged AFO in healthy adults without the confounding effects of neuromuscular impairments.  相似文献   

7.
BackgroundAlthough it is assumed that the presence of patellofemoral pain (PFP) may result in compensatory behaviors that can alter trunk kinematics and lower limb mechanics, the influence of the exacerbation of patellofemoral pain on trunk kinematics and lower limb mechanics during stair negotiation has not been established.Research questionDoes the exacerbation of PFP symptoms lead to altered trunk kinematics and lower limb mechanics during stair negotiation?MethodsThree-dimensional kinematics and kinetics were obtained from 45 women with PFP during stair descent and ascent. Data were obtained before and after a pain exacerbation protocol. The variables of interest were peak trunk, hip, and knee flexion, and ankle dorsiflexion; peak hip, and knee extensor, and ankle plantarflexor moments. Paired t-tests were used to compare the variables of interest before and after pain exacerbation.ResultsFollowing pain exacerbation, there was a decrease in peak knee extensor moment during stair descent (Effect size = −0.68; p = 0.01) and stair ascent (Effect size = −0.56; p = 0.02); as well as in peak ankle dorsiflexion during stair descent (Effect size = −0.33; p = 0.01) and stair ascent (Effect size = −0.30; p = 0.01). An increase in ankle plantarflexor moment during stair descent (Effect size = 0.79; p < 0.01) and stair ascent (Effect size = 0.89; p < 0.01) was also observed. No significant differences were observed for peak trunk, hip, and knee flexion or hip extensor moment (p > 0.05).SignificanceOur findings show compensatory strategies used by people with PFP in response to symptoms exacerbation that may have a negative impact on knee and ankle mechanics. Our findings also suggest that people with PFP do not seem to change their trunk, hip, and knee flexion or hip extensor moment during stair negotiation in response to symptom exacerbation.  相似文献   

8.
BackgroundStair ambulation is a challenging activity of daily life that requires larger joint moments than walking. Stabilisation of the body and prevention of lower limb collapse during this task depends upon adequately-sized hip, knee and ankle extensor moments. However, people with Parkinson’s disease (PD) often present with strength deficits that may impair their capacity to control the lower limbs and ultimately increase their falls risk.ObjectiveTo investigate hip, knee and ankle joint moments during stair ascent and descent and determine the contribution of these joints to the body’s support in people with PD.MethodsTwelve PD patients and twelve age-matched controls performed stair ascent and descent trials. Data from an instrumented staircase and a three-dimensional motion analysis system were used to derive sagittal hip, knee and ankle moments. Support moment impulses were calculated by summing all extensor moment impulses and the relative contribution of each joint was calculated.ResultsLinear mixed model analyses indicated that PD patients walked slower and had a reduced cadence relative to controls. Although support moment impulses were typically not different between groups during stair ascent or descent, a reduced contribution by the ankle joint required an increased knee joint contribution for the PD patients.ConclusionsDespite having poorer knee extensor strength, people with PD rely more heavily on these muscles during stair walking. This adaptation could possibly be driven by the somewhat restricted mobility of this joint, which may provide these individuals with an increased sense of stability during these tasks.  相似文献   

9.
BackgroundMaintaining body centre of mass (CoM) lowering velocity within manageable/safe limits during stair descent can be problematic for older individuals due to reduced ranges of motion at the involved joints (ankle and knee) and a reduced ability to generate adequate joint moments at the extremes in joint ranges of motion. These problems are likely to magnify in circumstances where the distance of lowering increases, or when misjudging the height of lowering.Research questionHow does a 50% increase in standard stair riser-height affect control of CoM velocity and acceleration of older people during stair descent?MethodsFifteen older (75 ± 3 years) and seventeen young (25 ± 4 years) healthy adults descended a 4-step staircase, at two riser-heights: 170 mm, 255 mm. Changes in peak vertical CoM acceleration and velocity, and lower-limb joint kinetics (moments, work) during landing and lowering phases of stair descent were assessed using a mixed-design repeated measures analysis of variance.ResultsPeak CoM accelerations and velocities during landing and lowering were lower in older compared to young adults and increased in both groups at 255 mm riser-height. Duration of lowering also increased, particularly for older adults. Peak ankle moments during landing and lowering, which were lower in older compared to young adults, increased when descending from 255 mm riser-height, whilst the peak knee moment reduced. Both groups produced increased landing-limb negative (eccentric) ankle joint work when descending from 255 mm, but increases were greater for older adults (87.8%) compared to young (76.1%).SignificanceDescending stairs became more challenging in both age groups as riser-height increased. Older adults adopted a strategy of reducing CoM velocity to lessen the eccentric landing demands. In both groups, but more so older adults, there was a greater reliance on using leading-limb eccentric plantarflexion at 255 mm riser-height compared to 170 mm, to arrest/control increased downward CoM velocity and acceleration during landing.  相似文献   

10.
The purpose of this study was to identify the kinematic and kinetic strategies used by patients with unilateral triple arthrodesis or subtalar fusion during level walking, stair ascent, stair descent and to determine the influence of these different conditions on kinematics and kinetics. Nine subjects with unilateral triple or subtalar fusion and five normal control subjects were recruited for this experiment. Temporal distance, kinematic and kinetic data were collected using a six camera 3-D motion analysis system and a custom fabricated set of stairs with five steps; the second and third steps were each instrumented with one force platform. During level walking, affected limbs lost all of the plantarflexion at the ankle joint during push-off and showed greater knee flexion angle during the same period of stance. During stair ascent, affected limbs showed a different movement pattern at the knee, a greater knee flexion angle during the whole stance phase and a near zero degree of plantarflexion angle during the forward continuance (FCN) phase. During descent, affected limbs showed a greater knee flexion angle during the whole stance phase and less ankle dorsiflexion angle during the same period of stance phase. At the ankle, peak moment and power values were significantly different between the affected side and the limbs of the control subjects during level walking in the push-off phase, stair ascent in the FCN phase, and stair descent in the weight acceptance (WA) phase, where the affected limbs had a lower plantarflexion moment and power values.  相似文献   

11.
Individuals often carry items in one hand instead of both hands during activities of daily living. The combined effects of carrying asymmetric loads and stair negotiation may create even higher demands on the low back and lower extremity. The purpose of this study was to investigate the effect of symmetric and asymmetric loading conditions on L5/S1 and lower extremity moments during stair negotiation. Twenty-two college students performed stair ascent and stair descent on a three-step staircase (step height 18.5 cm, tread depth 29.5 cm) at preferred pace under five load conditions: no load, 10% body weight (BW) unilateral load, 20% BW unilateral load, 10% BW bilateral load, and 20% BW bilateral load. Video cameras and force platforms were used to collect kinematic and kinetic data. Inverse dynamics was used to calculate frontal plane moments for the L5/S1 and lower extremity. A 20% BW unilateral load resulted in significantly higher peak L5/S1 lateral bending, hip abduction, and external knee varus moments than nearly all other loading conditions during stair ascent and stair descent. Therefore, we suggest potential benefits when carrying symmetrical loads as compared to an asymmetric load in order to decrease the frontal joint moments, particularly at 20% BW load.  相似文献   

12.
AimTo investigate lower limb biomechanical strategy during stair walking in patients with diabetes and patients with diabetic peripheral neuropathy, a population known to exhibit lower limb muscular weakness.MethodsThe peak lower limb joint moments of twenty-two patients with diabetic peripheral neuropathy and thirty-nine patients with diabetes and no neuropathy were compared during ascent and descent of a staircase to thirty-two healthy controls. Fifty-nine of the ninety-four participants also performed assessment of their maximum isokinetic ankle and knee joint moment (muscle strength) to assess the level of peak joint moments during the stair task relative to their maximal joint moment-generating capabilities (operating strengths).ResultsBoth patient groups ascended and descended stairs slower than controls (p < 0.05). Peak joint moments in patients with diabetic peripheral neuropathy were lower (p < 0.05) at the ankle and knee during stair ascent, and knee only during stair descent compared to controls. Ankle and knee muscle strength values were lower (p < 0.05) in patients with diabetic peripheral neuropathy compared to controls, and lower at knee only in patients without neuropathy. Operating strengths were higher (p < 0.05) at the ankle and knee in patients with neuropathy during stair descent compared to the controls, but not during stair ascent.ConclusionPatients with diabetic peripheral neuropathy walk slower to alter gait strategy during stair walking and account for lower-limb muscular weakness, but still exhibit heightened operating strengths during stair descent, which may impact upon fatigue and the ability to recover a safe stance following postural instability.  相似文献   

13.
Stair negotiation is a key marker for independence among older adults; however, clinically meaningful change has not been established. Our objective was to establish the values of clinically meaningful change in stair negotiation time using distribution- and anchor-based approaches. Study participants were 371 community residing older adults (age≥70) in the Einstein Aging Study with time to ascend and descend 3 steps measured at baseline and at one-year follow-up. Anchor-based estimates were obtained using functional decline (defined as one-point increment in disability score) and change in self-reported walking ability over the one-year follow-up period. Small, moderate, and large meaningful change estimates were 0.28, 0.71, and 1.15 s for stair ascent time (0.31, 0.78, and 1.25 s for stair descent time) using the distribution-based approach of effect size. The estimates of meaningful decline range from 0.47 to 0.53 s for stair ascent time (0.33-0.53 s for stair descent time) using the anchor-based approach. The estimates of meaningful improvement were smaller (0.13-0.18 s for stair ascent, 0.06-0.15 for stair descent) compared to those for decline. Based on general consistency between distribution- and anchor-based approaches, preliminary criteria suggested for stair negotiation time is 0.5 s for meaningful decline and 0.2 s for meaningful improvement.  相似文献   

14.
This study examined lower extremity biomechanics during the initiation of stair descent from an upright, static posture. Seventeen healthy subjects (aged 23±2.4 years) descended a five-step, steel-reinforced, wooden laboratory staircase (34° decline). Ten trials of stair descent were separated into two blocks of five trials. Beginning from an upright posture, subjects descended the staircase at their preferred velocity (0.53±0.082 m/s) and continued the length of the laboratory walkway (~4 m). Joint mechanics were contrasted between gait cycles. Relative to the initiation cycle at the top of the staircase, the dissipative knee extensor (K3) and hip flexor (H2) moments and powers were independent of progression velocity and approximated steady-state (i.e., constant) values after the first cycle of the trail limb (Step 5 to Step 3). In contrast, a salient relationship was observed between progression velocity and ankle joint mechanics at initial-contact. The plantiflexor moment, power and work at initial-contact (A1) increased with centre of mass velocity. Our results demonstrate that while the knee extensor moment is the primary dissipater of mechanical energy in stair descent, the ankle plantiflexors are the primary dissipaters associated with increased progression velocity. In addition, the results show that steady-state stair descent may not be attained during the first gait cycle of the trail limb. These data shed light on locomotive strategies used in stair descent and can be applied in biomechanical models of human stair gait. Researchers and practitioners should take into consideration the influence of gait cycle and progression velocity when evaluating lower extremity function in stair descent.  相似文献   

15.
PURPOSE: This study compared the kinematics and kinetics of the knee joint during traditional step-over-step (SOS) and compensatory step-by-step lead-leg (SBSL) and trail-leg (SBST) stair ambulation patterns. METHODS: Seventeen (M:9) healthy adults completed five trials of ascent and descent using three different stepping patterns: 1) SBSL, 2) SBST, and 3) SOS. Kinematics and kinetics were collected with an optoelectronic motion-tracking system and a force plate embedded into a four-step staircase. An inverse-dynamics link-segment model (QGAIT system) was used to calculate the net joint kinetics. RESULTS: During stair ascent, different peak anteroposterior (AP) forces were observed across all three stepping patterns (SOS > SBSL > SBST, P < 0.05). During ascent, the flexion moments of SOS (0.96 N x m x kg(-1)) and SBSL (0.97 N x m x kg(-1)) patterns were similar and much larger than the SBST moments (0.14 N x m x kg(-1)). In the descent conditions, the initial AP peak force for SOS was larger than that of SBSL and SBST. However, the second peak force for SOS (4.92 N x kg(-1)) and SBST (4.68 N x kg(-1)) were larger than SBSL (1.57 N x kg(-1)). During descent, the initial peak flexion moment for the SOS pattern was larger than SBSL and SBST, whereas during the second peak, SOS (1.05 N x m x kg(-1)) and SBST (1.11 N x m x kg(-)) were no different and larger than SBSL (0.18 N x m x kg(-1)). CONCLUSION: Overall, SBSL during ascent and SBST during descent had the highest loads. These results increase our understanding of alternative stepping patterns and have important clinical (reduction of loading on injured/diseased leg) and rehabilitation implications.  相似文献   

16.
BackgroundNegotiating stairs is an important activity of daily living that is also associated with large loads on the knee joint. In medial compartment knee osteoarthritis, the knee adduction moment during level walking is considered a marker for disease severity. It could be argued that the discriminative capability of this parameter is even better if tested in a strenuous stair negotiation task.Research questionWhat is the relation with knee osteoarthritis on the knee adduction moment during the stance phase of both stair ascent and descent in patients with and without obesity?MethodsThis case control study included 22 lean controls, 16 lean knee osteoarthritis patients, and 14 obese knee osteoarthritis patients. All subjects ascended and descended a two-step staircase at a self-selected, comfortable speed. Three-dimensional motion analysis was performed to evaluate the knee adduction moment during stair negotiation.ResultsObese knee osteoarthritis patients show a prolonged stance time together with a more flattened knee adduction moment curve during stair ascent. Normalized knee adduction moment impulse, as well as the first and second peaks were not different between groups. During stair descent, a similar increase in stance time was found for both osteoarthritis groups.SignificanceThe absence of a significant effect of groups on the normalized knee adduction moment during stair negotiation may be explained by a lower ambulatory speed in the obese knee osteoarthritis group, that effectively lowers vertical ground reaction force. Decreasing ambulatory speed may be an effective strategy to lower knee adduction moment during stair negotiation.  相似文献   

17.
Lower extremity amputees have to cope with many activities in everyday life that are substantially more difficult than walking on level ground, and such demands require a high degree of functionality from their prosthetic components. The present study is a biomechanical evaluation (kinematics, kinetics and EMG) of stair ascent and descent in a group of eight transtibial amputees (mean (standard deviation): age 51(14) years, height 176(7)cm, mass 88(19)kg); a group of 12 transfemoral amputees (age 37(8) years, height 182(7)cm, mass 83(7)kg) fitted with the electronically controlled C-LEG knee joint system; and a group of 12 able bodied persons (age 30(10) years, height 174(12)cm, mass 69(12)kg). During stair descent the transfemoral amputees presented a strong reduction of the prosthetic ankle moments (0.11Nm/kg) compared to transtibial amputees (0.93Nm/kg) and control subjects (1.26Nm/kg). Loading of the prosthetic knee joint in the transfemoral amputees more closely resembles the loading seen in the control population when compared to transtibial amputees (mean maximum flexion moment: controls 1.31Nm/kg, transfemoral amputees 1.00Nm/kg, transtibial amputees 0.50Nm/kg). Overload of the contralateral limb is more prominent in the transfemoral amputee than in the transtibial amputee. During stair ascent, the transtibial amputee presents a significant reduction of the knee flexion moment compared to the controls (mean maximum flexion moment: transtibial amputees 0.28Nm/kg, controls 1.31Nm/kg). These differences correlate with a change in the muscle activity of the knee extensor and hamstring muscles. The results also show adaptations in motor strategies during stair negotiation, for those with the partial loss of a lower limb due to the functional limits of current prosthetic components. The present data may contribute to a further enhancement of the efficiency of prosthetic feet and knee joints.  相似文献   

18.
BackgroundThe biomechanical mechanisms underlying stair climbing limitations are poorly understood in people with multiple sclerosis (MS).Research QuestionsAre trunk and pelvis motion and lower extremity joint moments during step ascent different between MS and control groups? Are step ascent biomechanics and stair climbing performance associated in people with MS?Methods20 people with MS (49 ± 12 years, EDSS range: 1.5–5.5) and ten control participants (48 ± 12 years) underwent three-dimensional motion analysis while ascending a 15.2-cm step and also completed a timed Functional Stair Test. Main effects of group (MS vs Control) and limb (Stronger/Dominant vs Weaker/Non-dominant) and interactions were assessed using two-way analyses of variance. Associations between movement patterns during the step ascent and Functional Stair Test performance were performed using Pearson’s correlations and backward stepwise linear regression.ResultsSignificant group main effects were observed in greater sagittal pelvis excursion (p < 0.001), greater sagittal (p = 0.013) and frontal (p = 0.001) trunk excursion, and lower trail limb peak ankle plantar flexion moment (p < 0.001) of the MS group. Significant limb main effects were observed with greater sagittal trunk excursion (p = 0.037) and peak trail limb ankle plantar flexion moment (p = 0.037) in the stronger/dominant limb. A significant interaction was observed in peak knee extensor moment (p = .002). Stair climbing performance in the MS group correlated with sagittal (r = .607, p=<0.001) and frontal pelvis excursions (r = 0.385, p = 0.014), sagittal trunk excursion (r = .411, p = 0.008), and ankle plantar flexion moments (r=-0.415, p = 0.008). Sagittal and frontal pelvis excursion and bilateral handrail use explained a significant amount of variability in stair climbing performance (Adj R2 = 0.775).SignificanceIn conclusion, despite the presence of proximal and distal lower extremity movement pattern compensations during a step ascent task, larger pelvis angular excursions are associated with impaired stair climbing performance in people with MS and may serve as targets for future rehabilitation interventions.  相似文献   

19.
BackgroundThe Hoffmann (H) reflex can provide relevant information on spinal control of leg muscles during locomotor tasks in young and older adults.Research questionIs the H reflex in the leg muscles differently modulated during stair gait in young and older adults?MethodThe H reflex in soleus (SOL) and medial gastrocnemius (MG) (normalized to the maximal M-wave amplitude obtained during upright standing; Mmax) was recorded in 19 young and 18 older adults during upright standing, and stair ascent and descent of a 3-step staircase.ResultsH-reflex amplitude during upright standing was greater in young than older adults for SOL (48% vs. 26% Mmax; p = 0.001) and MG (23% vs. 14% Mmax; p = 0.02). When data were averaged across groups during stair ascent, H-reflex amplitude in SOL increased from 15% Mmax at the beginning of the stance phase to 29% Mmax at mid-stance, then decreased to be 4% Mmax in the swing phase. During stair descent, H-reflex amplitude was maximal (20% Mmax) at the beginning of the stance phase, decreased to 5% Mmax at the end of stance, and increased to 11% Mmax in the swing phase. Similar adjustments were observed for the H reflex in MG for both ascent and descent. H-reflex modulation during gait cycle (relative to upright standing) is less pronounced in older adults (p < 0.05). However, no difference was observed between subgroups of young and older adults matched for H-reflex amplitude in upright standing. In both groups, H-reflex modulation was not associated with changes in background electromyographic activity.SignificanceThis study indicates that the H reflex is modulated within the stair gait cycle during ascent and descent. Although its magnitude was slightly reduced, the overall modulation of the H reflex is not affected in healthy older adults.  相似文献   

20.

Purpose

The purpose of this study was to compare knee kinematics during stair walking in patients with simultaneous total knee arthroplasty (TKA) and unicompartmental knee arthroplasties (UKA). It was hypothesized that UKA would reproduce more normalized knee kinematics than TKA during stair ascent and descent.

Methods

Six patients who received UKA in one knee and TKA in the other knee were included in the study. For this study, a four-step staircase was assembled with two force platforms being positioned at the centre of the second and third steps. Each patient was attached with 16 reflective markers at both lower extremities and was asked to perform five roundtrip trials of stair climbing. Kinematic parameters including stance duration, knee angle, vertical ground reaction force (GRF), joint reaction force, and moments were obtained and analysed using a10-camera motion system (VICON, Oxford, UK). Nonparametric Friedman test was used to compare the results between two arthroplasty methods and between stair ascent and descent.

Results

Compared to TKA, UKA knees exhibited significantly greater degree of rotation in transverse planes (5.0 degrees during ascent and 6.0 degrees during descent on average), but showed no difference in terms of the other parameters. When comparing the results during stair ascent with descent, overall greater knee angle, vertical GRF, joint reaction force, and moment were observed during stair descent.

Conclusions

Both UKA and TKA knees have shown overall similar knee kinematics, though UKA knee may allow greater degree of rotation freedom, which resembles normal knee kinematics during stair walking.

Level of evidence

Case–control study, Level III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号