首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luo P  Dessem D  Zhang J 《Brain research》2001,890(2):314-329
Neural circuits from the supratrigeminal region (Vsup) to the hypoglossal motor nucleus were studied in rats using anterograde and retrograde neuroanatomical tracing methodologies. Iontophoretic injection of 10% biotinylated dextran amine (BDA) unilaterally into the Vsup anterogradely labeled axons and axon terminals bilaterally in the hypoglossal nucleus (XII) as well as other regions of the brainstem. In the ipsilateral XII, the highest density of BDA labeling was found in the dorsal compartment and the ventromedial subcompartment of the ventral compartment, where BDA labeling formed a dense, patchy distribution. Microinjection of 20% horseradish peroxidase (HRP) ipsilaterally or bilaterally into the tongue resulted in retrograde labeling of XII motoneurons confined to the dorsal and ventral compartments of the hypoglossal motor nucleus. Under light microscopical examination, BDA-labeled terminals were observed closely apposing the somata and primary dendrites of HRP-labeled hypoglossal motoneurons. Two hundred and sixty-five of these BDA-labeled terminals were examined at the ultrastructural level. One hundred and twelve BDA-labeled axon terminals were observed synapsing with either the somata (39%, 44/112) or the large or medium-size dendrites (61%, 68/112) of retrogradely labeled hypoglossal motoneurons. Axon terminals containing spherical vesicles (S-type) formed asymmetric synapses with HRP-labeled hypoglossal motoneuron dendrites. In contrast to this, FF-type axon terminals, containing flattened vesicles, formed symmetric synapses with both the somata and dendrites of HRP-labeled hypoglossal motoneurons with a preponderance of the contacts on their somata. Axon terminals containing pleomorphic vesicles (FP-type) were noted forming both symmetric and asymmetric synapses with HRP-labeled hypoglossal motoneuron somata and dendrites. The present study provides anatomical evidence of neuronal projections and synaptic connections from the supratrigeminal region to hypoglossal motoneurons. These data suggest that the supratrigeminal region, as one of the premotor neuronal pools of the hypoglossal nucleus, may coordinate and modulate the activity of tongue muscles during oral motor behaviors.  相似文献   

2.
3.
The organization and structure of dendrites penetrating into the white matter of upper cervical spinal segments have been examined by means of Golgi staining techniques, intracellular horseradish peroxidase (HRP) injections, and ultrastructural studies. The Golgi studies established that several groups of neurons located in intermediate and ventral laminae of the upper cervical spinal cord have a substantial part of their dendritic tree extending into adjacent ventral and lateral funiculi. Most dendrites in white matter showed irregular varicosities along their length. They were devoid of spines and followed relatively direct paths. In contrast, grey matter dendrites were occasionally observed with spines and complex appendages and frequently followed tortuous paths. The size and location of some Golgi stained neurons suggested that white matter dendrites might originate from neck muscle motoneurons. This possibility was confirmed using intracellular HRP injections. These studies also showed that the distribution of white matter dendrites of neck muscle motoneurons depended on the location of the motoneuron soma. White matter dendrites of neck muscle motoneurons located deep in the ventral horn projected into all regions of white matter surrounding the ventral horn. Other neck muscle motoneurons, located in the spinal accessory nucleus, had white matter dendrites largely confined to the lateral funiculus. White matter dendrites of motoneurons in the commissural nucleus were found to project across the ventral commissure into the contralateral spinal cord. Light microscopic studies of semi-thin sections stained with toluidine blue and electron microscopic studies of thin sections revealed that white matter dendrites were confined to special regions of the white matter. These regions resembled the grey matter neuropil and contained dendrites and unmyelinated and small diameter myelinated axons. Axon terminals were also found in white matter. These terminals contained either flattened or spherical vesicles and formed synaptic contacts on white matter dendrites. White matter dendrites, by virtue of their frequency of occurrence, distribution, and type of synaptic contacts may represent a means by which descending or ascending spinal systems can influence spinal neurons without recourse to axon collaterals which terminate in grey matter.  相似文献   

4.
The present study provides a comprehensive light and electron microscopic analysis of the anatomical organization of the rat mamillary body. The cytoarchitecture and morphology of mamillary neurons were investigated with the aid of Nissl-stained and Golgi-impregnated sections cut in transverse, horizontal, and sagittal planes. The ultrastructural features of the mamillary nuclei were correlated with observations made on Golgi material. The mamillary body is comprised of a lateral and a medial nucleus, the latter being subdivided into five major subnuclei: pars lateralis, pars basalis, pars medialis, pars medianus, and pars posterior. The perikarya are medium-sized or small with the proportions of each differing among subnuclei. The largest perikarya are found in the lateral mamillary nucleus (cell area 257.0 microns2) and have 2-5 radially oriented aspiny dendrites that are often beaded. Small cells predominate in the pars lateralis (cell area 116.3 microns2) and pars basalis (cell area 118.3 microns2), whereas the pars medialis (cell area 196.7 microns2), pars medianus (cell area 136.5 microns2), and pars posterior (cell area 154.6 microns2) contain mainly medium-sized cells. The dendrites of most cells in the medial nucleus are radially oriented and exhibit a variety of spines including numerous short stubby spines, spines with thin necks that end in spherical swellings, and long thin spines. Neuronal somata are often closely apposed with no intervening glial processes and contain eccentrically located nuclei with one or more invaginations of the nuclear envelope. Two main classes of axon terminals were identified in the mamillary body. One type contains round vesicles and forms asymmetric synaptic junctions (RA) with dendrites and dendritic spines. RA terminals rarely contact neuronal somata and proximal dendrites in the MB. The second type contains pleomorphic vesicles and forms mainly symmetric synaptic junctions (PS) with neuronal somata as well as dendrites and spinous processes. Dense-cored vesicles were frequently seen in both types of terminals. Both types of terminals often synapse with two adjacent dendrites and are also found near or adjacent to each other on the same dendrite. A quantitative analysis indicated that the numbers of RA terminals in the medial nucleus almost equals the numbers of PS terminals, whereas the lateral mamillary nucleus contains considerably more PS (64%) than RA terminals (36%).  相似文献   

5.
Varicosities that made synapses or direct contacts with retrogradely labelled rat phrenic motoneurons were examined for their content of immunoreactivity for either glutamate or glutamate decarboxylase, the enzyme involved in synthesis of α-aminobutyric acid (GABA). Phrenic motoneurons were identified by retrograde tracing from the diaphragm with cholera toxin B subunit conjugated to horseradish peroxidase. Cell bodies and medium-sized to large dendrites were labelled. Preembedding immunocytochemistry identified glutamate decarboxylase-immunoreactive nerve fibres; glutamate-immunoreactive nerve terminals were identified using postembedding immunogold labelling of ultrathin sections. The presence of glutamate- or glutamate decarboxylase immunoreactivity in nerve terminals was correlated with the morphology of the synaptic vesicles. Two major classes of nerve terminals were identified. Nerve terminals with round (presumably spherical) synaptic vesicles (S terminals) comprised 55% of synapses and contacts on phrenic motoneuron somata and 58% of synapses and direct contacts with dendrites. Nerve terminals with flattened synaptic vesicles (F terminals) comprised 42% of synapses direct contacts with somata and 41% of synapses and direct contacts with dendrites. Analysis of immunogold-labelled sections showed that S terminals contained statistically higher levels of glutamate immunoreactivity than F terminals. At the light microscope level, many glutamate decarboxylase-immunoreactive nerve terminals surrounded retrogradely labelled motoneurons. Varicosities with glutamate decarboxylase immunoreactivity made 33% of all synapses and direct contacts on somata, and 33% of synapses and direct contacts with dendrites of the retrogradely labelled phrenic motoneurons. Flattened synaptic vesicles were present in those glutamate decarboxylase-immunoreactive nerve terminals in which synaptic vesicle morphology could be judged. An additional 10% of all nerve terminals were of the F type, but were not glutamate decarboxylase-immunoreactive. Three percent of terminals on somata and 1% of nerve terminals on dendrites could not be classified as S or F types. These findings suggest that more than 90% of all inputs to phrenic motoneuron cell bodies and proximal dendrites could contain either GABA or glutamate. Some of these glutamatergic and GABAergic nerve fibres undoubtedly represent the source of inspiratory drive to, or expiratory inhibition of, phrenic motoneurons. © 1996 Wiley-Liss, Inc.  相似文献   

6.
The morphology and distribution of serotonin-containing axon terminals in the rat hypoglossal nucleus (XII) was investigated immunocytochemically at the electron microscopic level. Serotonin-positive profiles were found throughout all regions of XII and included unmyelinated axons, varicosities and axon terminals. Most labeled profiles (68.1%) were nonsynaptic unmyelinated axons and varicosities, while synaptic profiles, ending on dendrites and somata, were seen less frequently (28.7%). The majority of labeled axon terminals (76.9%) ended on small-to-medium-sized dendrites. Most axodendritic terminals contained small, round agranular vesicles (20-55 microns), several large (60-100 microns) dense core vesicles, and were associated with a pronounced asymmetric postsynaptic specialization. By contrast, labeled axosomatic terminals were seen less often than those ending on dendrites (23.0%). Axosomatic terminals typically contained small, round, agranular and large dense core vesicles and were associated with a symmetric or no postsynaptic specialization. These results provide the structural substrates for elucidating the functional role of serotonin in tongue control.  相似文献   

7.
The hypoglossal nucleus of the macaque monkey Macaca fuscata was investigated with light and electron microscopic immunocytochemistry with an antibody directed against gamma-aminobutyric acid (GABA). At the light microscopic level, GABA immunoreactivity was present in small neurons, punctate structures, and thin, fiberlike structures. These GABA-positive elements were distributed throughout the hypoglossal nucleus at rostrocaudal levels. There was no immunoreactivity in the hypoglossal motoneurons. The GABA-positive small neurons were fusiform or ovoid (15 X 9 micron) and extended a few proximal dendrites from both poles. At the ultrastructural level, these small neurons were characterized by a markedly invaginated nucleus and a scanty cytoplasm in which cisternae of rough endoplasmic reticulum were not organized into extensive lamellar arrays as seen in the motorneurons. The GABA-positive punctate structures at the light microscopic level were identified as vesicle-containing axon boutons at the electron microscopic level. These GABA-positive axon terminals made synaptic contacts mainly with the dendrites of the motoneurons and infrequently with the somata. The majority of them made symmetric synapses and they contained pleomorphic synaptic vesicles. However, a small number of GABA-positive terminals (7%) formed asymmetric synapses with the dendrites of motoneurons, and these contacts exhibited postsynaptic dense bars or Taxi bodies lying beneath the postsynaptic membranes. There were no GABA-positive boutons that contacted the cell bodies of the small neurons. Although GABA-positive myelinated and unmyelinated axons were seen as thin, fiberlike structures, these myelinated and unmyelinated axons rarely gave rise to boutons on the motoneurons. The present study suggests that GABAergic inhibition in the monkey hypoglossal nucleus occurs mainly on the dendrites of the motoneurons and to some extent on the somata.  相似文献   

8.
In the nucleus raphe dorsalis of the cat, an electron microscopic immunocytochemistry method was used to identify the fine structure of serotoninergic dendritic profiles and axon terminals analyzed in serial sections. Two classes of serotoninergic dendrites were distinguished in the nucleus. The first class was constituted by conventional serotonin (5-HT) dendrites that were contacted by unlabeled axon terminals containing differing populations of synaptic vesicles. The second class consisted of serotoninergic dendrites that contained vesicles in their dendritic shafts. Such 5-HT dendrites were further subdivided into two groups according to their synaptic contacts. In some 5-HT vesicle-containing dendrites, the vesicles were densely packed in small clusters and were associated with a well-defined synaptic specialization. These dendrites were classified as serotoninergic presynaptic dendrites and established synaptic contacts with unlabeled and labeled dendrites and were contacted by unlabeled axon terminals. In other 5-HT vesicle-containing dendrites, extensive serial section examination showed that the vesicles could be observed near the membrane but were never found to be associated with any synaptic membrane specialization. Serotoninergic axon terminals that were presumed to be recurrent collaterals of 5-HT neurons were present in the nucleus. Some of them were observed in synaptic contact with dendrites or dendritic protrusions whereas others did not exhibit synaptic specializations. The existence of serotoninergic dendrodendritic synaptic contacts and axon terminals suggests direct local interactions between serotoninergic neurons within the nucleus raphe dorsalis.  相似文献   

9.
10.
The anterograde and retrograde transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) was used to study the anatomical organization of descending projections from the mamillary body (MB) to the mesencephalon and pons at light and electron microscopic levels. Injections of WGA-HRP into the medial mamillary nucleus resulted in dense anterograde and retrograde labeling in the ventral tegmental nucleus, while injections in the lateral mamillary nucleus resulted in dense anterograde labeling in the dorsal tegmental nucleus pars dorsalis and dense anterograde and retrograde labeling in the pars ventralis of the dorsal tegmental nucleus. Anterogradely labeled fibers in the mamillotegmental tract diverged from the principal mamillary tract in an extensive dorsocaudally oriented swath of axons which extended to the dorsal and ventral tegmental nuclei, and numerous axons turned sharply ventrally and rostrally to terminate topographically in the dorsomedial nucleus reticularis tegmenti pontis and rostromedial pontine nuclei. The anterograde labeling in these two precerebellar relay nuclei was distributed near the midline such that projections from the lateral mamillary nucleus terminated mainly dorsomedial to the terminal fields of projections from the medial mamillary nucleus. In the dorsal and ventral tegmental nuclei, labeled axon terminals contained round synaptic vesicles and formed asymmetric synaptic junctions primarily with small diameter dendrites and to a lesser extent with neuronal somata. A few labeled terminals contained pleomorphic vesicles and formed symmetric synaptic junctions with dendrites and neuronal somata. Labeled axon terminals were also frequently found in synaptic contact with retrogradely labeled dendrites and neuronal somata in the dorsal and ventral tegmental nuclei. These findings indicate that neurons in the dorsal and ventral tegmental nuclei are reciprocally connected with MB projection neurons. In the nucleus reticularis tegmenti pontis and medial pontine nuclei, labeled axon terminals contained round synaptic vesicles and formed asymmetric synaptic junctions primarily with small diameter dendrites. The present study demonstrates that projections from the medial and lateral nuclei of the MB are topographically organized in the mesencephalon and pons. The synaptic morphology of mamillotegmental projections suggests that they may have excitatory influences primarily on the distal dendrites of neurons in these brain regions.  相似文献   

11.
Projections from the nucleus subceruleus (nSC) to the hypoglossal nucleus (XII) were investigated with complementary retrograde and anterograde axonal transport techniques at the light and electron microscopic level in the rat. Injections of WGA-HRP into XII resulted in labeling of neurons in and around the nSC. Labeled nSC neurons were few in number (less than 4 per 40-60 microns sections) and variable in size and shape. Most labeled nSC neurons were medium-sized (mean = 16.89 microns), fusiform, triangular, or oval, with 3-4 dendrites typically oriented dorsomedially and ventrolaterally. These neurons were found throughout the rostrocaudal extent of the nSC but were most numerous medial, dorsomedial, and ventromedial to the motor trigeminal nucleus. Others were observed rostral to the motor trigeminal nucleus and ventral to the parabrachial nuclear complex. Confirmation of retrograde results was obtained following injections of tritiated amino acids or WGA-HRP into the nSC. This resulted in labeling throughout the rostrocaudal extent of XII mainly ipsilaterally. Labeled fibers descended the brainstem in the dorsolateral and, to a lesser extent, in the ventromedial component of Probst's tract. Fibers entered XII mainly rostrally along the lateral border of the nucleus. All regions of XII were recipients of nSC afferents, but the caudoventromedial quadrant contained the greatest density of terminal labeling. Electron microscopic evaluation confirmed that nSC afferents synapsed on motoneurons in XII. Axon terminals containing WGA-HRP reaction product were found contacting dendrites and somata, but primarily the former (81.3% versus 10.6%). Axodendritic terminals synapsed mainly on medium-to-small sized dendrites (less than 3 microns in diameter). The majority of labeled axodendritic terminals (90.1%) contained small, round, and clear synaptic vesicles (S-type: 20-50 nm) and were associated with an asymmetric (60.6%), symmetric (11.4%), or no (18%) postsynaptic specialization. By contrast, most axosomatic terminals contained flattened vesicles (F-type) and formed a symmetric or no postsynaptic specialization (75%). Large dense core vesicles (55-90 nm) were observed within a small proportion of all labeled axon terminals (1.3%). The results from this study demonstrate that the nSC projects to XII, preferentially targets a specific subgrouping of protrusor motoneurons, and synapses on both somata and dendrites, although mainly on the latter. The implications of these data are discussed relative to tongue control.  相似文献   

12.
Physiological and immunohistochemical studies have suggested that corticotropin-releasing factor (CRF), the hypophysiotropic peptide that initiates endocrine responses to stress, may serve as a neurotransmitter to activate noradrenergic neurons in the nucleus locus coeruleus (LC). We combined immunoperoxidase labeling for CRF and immunogold-silver localization of the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) in single sections through the rat LC to determine potential substrates for interactions between these two transmitters. Light microscopic analysis indicated that CRF processes are dense and highly varicose in the rostral LC region in the vicinity of noradrenergic dendrites. Electron microscopy of this rostral region revealed that immunoperoxidase labeling for CRF was mainly restricted to axons and axon terminals and was rarely seen in somata or dendrites. Axon terminals containing CRF immunoreactivity varied in size, content of synaptic vesicles, and formation of synaptic specializations. The postsynaptic targets of the CRF-labeled axon terminals consisted of both TH-labeled dendrites and dendrites lacking detectable TH-immunoreactivity. Of 113 CRF-immunoreactive axon terminals, approximately 70% were in direct contact with TH-labeled and unlabeled dendrites. Of the CRF-labeled axon terminals forming synapses with TH-labeled and unlabeled dendrites, they were either of the asymmetric (excitatory type; 19%) or symmetric (inhibitory type; 11%) variety or did not form identifiable contacts in the plane of section analyzed. Unlabeled axon terminals and glial processes were also commonly located adjacent to the plasma membranes of CRF-labeled axon terminals. These results provide the first direct ultrastructural evidence that axon terminals containing CRF-immunoreactivity 1) directly contact catecholamine-containing dendrites within the rostral pole of the LC, 2) may presynaptically modulate other afferents, and 3) are often enveloped by astrocytic processes. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The retrograde and anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) has been used to trace afferent connections of the rat mamillary body (MB) at the light and electron microscopic levels. Injections of WGA-HRP into different parts of the MB resulted in heavy retrograde labeling in the subicular complex, medial prefrontal cortex, and dorsal and ventral tegmental nuclei. Injections of WGA-HRP into each of these brain regions, respectively, resulted in anterograde labeling with specific distributions and characteristic synaptic organizations in the MB. Projections from the rostrodorsal and caudoventral subiculum terminated in a topographically organized laminar fashion in the medial mamillary nucleus bilaterally, whereas afferent projections from the presubiculum and parasubiculum terminated only in the lateral mamillary nucleus. Labeled axon terminals which originated from the subicular complex were characterized by round vesicles and formed asymmetric synaptic junctions with small-diameter dendrites and dendritic spines in the medial and lateral mamillary nuclei. Projections from the prefrontal cortex originated mainly in the infralimbic area and to a lesser degree in the prelimbic and anterior cingulate areas. Injections of tracer into these brain regions gave rise to dense labeling of axon terminals in the medial mamillary nucleus, pars medianus, and in the anterior dorsomedial portion of the pars medialis. The labeled terminals were characterized by round vesicles and formed asymmetric synaptic junctions with small-diameter dendrites and dendritic spines. Projections from the dorsal tegmental nucleus terminated in the ipsilateral lateral mamillary nucleus, whereas afferent projections from the anterior and posterior subnuclei of the ventral tegmental nucleus terminated topographically in the medial mamillary nucleus. The ventral tegmental nucleus, pars anterior projected to the midline region of the medial nucleus and the dorsolateral and ventromedial subdivisions of the pars posterior projected to medial and lateral parts of the medial nucleus, respectively. In contrast to the synaptic morphology of subicular complex and medial prefrontal cortex axon terminals in the MB, labeled axon terminals in the MB which originated from the midbrain tegmentum were characterized by pleomorphic vesicles and formed symmetric synaptic junctions with neuronal somata and proximal dendrites as well as distal dendrites and dendritic spines.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
This study examined the synaptic terminal coverage of primate triceps surae (TS) motoneurons at the electron microscopic level. In three male pigtail macaques, motoneurons were labeled by retrograde transport of cholera toxin-horseradish peroxidase that was injected into TS muscles bilaterally and visualized with tetramethylbenzidine stabilized with diamino-benzidine. Somatic, proximal dendritic, and distal dendritic synaptic terminals were classified by standard criteria and measured. Overall and type-specific synaptic terminal coverages and frequencies were determined. Labeled cells were located in caudal L5 to rostral S1 ventral horn and ranged from 40 to 74 μm in diameter (average, 54 μm). The range and unimodal distribution of diameters, the label used, and the presence of C terminals on almost all cells indicated that the 15 cell bodies and associated proximal dendrites analyzed here probably belonged to α-motoneurons. Synaptic terminals covered 39% of the cell body membrane, 60% of the proximal dendritic membrane, and 40% of the distal dendritic membrane. At each of these three sites, F terminals (flattened or pleomorphic vesicles, usually symmetric active zones, average contact length 1.6 μm) were most common, averaging 52%, 56%, and 58% of total coverage and 56%, 57%, and 58% of total number on cell bodies, proximal dendrites, and distal dendrites respectively. S terminals (round vesicles, usually asymmetric active zones, average contact length 1.3 μm) averaged 24%, 29%, and 33% of coverage and 33%, 35%, and 36% of number at these three sites, respectively. Thus, S terminals were slightly more prominent relative to F terminals on distal dendrites, than on cell bodies. C terminals (spherical vesicles, subsynaptic cisterns associated with rough endoplasmic reticulum, average contact length 3.5 μm) constituted 24% and 11% of total terminal coverage on cell bodies and proximal dendrites, respectively, and averaged 11% and 6% of terminal number at these two locations. M terminals (spherical vesicles, postsynaptic Taxi bodies, some with presynaptic terminals, average contact length 2.7 μm) were absent on cell bodies and averaged 3% and 7% of total coverage and 2% and 5% of terminals on proximal and distal dendrites, respectively. Except for M terminals, which tended to be smaller distally, terminal contact length was not correlated with location. Total and type-specific coverages and frequencies were not correlated with cell body diameter. Primate TS motoneurons are similar to cat TS motoneurons in synaptic terminal morphology, frequency, and distribution. However, primate terminals appear to be smaller, so that the fraction of menitrane covered by them is lower. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Ultrastructure of the major cerebellar territory of the monkey thalamus, or VL as delineated in sagittal maps by Ilinsky and Kultas-Ilinsky (J. Comp. Neurol. 262:331-364, '87), was analyzed by using neuroanatomical tracing, immunocytochemical, and quantitative morphometric techniques. The VL nucleus contains nerve cells of two types. Multipolar neurons (PN) retrogradely labeled with wheat germ agglutinin-horseradish peroxidase (WGA-HRP) from the precentral gyrus display a tufted branching pattern of the proximal dendrites and have a range of soma areas from 200 to 1,000 microns2 (mean 535.2 microns2, SD = 159.5). Small glutamic acid decarboxylase (GAD) immunoreactive cells (LCN) exhibit sizes from 65 to 210 microns2 (mean 122.5 microns2, SD = 32.8) and remain unlabeled after cortical injections. The two cell types can be further distinguished by ultrastructural features. Unlike PN, LCN display little perikaryal cytoplasm, a small irregularly shaped nucleolus, and synaptic vesicles in proximal dendrites. The ratio of PN to LCN is 3:1. The LCN dendrites establish synaptic contacts on PN somata and all levels of dendritic arbor either singly or as a part of complex synaptic arrangements. They are also presynaptic to other LCN dendrites. Terminals known as LR type, i.e., large boutons containing round vesicles, are the most conspicuous in the neuropil. They form asymmetric contacts on somata and proximal dendrites of PN as well as on distal dendrites of LCN. The areas of these boutons range from 0.7 to 12 microns2 and the appositional length on PN dendrites ranges from 1.1 to 14 microns. All LR boutons except the largest ones become anterogradely labeled from large WGA-HRP injections in the deep cerebellar nuclei. These boutons are also encountered as part of triads and glomeruli, but very infrequently since the latter complex synaptic arrangements are rare. The most numerous axon terminals in the neuropil are the SR type, i.e., small terminals (mean area 0.42 micron2) containing round vesicles. The SR boutons become anterogradely labeled after WGA-HRP injections in the precentral gyrus. They form distinct asymmetric contacts predominantly on distal PN and LCN dendrites; however, their domain partially overlaps that of LR boutons at intermediate levels of PN dendrites. The SR boutons are components of serial synapses with LCN dendrites which, in turn, contact somata and all levels of dendritic arbors of PN. They also participate in complex arrangements that consist of sequences of LCN dendrites, serial synapses, and occasional boutons with symmetric contacts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Previous light microscopic immunoperoxidase studies of glutamic acid decarboxylase (GAD)-immunoreactive neural elements in the rat basilar pontine nuclei revealed immunocytochemical reaction product in neuronal somata and axon terminals. In the present study, pre-embedding immunoperoxidase labeling of GAD or gamma-aminobutyric acid (GABA) and postembedding immunogold labeling of GABA allowed the ultrastructural visualization of these neural elements in the basilar pontine nuclei of colchicine-treated animals. At the electron microscopic level, immunolabeled neuronal somata exhibited smoothly contoured nuclei, whereas some dendrites also contained reaction product after immunocytochemical treatment and were postsynaptic to both immunoreactive and nonimmunoreactive axon terminals. Synaptic boutons immunoreactive for GAD or GABA exhibited cross-sectional areas that ranged from 0.1 to 3.8 microns 2 and generally appeared round or elongated in most sections. The majority (95%) of immunolabeled boutons contained pleomorphic synaptic vesicles and formed symmetric synapses at their postsynaptic loci; however, boutons exhibiting round vesicles and boutons forming asymmetric synapses (5%) were also immunopositive. Small (less than 1.5 microns 2) GAD- or GABA-labeled axon terminals formed synaptic contact mainly with small dendritic profiles, dendritic spines, and neuronal somata, whereas large labeled boutons (greater than 1.5 microns 2) formed synapses with all sizes of dendritic profiles. Occasionally, a single immunolabeled bouton formed synaptic contact with two separate postsynaptic dendrites. It is suggested that the immunolabeled neuronal somata and dendrites observed in the rat basilar pontine nuclei represent a population of pontine local circuit neurons; however, it is known that GABAergic cell groups extrinsic to the pontine gray provide afferent projections to the basilar pons, and therefore at least some immunoreactive axon terminals present in the pontine nuclei are derived from these extrinsic sources. The ultrastructural observation of GABAergic neural elements in the rat basilar pontine nuclei confirms previous light microscopic findings and provides an anatomical substrate through which GABAergic neurons, whether arising from an intrinsic or extrinsic source, might exert an inhibitory influence on target cells within the pontine nuclei.  相似文献   

17.
The synaptic organization of afferents to the parafascicular nucleus (Pf) of the thalamus was studied in rats. In the Pf, three types of axon terminals were identified: the first type was a small terminal with round synaptic vesicles forming an asymmetric synapse, the second type was a large terminal with round synaptic vesicles forming an asymmetric synapse, and the third type was a terminal with pleomorphic vesicles forming a symmetric synapse. They were named SR, LR and P boutons, respectively. In order to determine the origin of these axon terminals, biotinylated dextran amine (BDA) was injected into the main afferent sources of the Pf, the superior colliculus (SC) and the pedunculopontine tegmental nucleus (PPN). Axon terminals from the SC were both SR and LR boutons which made synaptic contacts with somata and dendrites. PPN afferents were SR boutons, which made synaptic contacts with somata and smaller dendrites. Double-labeled electron microscopic studies, in which a retrograde tracer (wheat germ agglutinin conjugated to horseradish peroxidase: WGA-HRP) was injected into the striatum and an anterograde tracer (BDA) into the SC revealed that SC afferent terminals made synapses directly with Pf neurons that projected to the striatum. Another experiment was performed to find out whether two different afferents converged onto a single Pf neuron. To address this question, two different tracers were injected into the SC and PPN in a rat. Electron microscopically, both afferent terminals from the SC and PPN made synaptic contacts with the same dendrite. Our results prove that a single neuron of the rat Pf received convergent projections from two different sources.  相似文献   

18.
This study examines the termination pattern of axons from the medial mammillary nucleus within the ventral tegmental nucleus of Gudden (TV) in rats by using anterograde transport of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) and visualized with tetramethylbenzidine. The neuropil of TV contains three classes of axodendritic terminals, that is, terminals containing round, flat, and pleomorphic synaptic vesicles. These types make up 55.6%, 26.1%, and 18.3%, respectively, of all normal axodendritic terminals. Injection of WGA-HRP into the medial mammillary nucleus permits ultrastructural recognition of anterogradely labeled terminals within the TV. More than 80% of the labeled terminals contain round synaptic vesicles and form asymmetric synaptic contacts, whereas about 16% contain flat synaptic vesicles with symmetric synaptic contacts. There are a few labeled terminals with pleomorphic vesicles and only a few axosomatic terminals. Almost all labeled terminals are small, having diameters of less than 1.5 microns. Compared with the distributions of normal and labeled terminals with round vesicles, there is an increase of the percentage of labeled terminals with round vesicles on the intermediate dendrites (1-2 microns diameter) and a decrease on the distal dendrites (less than 1 micron diameter). Anterogradely labeled axon terminals often contact retrogradely labeled dendrites. These results suggest that the medial mammillary neurons send mainly excitatory as well as a few inhibitory inputs to the dendrites of TV and have direct reciprocal contacts with the TV neurons.  相似文献   

19.
A direct projection from rat mesencephalic trigeminal nucleus (Vme) neurons to the hypoglossal nucleus (XII) motoneurons was studied using a double labeling method of anterogradely biotinylated dextran amine (BDA) tracing combined with retrogradely horseradish peroxidase (HRP) transport at both light and electron microscopic levels. BDA was iontophoresed unilaterally into the caudal Vme, and 7 days later HRP was injected into the ipsilateral tongue to label hypoglossal motoneurons. The BDA-labeled fibers were seen descended along Probst' tract and were traced to the caudal medulla. In this course, the fibers gave off axon collaterals bearing varicosities in the trigeminal motor nucleus (Vmo), the parvicellular reticular formation (PCRt), the dorsomedial portions of the subnuclei of oralis (Vodm) and interpolaris (Vidm) and in the XII ipsilaterally. The labeling of terminals was most dense in the PCRt at the levels of caudal pons and rostral medulla, which displayed a "dumbbell-shaped" form in the transverse planes. In the XII, labeled terminals were distributed mainly in the dorsal compartment of the nucleus. One hundred sixty-eight appositions made by BDA-labeled terminals on HRP-labeled motoneurons were seen in the dorsal compartment (71%) and in the lateral subcompartment (24%) of the ventral XII. Under electron microscopy BDA-labeled boutons containing clear, spherical synaptic vesicles were found to form synaptic contacts with the somata and dendrites of hypoglossal motoneurons with asymmetric specializations. The present study provides new evidence that the trigeminal proprioceptive afferent neurons terminate in the XII and make synaptic contacts with their motoneurons.  相似文献   

20.
Zhang J  Luo P 《Brain research》2003,963(1-2):262-273
The dorsal parvocellular reticular formation (PCRt) receives projection of the trigeminal mesencephalic nucleus neurons. It contains the dorsal group of interneurons that integrate and coordinate activity of the oral motor nuclei. Ultrastructural features of synaptic connection from the dorsal PCRt neurons to the motoneurons of the hypoglossal nucleus (XII) were examined at both the light and electron microscopic levels in rats. Biotinylated dextran amine (BDA) was initially iontophoresed into the dorsal part of PCRt unilaterally. Seven days later horseradish peroxidase (HRP) was injected into the body of the tongue. After histochemical reaction for visualization of HRP and BDA, the BDA-labeled fibers and terminals were seen distributing bilaterally in XII with ipsilateral predominance. BDA-labeled terminals were closely apposed upon HRP retrogradely labeled somata and dendrites of the XII motoneurons. A total of 1408 BDA-labeled boutons were examined ultrastructurally, which had mean size of 1.22+/-0.37 microm in diameter. Five hundred-ninety three of these boutons in both the ipsilateral (n=401) and contralateral (n=192) XII were seen to synapse on both the dendrites and somata of HRP-labeled motoneurons. The vast majorities of synapses were axodendritic (98%, 580/593), while 2% of them were axosomatic. Of the 1408 BDA-labeled boutons, 69.6% of them were S-type boutons containing small clear and spherical synaptic vesicles and 30.4% of them were PF-type boutons containing pleomorphic and flattened synaptic vesicles. Approximately 64% of synapses between BDA-labeled boutons and HRP-labeled motoneurons were asymmetric, and 33% of synapses were symmetric. No axoaxodendritic or axoaxosomatic synaptic triad was observed. The present study illustrated the anatomical pathway and synaptological characteristics of neuronal connection between the dorsal PCRt premotor neurons and the XII motoneurons. Its functional significance in coordinating activity of XII motoneurons during oral motor behaviors has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号