首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autism is a rare neurodevelopmental disorder with a strong genetic component. Co-occurrence of autism and chromosomal abnormalities is useful to localize candidate regions that may include gene(s) implicated in autism determinism. Several candidate chromosomal regions are known, but association of chromosome 22 abnormalities with autism is unusual. We report a child with autistic syndrome and a de novo 22q13.3 cryptic deletion detected by FISH. Previously described cases with 22q13.3 deletions shared characteristic developmental and speech delay, but autism was not specifically reported. This case emphasizes a new candidate region that may bear a gene involved in autism etiopathogenesis. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:839-844, 2000.  相似文献   

2.
Cryptic telomere deletions have been proposed to be a significant cause of idiopathic mental retardation. We present two unrelated subjects, with normal G banding analysis, in whom 22q telomere deletions were serendipitously detected at two different institutions using fluorescence in situ hybridisation (FISH). Both probands presented with several of the previously described features associated with 22q deletions, including hypotonia, developmental delay, and absence of speech. Our two cases increase the total number of reported 22q telomere deletions to 19, the majority of which were identified by cytogenetic banding analysis. With the limited sensitivity of routine cytogenetic studies (approximately 2-5 Mb), these two new cases suggest that the actual prevalence of 22q telomere deletions may be higher than currently documented. Of additional interest is the phenotypic overlap with Angelman syndrome (AS) as it raises the possibility of a 22q deletion in patients in whom AS has been ruled out. The use of telomeric probes as diagnostic reagents would be useful in determining an accurate prevalence of chromosome 22q deletions and could result in a significantly higher detection rate of subtelomeric rearrangements.  相似文献   

3.
We describe a newborn male with minor facial anomalies, pyloric stenosis, and a chromosome rearrangement that involves deletion and addition of material at 9p24.3. Routine studies showed a 46, XY, add (9) (p24) karyotype. Fluorescence in situ hybridization (FISH) with two different whole chromosome probes for chromosome 9 failed to identify whether the additional material was derived from that chromosome. FISH with single copy YAC probes from 9p24 (D9S1858, D9S1813 and D9S54) showed a more complex rearrangement involving a deletion at D9S1858 but not at D9S1813 or D9S54. Parental chromosome studies demonstrated an apparently identical 9p abnormality in the patient's mother. This report describes a familial chromosome rearrangement in an abnormal child and his normal mother and demonstrates the use and limitations of FISH in characterizing chromosomal abnormalities. Am. J. Med. Genet. 76:306–309, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
We report on prenatal diagnosis by FISH of a sporadic 22q11 deletion associated with DiGeorge syndrome (DGS) in two fetuses after an obstetric ultrasonographic examination detected cardiac anomalies, an interrupted aortic arch in case 1 and tetralogy of Fallot in case 2. The parents decided to terminate the pregnancies. At necropsy, fetal examination showed characteristic facial dysmorphism associated with congenital malformations, confirming full DGS in both fetuses. In addition to the 22q11 deletion, trisomy X was found in the second fetus and a reciprocal balanced translocation t(11;22) (q23;q11) was found in the clinically normal father of case 1. These findings highlight the importance of performing traditional cytogenetic analysis and FISH in pregnancies with a high risk of having a deletion.  相似文献   

5.
During a prospective prenatal study of numerical abnormalities of chromosomes 13, 18, 21, X and Y using locus-specific probes, we incidentally found a case with only one signal for chromosome 18 per cell in a chorionic villus sampling (CVS) associated with an otherwise apparently normal G-banded karyotype. This led us to discover a cryptic t(11;18) segregating in a four-generation family. The CVS was performed because of mental retardation in the brother to the father of the fetus. A subtelomeric chromosome 18 probe revealed one signal on 18qter and one on 11qter of the father. Thus the father had a balanced reciprocal t(11;18) in spite of the apparently normal G-banded karyotype. Using the same probes, we found an unbalanced translocation 46,XX,-18,+der (18)t(11;18)-(q25;q23)pat in the fetus. Further investigation of the family showed the translocation in balanced and unbalanced form in four generations in mentally normal and retarded individuals, respectively. The study emphasizes the need for a follow-up with molecular cytogenetic techniques in dysmorphic and retarded children.  相似文献   

6.
We report a family in which the proband has a direct insertion of band 7q21.3 into chromosome 22 at 22q13.3, karyotype 46,XX,dir ins(22;7)(q13.3;q21.2q22.1). Two of her children have unbalanced chromosome rearrangements involving 7q21.3, with one girl monosomic for the region and a boy trisomic for the region. The child monosomic for band 7q21.3 has a split hand/split foot (SHSF) anomaly and her clinical features are consistent with the 7q21-q22 contiguous gene deletion syndrome. In situ hybridisation studies have shown that the proband and her son have a submicroscopic deletion of chromosome band 22q13.3. Interstitial deletions of this chromosome band have rarely been reported.  相似文献   

7.
A common molecular basis for rearrangement disorders on chromosome 22q11.   总被引:19,自引:0,他引:19  
The chromosome 22q11 region is susceptible to rearrangements that are associated with congenital anomaly disorders and malignant tumors. Three congenital anomaly disorders, cat-eye syndrome, der() syndrome and velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS) are associated with tetrasomy, trisomy or monosomy, respectively, for part of chromosome 22q11. VCFS/DGS is the most common syndrome associated with 22q11 rearrangements. In order to determine whether there are particular regions on 22q11 that are prone to rearrangements, the deletion end-points in a large number of VCFS/DGS patients were defined by haplotype analysis. Most VCFS/DGS patients have a similar 3 Mb deletion, some have a nested distal deletion breakpoint resulting in a 1.5 Mb deletion and a few rare patients have unique deletions or translocations. The high prevalence of the disorder in the population and the fact that most cases occur sporadically suggest that sequences at or near the breakpoints confer susceptibility to chromosome rearrangements. To investigate this hypothesis, we developed hamster-human somatic hybrid cell lines from VCFS/DGS patients with all three classes of deletions and we now show that the breakpoints occur within similar low copy repeats, termed LCR22s. To support this idea further, we identified a family that carries an interstitial duplication of the same 3 Mb region that is deleted in VCFS/DGS patients. We present models to explain how the LCR22s can mediate different homologous recombination events, thereby generating a number of rearrangements that are associated with congenital anomaly disorders. We identified five additional copies of the LCR22 on 22q11 that may mediate other rearrangements leading to disease.  相似文献   

8.
We report on two patients with rare 6q duplications. The karyotype of patient 1 is 46,XY,dup(6)(q21q23.3). The karyotype of patient 2 is 46,XX,dup(6)(q21.15q23.3). These two patients have some nonspecific physical findings in common including a depressed nasal bridge, epicanthal folds, mild heart defects, and developmental delay, but each had other congenital anomalies. Am. J. Med. Genet. 80:112–114, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
A black infant with malformations was found to have trisomy 15q22→qter. The mother had a complex chromosomal rearrangement involving three chromosomes (5, 13, and 15). A comparison with previously published cases of trisomy for distal 15q suggests a pattern of clinical findings including retardation in growth and development, microcephaly, asymmetrical facies, prominent occiput, antimongoloid slant of the palpebral fissures, micrognathia, prominent nose, and congenital heart disease.  相似文献   

10.
The regions near telomeres of human chromosomes are gene rich. Chromosome subtelomere rearrangements occur with a frequency of 7-10% in children with mild-to-moderate mental retardation (MR) and approximately 50% of cases are familial. Clinical investigation of subtelomere rearrangements is now prompted by fluorescence in situ hybridization (FISH) analysis using specific DNA probes from all relevant chromosome ends. In our study, 40 children were selected for subtelomere assay using either the Chromophore Multiprobe-T Cytocell device or the VYSIS TelVision probes. Inclusion criteria were: developmental delay or MR; a normal 550 G-band karyotype; FRAXA negative; and at least one other clinical criterion. Exclusion criteria included an identified genetic or environmental diagnosis. Of the 40 patients analysed, four (10%) were found to have subtelomere rearrangements. Three of 40 (7.5%) were found to have an unbalanced subtelomere rearrangement and one of 40 (2.5%) was found to have an apparently normal variant subtelomere deletion. The first of the three with an unbalanced karyotype was the result of a familial translocation, the second was a de novo finding, and the origin of the third could not be determined. The subtelomere FISH assay detected almost twice the frequency of unbalanced karyotypes as those detected by 550 G-banding in our cytogenetics laboratory (4.7%). In addition, subtelomere screening was eight times more likely than fragile X screening in our DNA laboratory (1%) to detect genetic abnormalities in mentally handicapped individuals. Our findings support the view that screening for subtelomere rearrangements has a greater positive yield than other commonly used genetic investigations and, if cost and resources permit, should be the next diagnostic test of choice in a child with unexplained MR/dysmorphisms and a normal 550 G-band karyotype.  相似文献   

11.
In recent years, subtelomeric rearrangements have been identified as a major cause of multiple congenital anomalies/mental retardation syndromes. Currently, more than 2,500 individuals with mental retardation have been tested and reported in whom subtelomeric rearrangements were detected ranging from 2% to 29%. Therefore, subtelomeric FISH analysis is indicated as a second tier test after high-resolution G-banding analysis in patients with otherwise unexplained developmental delay/mental retardation and/or multiple congenital anomalies. We describe a patient and her three maternal female cousins, all showing an undiagnosed MCA/MR syndrome, associated with the same complex subtelomeric rearrangement. Subtelomeric FISH testing performed between 3(1/2) and 18 years after the initial karyotype showed, in all four patients, distal trisomy 3q and distal monosomy 10q as follows: 46,XX,ish der(10)t(3;10)(q29;q26.3)mat(D10S2488+,D10S2490-, D3S1272+,D10Z1+). Parental subtelomeric FISH analysis showed that the proposita's mother and three of four brothers and one of two sisters had a cryptic balanced 3:10 telomere translocation. The three brothers with the balanced translocation were father to one each of the three proband's cousins. All four affected girls showed a similar phenotype with pre/postnatal growth retardation, microcephaly, severe developmental delay/mental retardation, poor/absent speech, and a distinct pattern of malformation. On examination there were coarsening of facial features with low fronto-temporal hairline; thick eyebrows; bilateral epicanthal folds; hypertelorism; prominent nose with squared nasal root and narrow alar base; low-set posteriorly rotated large ears with a prominent anthelix; high arched palate; prominent chin; hands/feet brachydactyly; bilateral squint; hypotonia; and muscle hypotrophy. A slow overall improvement was seen in all patients over time. To our knowledge, this complex subtelomeric rearrangement in our patients has never been reported so far. Monosomy 10q has recently been described either isolated or as part of a complex rearrangement involving telomeres other than the 3q. Trisomy 3q29 has not yet been reported, but our patients resembled cases with 3q26 trisomy suggesting that the critical region of duplication for this phenotype is in 3q29.  相似文献   

12.
13.
We report chromosome rearrangements and/or duplication of chromosomes 11 and/or 22. This investigation was prompted by propositi with multiple congenital anomalies and an apparently identical chromosome abnormality – ie, 47,+der(22)t(11;22)(q23;q11.2)mat in two unrelated families. The propositi had failure to thrive, developmental delay, cleft palate, congenital heart disease, meningomyelocele, and hydrocephaly. The breakage points identified on chromosomes 11 and 22 are site-specific and occur in a nonrandom fashion. Band 11q23 corresponds to the gap produced in some individuals by special treatment of the chromosome preparation with mercaptoethanol and may provide a method to identify individuals at risk for chromosome breakage and rearrangements during gametogenesis.  相似文献   

14.
Microdissection and fluorescence in situ hybridisation (FISH) were used to elucidate the nature of a complex chromosome translocation, after GTG banding failed in the complete characterisation of the structural rearrangement between chromosomes 6 and 12. These chromosomes were painted with chromosome specific paints and one of the chromosome regions involved in the translocation was isolated by microdissection. Ten copies of the microdissected region were collected with microneedles from GTG banded metaphases, transferred to a collecting drop, and amplified by means of DOP-PCR. The PCR product was labelled with biotin-14-dATP and used as a FISH probe for hybridisation to normal metaphase chromosomes and metaphase chromosomes of the patients (microFISH). FISH with this chromosome region specific painting probe and with chromosome band specific probes enabled the characterisation of a complex chromosome rearrangement with five breakpoints in two chromosomes. This resulted in the following karyotype: 46,XY,t(6;12)(6pter--> 6q12::12q24.1-->12qter;12qter-->12q13.3:: 6q16.2-->6q26::12q13.3-->12q24.1::6q12--> 6q16.2::6q26-->6qter).  相似文献   

15.
We describe two unrelated patients with cytogenetically visible deletions of 21q22.2-q22.3 and mild phenotypes. Both patients presented minor dysmorphic features including thin marfanoid build, facial asymmetry, downward-slanting palpebral fissures, depressed nasal bridge, small nose with bulbous tip, and mild mental retardation (MR). FISH and molecular studies indicated common deleted areas but different breakpoints. In patient 1, the breakpoint was fine mapped to a 5.2 kb interval between exon 5 and exon 8 of the ETS2 gene. The subtelomeric FISH probe was absent on one homologue 21 indicating a terminal deletion spanning approximately 7.9 Mb in size. In patient 2, the proximal breakpoint was determined to be 300-700 kb distal to ETS2, and the distal breakpoint 2.5-0.3 Mb from the 21q telomere, indicating an interstitial deletion sized approximately 4.7-7.3 Mb. The 21q- syndrome is rare and typically associated with a severe phenotype, but different outcomes depending on the size and location of the deleted area have been reported. Our data show that monosomy 21q of the area distal to the ETS2 gene, representing the terminal 7.9 Mb of 21q, may result in mild phenotypes comprising facial anomalies, thin marfanoid build, and mild MR, with or without signs of holoprosencephaly.  相似文献   

16.
The 22q11.2 microdeletion syndrome is the most frequent microdeletion syndrome in humans, yet its genetic basis is complex and is still not fully understood. Most patients harbor a 3-Mb deletion (typically deleted region [TDR]), but occasionally patients with atypical deletions, some of which do not overlap with each other and/or the TDR, have been described. Microduplication of the TDR leads to a phenotype similar, albeit not identical, to the deletion of this region. Here we present a child initially suspected of having 22q11 microdeletion syndrome, who in addition developed a fatal malignant rhabdoid tumor of the kidney. Detailed cytogenetic and molecular analyses revealed a complex de novo rearrangement of band q11 of the paternally derived chromosome 22. This aberration exhibited two novel features. First, a microduplication of the 22q11 TDR was associated with an atypical 22q11 microdeletion immediately telomeric of the duplicated region. Second, this deletion was considerably larger than previously reported atypical 22q11 deletions, spanning 2.8 Mb and extending beyond the SMARCB1/SNF5/INI1 tumor suppressor gene, whose second allele harbored a somatic frameshift-causing sequence alteration in the patient's tumor. Two nonallelic homologous recombination events between low-copy repeats (LCRs) could explain the emergence of this novel and complex mutation associated with the phenotype of 22q11 microdeletion syndrome.  相似文献   

17.
Laboratory-based reports of the cytogenetic abnormalities detected during the course of testing for deletion del(22q) are scant. We report our findings from the testing with FISH of 462 patients suspected to have del(22q) between 1994 and 2000. Of these, 447 had a normal karyotype. An apparently unrelated cytogenetic abnormality was detected in 15 (3.2%). Two of these abnormalities involved reciprocal translocation with chromosome 22q and one of these showed del(22q) with FISH. The other abnormalities included sex chromosome aneuploidies and unbalanced rearrangements of various chromosomal segments. There was no commonality among these abnormalities and no correlation with other reported cases. Among those with a normal karyotype, an unexpected deletion of the control arylsulphatase A (ARSA) probe was found, providing a definite frequency of 1/262 for ARSA deletions among patients suspected to have del(22q). Of the 462 referrals, 48 (10%) had one or more additional diagnoses, and in this group, 4 (8%) had del(22q) and 2 (4%) had an apparently unrelated cytogenetic abnormality. The data highlight the importance of initial cytogenetic analysis in patients suspected of del(22q) and negates the use of interphase FISH screening by itself for del(22q). The finding of 3.2% unrelated cytogenetic abnormalities is noteworthy. FISH should be used in any structural rearrangement to ascertain if the relevant locus is deleted or not. The continued reporting of patients diagnosed with del(22q) found to have an unrelated cytogenetic abnormality will expand the phenotypic spectrum and possible gene mapping may refine phenotypic specificity.  相似文献   

18.
We report on 2 patients with de novo terminal deletion of 6q. The first was a 4-month-old boy whose karyotype was 46,XY,del(6)(q24.3); the second a 2-year-old girl whose karyotype was 46, XX, del(6)(q25.3). The main anomalies in both patients included mental retardation, minor craniofacial and cerebral anomalies, and cardiac defects. The characteristic manifestations were imperforate anus in the first patient, and retinitis proliferans and a triatrial heart in the other. Comparison of clinical findings of our 2 patients with those of 18 previously reported patients with similar phenotypes suggests that terminal deletion of the 6q23 or 6q25 band is critical in producing the main anomalies of del(6q) syndrome.  相似文献   

19.
The 22q13.3 deletion causes a neurodevelopmental syndrome, also known as Phelan‐McDermid syndrome (MIM #606232), characterized by developmental delay and severe delay or absence of expressive speech. Two patients with hemizygous chromosome 22q13.3 telomeric deletion were referred to us when brain‐imaging studies revealed cerebellar vermis hypoplasia (CBVH). To determine whether developmental abnormalities of the cerebellum are a consistent feature of the 22q13.3 deletion syndrome, we examined brain‐imaging studies for 10 unrelated subjects with 22q13 terminal deletion. In seven cases where the availability of DNA and array technology allowed, we mapped deletion boundaries using comparative intensity analysis with single nucleotide polymorphism (SNP) microarrays. Approximate deletion boundaries for three additional cases were derived from clinical or published molecular data. We also examined brain‐imaging studies for a patient with an intragenic SHANK3 mutation. We report the first brain‐imaging data showing that some patients with 22q13 deletions have severe posterior CBVH, and one individual with a SHANK3 mutation has a normal cerebellum. This genotype–phenotype study suggests that the 22q13 deletion phenotype includes abnormal posterior fossa structures that are unlikely to be attributed to SHANK3 disruption. Other genes in the region, including PLXNB2 and MAPK8IP2, display brain expression patterns and mouse mutant phenotypes critical for proper cerebellar development. Future studies of these genes may elucidate their relationship to 22q13.3 deletion phenotypes. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号