首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: Transforming growth factor (TGF)-beta promotes the deposition of extracellular matrix protein and also acts as an anti-inflammatory cytokine. These biological effects might be involved in the development and progression of left ventricular (LV) remodeling and failure after myocardial infarction (MI). However, its pathophysiological significance remains obscure in post-MI hearts. METHODS: Anterior MI was produced in mice by ligating the left coronary artery. TGF-beta mRNA levels increased in both infarcted and noninfarcted LV after MI. To block TGF-beta signaling during the early phase of MI, an extracellular domain of TGF-beta type II receptor (TbetaIIR) plasmid was transfected into the limb skeletal muscles 7 days before ligation. RESULTS: TbetaIIR increased the mortality during 24 h of MI, as well as exacerbated LV dilatation and contractile dysfunction, the infiltration of neutrophils, and gene expression of tumor necrosis factor-alpha, interleukin-1beta, and monocyte chemoattractant protein-1 compared with nontreated MI mice despite the comparable infarct size. Next, to block TGF-beta signaling during the later phase, TbetaIIR was transfected into mice at days 0 and 7 after ligation. At 4 weeks, LV dilatation and contractile dysfunction in association with myocyte hypertrophy and interstitial fibrosis of noninfarcted LV seen in MI mice were prevented by TbetaIIR. CONCLUSIONS: The activation of TGF-beta is protective against ischemic myocardial damage during the early phase. However, the beneficial effects might be lost, when its expression is sustained, thereby leading to LV remodeling and failure after MI.  相似文献   

2.
After myocardial infarction (MI), the heart may undergo progressive ventricular remodeling, resulting in a deterioration of cardiac function. TGF-beta is a key cytokine that both initiates and terminates tissue repair, and its sustained production underlies the development of tissue fibrosis, particularly after MI. We investigated the effects of a novel orally active specific inhibitor of the TGF-beta receptor 1 (SD-208) in an experimental model of MI. Mice underwent ligation of the left coronary artery to induce MI and were subsequently treated for 30 d after infarction with either SD-208 or a vehicle control. Blockade of TGF-beta signaling reduced mean arterial pressure in all groups. SD-208 treatment after MI resulted in a trend for reduced ventricular and renal gene expression of TGF-beta-activated kinase-1 (a downstream modulator of TGF-beta signaling) and a significant decrease in collagen 1, in association with a marked decrease in cardiac mass. Post-MI SD-208 treatment significantly reduced circulating levels of plasma renin activity as well as down-regulating the components of the cardiac and renal renin-angiotensin system (angiotensinogen, angiotensin converting enzyme, and angiotensin II type I receptor). Our findings indicate that blockade of the TGF-beta signaling pathway results in significant amelioration of deleterious cardiac remodeling after infarction.  相似文献   

3.
OBJECTIVES: We sought to examine the role of the pro-inflammatory cytokine, interleukin-1-beta (IL-1beta), in the process of left ventricular (LV) remodeling in the early phase after myocardial infarction (MI). BACKGROUND: Studies have shown that pro-inflammatory cytokines are closely related to the progression of LV remodeling after MI. METHODS: Mice underwent coronary artery ligation, and the time course of LV remodeling was followed up to 20 weeks. The gene expression level of IL-1beta was examined. In a second set of experiments, the mice underwent coronary artery ligation followed by treatment with anti-IL-1beta antibody (100 microg, intravenously), versus control immunoglobulin G (100 microg, intravenously) immediately after the operation. RESULTS: Rapid hypertrophy of noninfarcted myocardium was observed by four weeks, and interstitial fibrosis progressed steadily up to 20 weeks. Anti-IL-1beta treatment increased the occurrence of ventricular rupture and suppressed collagen accumulation in the infarct-related area. At four and eight weeks after the operation, total heart weight and LV end-diastolic dimension were significantly greater in the anti-IL-1beta-treated mice than in the other groups. In the infarct-related area, collagen accumulation was suppressed, whereas in the noninfarcted area, pro-collagen gene expression levels, particularly type III, were decreased in the anti-IL-1beta-treated mice. CONCLUSIONS: Anti-IL-1beta treatment suppressed pro-collagen gene expression and delayed wound healing mechanisms-properties that are likely to lead to progression of LV remodeling. In the acute phase of MI, IL-1beta appears to play a protective role.  相似文献   

4.
5.
Background Proinflammatory proteins like inflammatory cytokines are implicated in myocardial depression and left ventricular remodeling after myocardial infarction. High-dose aspirin inhibits cytokine activation. Therefore, we tested the influence of high-dose aspirin treatment on left ventricular remodeling in mice after myocardial infarction. Methods and results Mice were treated for 4 weeks with placebo or aspirin (120 mg/kg per day) by Alzet mini-osmotic pumps after ligation of the left anterior descending coronary artery. Serial transthoracic echocardiography was performed at days 1, 7, and 28. Over the 4 weeks, mortality was not different between the groups (placebo 30.8%, aspirin 30.8%). On echocardiography, animals after myocardial infarction exhibited left ventricular dilatation (week 4, end-systolic area, placebo sham 8.9 ± 1.7 vs. placebo MI 15.9 ± 2.5 mm2), which was not changed by aspirin treatment (week 4, end-systolic area, aspirin MI 14.5 ± 1.3 mm2, p= ns vs. placebo MI). The expression of the proinflammatory cytokines TNF and IL-1β were markedly upregulated in mice with myocardial infarction on placebo. Cytokine expression was significantly reduced by aspirin treatment while collagen deposition was not influenced. Conclusion Continuous aspirin treatment (120 mg/kg/d) reduces the expression of proinflammatory cytokines after myocardial infarction, but does not affect post-infarct cardiac remodeling and cardiac function.  相似文献   

6.
OBJECTIVE: Tumor necrosis factor (TNF)-alpha induced in damaged myocardium has been considered to be cardiotoxic. However, the negative results of RENEWAL and ATTACH prompt us to reconsider the role of TNF-alpha in cardiovascular diseases. The present study aimed to evaluate the effects of soluble TNF receptor treatment on myocardial infarction (MI). METHODS: An adenovirus encoding a 55-kDa TNF receptor-IgG fusion protein (AdTNFR1) was used to neutralize TNF-alpha, and an adenovirus encoding LacZ (AdLacZ) served as control. In the pre-MI treatment protocol, mice were given an intravenous injection of AdTNFR1 or AdLacZ 1 week before left coronary artery ligation to induce MI. In the post-MI treatment protocol, mice were treated with AdTNFR1 or AdLacZ 1 week after left coronary ligation. RESULTS: Treatment with AdTNFR1 neutralized bioactivity of TNF-alpha that was activated after MI and prevented apoptosis of infiltrating cells in infarct myocardium. However, pre-MI treatment with AdTNFR1 promoted ventricular rupture by reducing fibrosis with further activation of matrix metalloproteinase (MMP)-9. Post-MI treatment with AdTNFR1 exacerbated ventricular dysfunction and remodeling, with enhanced fibrosis of non-infarct myocardium with further MMP-2 activation. CONCLUSIONS: Both pre- and post-MI treatments with AdTNFR1 were deleterious in a mouse MI model. Thus, TNF-alpha may play not only toxic but also protective roles in MI.  相似文献   

7.
Several epidemiologic studies have reported that body iron status and dietary iron intake are related to an increased risk of acute myocardial infarction (MI). However, it is completely unknown whether dietary iron reduction impacts the development of left ventricular (LV) remodeling after MI. Here, we investigate the effect of dietary iron restriction on the development of LV remodeling after MI in an experimental model. MI was induced in C57BL/6 J mice (9–11 weeks of age) by the permanent ligation of the left anterior descending coronary artery (LAD). At 2 weeks after LAD ligation, mice were randomly divided into two groups and were given a normal diet or an iron-restricted diet for 4 weeks. Sham operation without LAD ligation was also performed as controls. MI mice exhibited increased LV dilatation and impaired LV systolic function that was associated with cardiomyocyte hypertrophy and interstitial fibrosis in the remote area, as compared with the controls at 6 weeks after MI. In contrast, dietary iron restriction attenuated LV dilatation and impaired LV systolic function coupled to cardiomyocyte hypertrophy and interstitial fibrosis in the remote area. Importantly, cardiac expression of cellular iron transport proteins, transferrin receptor 1 and divalent metal transporter 1 was increased in the remote area of MI mice compared with the controls. Dietary iron restriction attenuated the development of LV remodeling after MI in mice. Cellular iron transport might play a role in the pathophysiological mechanism of LV remodeling after MI.  相似文献   

8.
OBJECTIVES: The goal of this study was to compare the effects of the vasopeptidase inhibitor omapatrilat and the angiotensin-converting enzyme inhibitor (ACEI) captopril in the postmyocardial infarction (MI) rat model. BACKGROUND; The cardioprotective effects of ACEIs after MI are thought to be partially due to an increase in bradykinin (BK). Vasopeptidase inhibitors inhibit both ACE and neutral endopeptidase (NEP), further reduce BK metabolism and increase natriuretic peptides, which may result in better cardioprotective effects than with ACEIs after MI. METHODS: Myocardial infarction was induced in 514 Wistar male rats by ligation of the anterior coronary artery. Rats surviving 4 h after MI (n = 282) were assigned to omapatrilat (40 or 80 mg/kg/day), captopril (160 mg/kg/day) or no treatment. After 56 days, neurohumoral, hemodynamic, ventricular remodeling, morphometry, immunohistochemistry and cardiac cytokine expression were measured. RESULTS: Omapatrilat and captopril resulted in similarly improved survival, cardiac hemodynamics and reduced cardiac fibrosis and hypertrophy after MI. The pattern of left ventricular (LV) remodeling differed, omapatrilat causing less attenuation of the rightward shift of the LV pressure-volume relation at lower filling pressures than captopril. Both interventions reduced messenger ribonucleic acid expression of the profibrotic cytokine transforming growth factor-beta(1); neither effected the anti-inflammatory cytokine interleukin-10, and only captopril reduced the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). Expression of TNF-alpha was in cardiomyocytes. Both medications reduced circulating endothelin-1, angiotensin II and catecholamines, but only omapatrilat increased atrial natriuretic peptides. CONCLUSIONS: This study indicates that both omapatrilat and captopril markedly improve post-MI survival, cardiac function and cardiac remodeling in the rat. It would appear that the addition of NEP inhibition to those of ACEIs does not result in significant further benefit after MI.  相似文献   

9.
Extensive myocardial remodeling occurs after transmural myocardial infarction (MI). The infarcted myocardium is being replaced by scar tissue after gradual resorption of the necrotic tissue. The remodeling process involves both synthesis and degradation of collagens as major components of the extracellular matrix (ECM). In the present study we have analyzed the time-dependent changes of the processes related to this fibrosis in the infarct area and in the non-infarcted left ventricle (LV) six hours to 82 days after occlusion of the left anterior descending coronary artery (LAD) in rats. We also examined whether changes occurred in the expression pattern of the transforming growth factor (TGF) beta isoforms, since this cytokine is known as powerful inductor of fibrosis. Elevation in colligin expression preceded the pronounced increase in mRNA expression of both type I and type III collagen after MI from day three onwards. The maximal increase in colligin protein in the infarct area coincided with the most pronounced expression of collagen I and collagen III mRNA expression. Also, the expression and activity of matrix metalloproteinases (MMPs) and of tissue inhibitor of matrix metalloproteinase (TIMP)-2 mRNA were increased predominantly in the infarct area. TGF beta(1)and TGF-beta(2)expression increased within the first days after MI, whereas TGF-beta(3)expression was elevated predominantly in the infarct area. This pronounced increase in TGF-beta(3)persisted up to 82 days and correlated positively with the parameters of ECM metabolism. Thus, the scar formation is an ongoing dynamic process in which TGF-beta(3)seems to play an active role in the complex ventricular remodeling.  相似文献   

10.
The activity of TIMP-3, a natural tissue inhibitor of matrix metalloproteinases (MMPs), is decreased in the failing heart. This study evaluated the response to coronary ligation of cardiac structure, function, and matrix remodeling in wild-type (WT) mice, and those deficient in TIMP-3 (timp-3(-/-)). The coronary artery was ligated in timp-3(-/-) and age-matched WT mice. At various time points over the following 28-day period, left ventricular structure and function (by echocardiography, pressure-volume measurements and morphometry), MMP levels and activity, blood vessel density, cell proliferation, apoptosis, matrix structure, and inflammatory cytokine levels were assessed in both groups. After ligation, mortality was significantly greater in timp-3(-/-) than in WT mice. Morphometry and echocardiography demonstrated no difference in heart size or function prior to ligation; however, the progression of left ventricular systolic dysfunction was accelerated in timp-3(-/-) mice at 7, 14 and 28 days after infarction compared to WT controls. Left ventricular dilatation, gelatinase MMP activity, and TNF-alpha levels were significantly greater in timp-3(-/-) than in WT mice at different times after ligation. By histological evaluation, timp-3(-/-) mice exhibited significantly increased blood vessel density, cell proliferation, and apoptosis in the infarct area, and reduced collagen content in the viable remote myocardium compared to WT mice at 7 and 14 days after ligation. TIMP-3 deficiency accelerated maladaptive cardiac remodeling after a myocardial infarction by promoting matrix degradation and inflammatory cytokine expression. This study supports further investigations to determine whether such remodeling could be reduced by augmenting TIMP-3 expression in the infarcted myocardium.  相似文献   

11.
目的阐明心脏肥大细胞对心肌梗死后心功能的影响,探讨心脏肥大细胞在心肌梗死心室重构中的作用。方法结扎左前降支建立雄性SD大鼠心肌梗死模型。术前5天随机分成假手术组(n=6),心肌梗死模型组(n=8),肥大细胞稳定剂色甘酸钠治疗组(n=7)。术前3天及术后2周和4周行心脏超声检测心功能。术后4周称取左心室、右心室湿重/体重,HE染色观察病理组织学变化,甲苯胺蓝法检测肥大细胞密度。结果心肌梗死后第2周,与假手术组相比,模型组和治疗组左心室射血分数(LVEF)明显下降(P<0.01)。虽然模型组和治疗组心脏扩大,但三组之间差异无显著性。心肌梗死后第4周,与假手术组相比,模型组和治疗组左心室舒张期末容积(EDV)明显增大(P<0.05)。与模型组相比,治疗组EDV差异无显著性(P>0.05),但LVEF明显增加(P<0.01),左心室肥厚指数下降(P<0.05),心外膜(主要是梗死区)肥大细胞密度明显下降(P<0.01)。且肥大细胞密度与LVEF呈负相关(P<0.01),与左心室肥厚指数呈正相关(P<0.05)。结论肥大细胞直接参与了心肌梗死后的心室重构。肥大细胞脱颗粒的长期抑制明显提高心脏的心搏量,减轻左心室心肌肥厚,进而改善心功能。  相似文献   

12.
OBJECTIVES: Endothelin A (ETA) receptor blockade started early after myocardial infarction (MI) promotes adverse left ventricular (LV) dilatation. We tested the hypothesis that inhibition of ETA receptors during the early phase of healing affects collagen synthesis and accumulation, and induces expansion of infarcted myocardium. METHODS: Starting 3 h after coronary ligation, female Wistar rats were treated with the selective ETA receptor antagonist LU 135252 (30 mg/kg body wt/day) or placebo. A period of 7 days after MI, hemodynamic, morphometric and biochemical studies were performed. RESULTS: ET(A) receptor blockade enhanced infarct expansion index and decreased LV systolic function. Infarct scar of LU 135252-treated rats displayed decreased gene expression of fibrillar type I/III collagens and of transforming growth factor-beta(1) (TGF-beta(1)). Collagen content in the infarct scar and border regions was lower after ETA inhibition. In addition, Western blot analysis revealed, after ETA receptor blockade, enhanced matrix metalloproteinases MMP-13, and MMP-2 expression in the infarcted LV myocardium. CONCLUSIONS: These data demonstrate that endothelin stimulates collagen accumulation at the site of infarction. Decreased collagen and TGF-beta(1) gene expression, associated with enhanced infarct expansion and MMP up-regulation likely contributes to ETA receptor blockade-mediated deleterious effects on ventricular remodeling after infarction.  相似文献   

13.
Left ventricular remodeling that occurs after myocardial infarction (MI) and pressure overload is generally accepted as a determinant of the clinical course of heart failure. The molecular mechanism of this process, however, remains to be elucidated. Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that plays an important role in stress-induced apoptosis. We used ASK1 knockout mice (ASK-/-) to test the hypothesis that ASK1 is involved in development of left ventricular remodeling. ASK-/- hearts showed no morphological or histological defects. Echocardiography and cardiac catheterization revealed normal global structure and function. Left ventricular structural and functional remodeling were determined 4 weeks after coronary artery ligation or thoracic transverse aortic constriction (TAC). ASK-/- had significantly smaller increases in left ventricular end-diastolic and end-systolic ventricular dimensions and smaller decreases in fractional shortening in both experimental models compared with WT mice. The number of terminal deoxynucleotidyl transferase biotin-dUDP nick end-labeling-positive myocytes after MI or TAC was decreased in ASK-/- compared with that in WT mice. Overexpression of a constitutively active mutant of ASK1 induced apoptosis in isolated rat neonatal cardiomyocytes, whereas neonatal ASK-/- cardiomyocytes were resistant to H2O2-induced apoptosis. An in vitro kinase assay showed increased ASK1 activity in heart after MI or TAC in WT mice. Thus, ASK1 plays an important role in regulating left ventricular remodeling by promoting apoptosis.  相似文献   

14.
Pharmacological renin inhibition with aliskiren is an effective antihypertensive drug treatment, but it is currently unknown whether aliskiren is able to attenuate cardiac failure independent of its blood pressure-lowering effects. We investigated the effect of aliskiren on cardiac remodeling, apoptosis, and left ventricular (LV) function after experimental myocardial infarction (MI). C57J/bl6 mice were subjected to coronary artery ligation and were treated for 10 days with vehicle or aliskiren (50 mg/kg per day via an SC osmopump), whereas sham-operated animals served as controls. This dose of aliskiren, which did not affect systemic blood pressure, improved systolic and diastolic LV function, as measured by the assessment of pressure-volume loops after MI. Furthermore, after MI LV dilatation, cardiac hypertrophy and lung weights were decreased in mice treated with aliskiren compared with placebo-treated mice after MI. This was associated with a normalization of the mitogen-activated protein kinase P38 and extracellular signal-regulated kinases 1/2, AKT, and the apoptotic markers bax and bcl-2 (all measured by Western blots), as well as the number of TUNEL-positive cells in histology. LV dilatation, as well as the associated upregulation of gene expression (mRNA abundance) and activity (by zymography) of the cardiac metalloproteinase 9 in the placebo group after MI, was also attenuated in the aliskiren-treated group. Aliskiren improved LV dysfunction after MI in a dose that did not affect blood pressure. This was associated with the amelioration of cardiac remodelling, hypertrophy, and apoptosis.  相似文献   

15.
Persistent inflammatory responses participate in the pathogenesis of adverse ventricular remodeling after myocardial infarction (MI). We hypothesized that regulatory T (Treg) cells modulate inflammatory responses, attenuate ventricular remodeling and subsequently improve cardiac function after MI. Acute MI was induced by ligation of the left anterior descending coronary artery in rats. Infiltration of Foxp3(+) Treg cells was detected in the infarcted heart. Expansion of Treg cells in vivo by means of adoptive transfer as well as a CD28 superagonistic antibody (JJ316) resulted in an increased number of Foxp3(+) Treg cells in the infarcted heart. Subsequently, rats with MI showed improved cardiac function following Treg cells transfer or JJ316 injection. Interstitial fibrosis, myocardial matrix metalloproteinase-2 activity and cardiac apoptosis were attenuated in the rats that received Treg cells transfer. Infiltration of neutrophils, macrophages and lymphocytes as well as expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β were also significantly decreased, and the CD8(+) cardiac-specific cytotoxic T lymphocyte response was inhibited. Expression of interleukin (IL)-10 in the heart, however, was increased. Additional studies in vitro indicated that Treg cells directly protect neonatal rat cardiomyocytes against LPS-induced apoptosis, and this protection depends on the cell-cell contact and IL-10 expression. Furthermore, Treg cells inhibited proinflammatory cytokines production by cardiomyocytes. These data demonstrate that Treg cells serve to protect against adverse ventricular remodeling and contribute to improve cardiac function after myocardial infarction via inhibition of inflammation and direct protection of cardiomyocytes.  相似文献   

16.
OBJECTIVES: The aim of the present study was to determine whether streptozotocin (STZ)-induced hyperglycemia exacerbates progressive left ventricular (LV) dilation and dysfunction after myocardial infarction (MI). BACKGROUND: Diabetes mellitus (DM) adversely affects the outcomes in patients with MI. However, it is unknown whether DM can directly affect the development of post-MI LV remodeling and failure. METHODS: Male mice were injected intraperitoneally with STZ (200 mg/kg; DM group) or vehicle only. At two weeks, MI was created in the STZ-injected (DM+MI group) or vehicle-injected mice (MI group) by left coronary artery ligation, and they were followed up for another four weeks. RESULTS: Survival during six weeks was significantly lower in the DM+MI versus MI group (25% vs. 71%; p < 0.01), despite a similar infarct size (60 +/- 2% vs. 61 +/- 2%; p = NS). Echocardiography after two weeks of ligation showed LV dilation and dysfunction with MI, both of which were exaggerated in the DM+MI group. Likewise, LV end-diastolic pressure and lung weight were increased in mice with MI, and this increase was enhanced in the DM+MI group. The myocyte cross-sectional area in the non-infarcted LV increased to a similar degree in the DM+MI and MI groups, whereas the collagen volume fraction was greater in the DM+MI group. Deoxyribonucleic acid laddering was greater in the DM+MI group. CONCLUSIONS: Hyperglycemia decreased survival and exaggerated LV remodeling and failure after MI by increasing interstitial fibrosis and myocyte apoptosis. Diabetes mellitus could be a risk factor for heart failure, independent of coronary artery lesions.  相似文献   

17.
Acute phosphodiesterase 5A inhibition by sildenafil or EMD360527/5 promoted profound inhibition of the cardiac Na(+)/H(+) exchanger (NHE-1), detected by the almost null intracellular pH recovery from an acute acid load (ammonium prepulse) in isolated papillary muscles from Wistar rats. Inhibition of phosphoglycerate kinase-1 (KT5823) restored normal NHE-1 activity, suggesting a causal link between phosphoglycerate kinase-1 increase and NHE-1 inhibition. We then tested whether the beneficial effects of NHE-1 inhibitors against the deleterious postmyocardial infarction (MI) remodeling can be detected after sildenafil-mediated NHE-1 inhibition. MI was induced by left anterior descending coronary artery ligation in Wistar rats, which were randomized to placebo or sildenafil (100 mg kg(-1) day(-1)) for 6 weeks. Sildenafil significantly increased left ventricular phosphoglycerate kinase-1 activity in the post-MI group without affecting its expression. MI increased heart weight/body weight ratio, left ventricular myocyte cross-sectional area, interstitial fibrosis, and brain natriuretic peptide and NHE-1 expression. Sildenafil blunted these effects. Neither a significant change in infarct size nor a change in arterial or left ventricular systolic pressure was detected after sildenafil. MI decreased fractional shortening and the ratio of the maximum rate of rise of LVP divided by the pressure at the moment such maximum occurs, effects that were prevented by sildenafil. Intracellular pH recovery after an acid load was faster in papillary muscles from post-MI hearts (versus sham), whereas sildenafil significantly inhibited NHE-1 activity in both post-MI and sildenafil-treated sham groups. We conclude that increased phosphoglycerate kinase-1 activity after acute phosphodiesterase 5A inhibition blunts NHE-1 activity and protects the heart against post-MI remodeling and dysfunction.  相似文献   

18.
Although plasma levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are elevated early after myocardial infarction (MI), the significance is not fully understood. We therefore investigated the function of natriuretic peptides after induction of MI in knockout (KO) mice lacking the natriuretic peptide receptor guanylyl cyclase-A, the receptor for ANP and BNP. KO and wild-type (WT) mice were subjected to left coronary artery ligation and then followed up for 4 weeks. Irrespective of genotype, almost all deaths occurred within 1 week after induction of MI. KO mice showed significantly higher mortality because of a higher incidence of acute heart failure, which was associated with diminished water and sodium excretion and with higher cardiac levels of mRNAs encoding ANP, BNP, transforming growth factor-beta1, and type I collagen. By 4 weeks after infarction, left ventricular remodeling, including myocardial hypertrophy and fibrosis, and impairment of left ventricular systolic function were significantly more severe in KO than WT mice. Notably, the enhanced myocardial fibrosis seen in KO mice was virtually absent in infarcted double-KO mice, lacking guanylyl cyclase-A and angiotensin II type 1a receptors, although there was no improvement in survival and no attenuation of cardiac hypertrophy. Thus, guanylyl cyclase-A activation by endogenous cardiac natriuretic peptides protects against acute heart failure and attenuates chronic cardiac remodeling after MI. These beneficial effects are mediated partly through inhibition of the renin-angiotensin system (RAS), although RAS-independent protective actions of guanylyl cyclase-A are also suggested.  相似文献   

19.
Effect of testosterone on post-myocardial infarction remodeling and function   总被引:12,自引:0,他引:12  
BACKGROUND: Men and women are differently affected by coronary artery disease, suggesting an important role of sex steroids. Moreover, testosterone (T) treatment is increasingly used in elderly males. Therefore, we examined effects of chronic anabolic T administration on left ventricular (LV) remodeling after myocardial infarction (MI). METHODS: Adult male rats were treated with intramuscular placebo, testosterone undecanoate (T), or were orchiectomized. After 2 weeks, animals underwent sham-operation (sham) or left coronary artery ligation. Left ventricular remodeling and function was assessed by serial magnetic resonance imaging (MRI) at weeks 2 and 8 and hemodynamic investigation at week 8. RESULTS: In sham operated animals T administration increased serum T levels and led to cardiac hypertrophy, but not to an upregulation of ANP mRNA. The alpha/beta-MHC ratio was significantly higher after T treatment due to an increase in alpha-MHC. As a potential mechanism for this "physiologic" form of hypertrophy, IGF-1 mRNA expression was significantly increased in T treated animals. After coronary artery ligation, infarct size and mortality were similar among the groups. Left ventricular hypertrophy was enhanced by T treatment. However, in vivo LV end-diastolic pressure and wall stress were decreased by T, whereas other hemodynamic parameters (mean arterial pressure, cardiac output, etc.) remained unchanged. CONCLUSION: Chronic anabolic T treatment led to a specific "physiologic" pattern of myocardial hypertrophy with a significant increase in LV weight, but without differences in ANP and with an upregulation in alpha/beta-MHC, possibly mediated by IGF-1. Testosterone treatment had no detrimental effects following MI. Reduced wall stress and LVEDP may even improve long-term outcome.  相似文献   

20.
Nitric oxide (NO) is an important modulator of cardiac performance and left ventricular (LV) remodeling after myocardial infarction (MI). We tested the effect of cardiomyocyte-restricted overexpression of one NO synthase isoform, NOS3, on LV remodeling after MI in mice. LV structure and function before and after permanent LAD coronary artery ligation were compared in transgenic mice with cardiomyocyte-restricted NOS3 overexpression (NOS3-TG) and their wild-type littermates (WT). Before MI, systemic hemodynamic measurements, echocardiographic assessment of LV fractional shortening (FS), heart weight, and myocyte width (as assessed histologically) did not differ in NOS3-TG and WT mice. The inotropic response to graded doses of isoproterenol was significantly reduced in NOS3-TG mice. One week after LAD ligation, the infarcted fraction of the LV did not differ in WT and NOS3-TG mice (34+/-4% versus 36+/-12%, respectively). Four weeks after MI, however, end-systolic LVID was greater, and fractional shortening and maximum and minimum rates of LV pressure development were less in WT than in NOS3-TG mice. LV weight/body weight ratio was greater in WT than in NOS3-TG mice (5.3+/-0.2 versus 4.6+/-0.5 mg/g; P<0.01). Myocyte width in noninfarcted myocardium was greater in WT than in NOS3-TG mice (18.8+/-2.0 versus 16.6+/-1.6 microm; P<0.05), whereas fibrosis in noninfarcted myocardium was similar in both genotypes. Cardiomyocyte-restricted overexpression of NOS3 limits LV dysfunction and remodeling after MI, in part by decreasing myocyte hypertrophy in noninfarcted myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号