首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although there are ever increasing reports of extraintestinal human infections caused by Aeromonads, in both immunocompromised and immunocompetent patients, respiratory tract infections remain uncommon. We describe a case of aspiration pneumonia in an immunocompetent patient with multiple sclerosis, caused by a community acquired, multidrug resistant strain of Aeromonas hydrophila sensitive only to meropenem. The case highlights the clinical significance of Aeromonas hydrophila as a respiratory pathogen, as well as the community origin of multidrug resistance and the utility of newer carbapenems in such cases.  相似文献   

2.
Bordetella bronchiseptica is closely related to Bordetella pertussis, which produces respiratory disease primarily in mammals other than humans. However, its importance as a human pathogen is being increasingly recognized. Although a large amount of research on Bordetella has been generated regarding protein virulence factors, the participation of the surface lipopolysaccharide (LPS) during B. bronchiseptica infection is less understood. To get a better insight into this matter, we constructed and characterized the behavior of an LPS mutant with the deepest possible rough phenotype. We generated the defective mutant B. bronchiseptica LP39 on the waaC gene, which codes for a heptosyl transferase involved in the biosynthesis of the core region of the LPS molecule. Although in B. bronchiseptica LP39 the production of the principal virulence determinants adenylate cyclase-hemolysin, filamentous hemagglutinin, and pertactin persisted, the quantity of the two latter factors was diminished, with the levels of pertactin being the most greatly affected. Furthermore, the LPS of B. bronchiseptica LP39 did not react with sera obtained from mice that had been infected with the parental strain, indicating that this defective LPS is immunologically different from the wild-type LPS. In vivo experiments demonstrated that the ability to colonize the respiratory tract is reduced in the mutant, being effectively cleared from lungs within 5 days, whereas the parental strain survived at least for 30 days. In vitro experiments have demonstrated that, although B. bronchiseptica LP39 was impaired for adhesion to human epithelial cells, it is still able to survive within the host cells as efficiently as the parental strain. These results seem to indicate that the deep rough form of B. bronchiseptica LPS cannot represent a dominant phenotype at the first stage of colonization. Since isolates with deep rough LPS phenotype have already been obtained from human B. bronchiseptica chronic infections, the possibility that this phenotype arises as a consequence of selection pressure within the host at a late stage of the infection process is discussed.  相似文献   

3.
While most vaccines consisting of killed bacteria induce high serum antibody titers, they do not always confer protection as effective as that induced by infection, particularly against mucosal pathogens. Bordetella bronchiseptica is a gram-negative respiratory pathogen that is endemic in many nonhuman mammalian populations and causes substantial disease in a variety of animals. At least 14 different live attenuated vaccines against this pathogen are available for use in a variety of livestock and companion animals. However, there are few published data on the makeup or efficacy of these vaccines. Here we report the use of a genetically engineered double mutant of B. bronchiseptica, which lacks adenylate cyclase and type III secretion, as a vaccine candidate. This strain is safe at high doses, even for highly immunocompromised animals, and induces immune responses that are protective against highly divergent B. bronchiseptica strains, preventing colonization in the lower respiratory tract and decreasing the bacterial burden in the upper respiratory tract. This novel B. bronchiseptica vaccine candidate induces strong local immunity while eliminating damage caused by the two predominant cytotoxic mechanisms.  相似文献   

4.
To efficiently colonize and persist in the lower respiratory tract, bacteria must survive multiple host immune mechanisms. Bordetella bronchiseptica is a gram-negative respiratory pathogen that naturally infects mice and persists in the lower respiratory tract for up to 49 days postinoculation. In this work, we examined the effect of mutation of the pagP gene on the persistence of B. bronchiseptica in the lower respiratory tract of mice. The pagP gene encodes a palmitoyl transferase that is responsible for the addition of a palmitoyl group to the lipid A region of B. bronchiseptica lipopolysaccharide. Data presented here confirm that a B. bronchiseptica deltapagP mutant demonstrates defective persistence in the lower respiratory tract of wild-type mice. We hypothesized that the defective persistence of the B. bronchiseptica deltapagP mutant was due to an increased susceptibility of this mutant to a host immune response. In vivo data indicate that both B cells and the complement component C3 are required for the reduced bacterial numbers of the deltapagP mutant on day 14 postinoculation. In addition, an in vitro complement killing assay demonstrated that B. bronchiseptica exhibits pagP-dependent resistance to antibody-mediated complement killing at low concentrations of immune serum. Taken together, these results suggest that pagP is required for B. bronchiseptica to resist antibody-mediated complement lysis during respiratory infection.  相似文献   

5.
Human infections associated with Bordetella bronchiseptica.   总被引:16,自引:0,他引:16       下载免费PDF全文
This study examines the potential of Bordetella bronchiseptica to act as a human pathogen. After encountering two patients from whom B. bronchiseptica was isolated, we searched the literature and found 23 reports in which a human infection was reported in association with B. bronchiseptica. As a basis for evaluating these cases, we summarize the literature about the current microbiological status of B. bronchiseptica, the pathology and pathogenic mechanisms associated with the microorganism, and the likelihood of it acting as a commensal or colonizer. From this review we conclude that B. bronchiseptica has been rarely isolated from humans despite their considerable exposure to animal sources. Evidence suggests that B. bronchiseptica may be rarely encountered as a commensal or colonizer of the respiratory tract of humans and rarely in association with infection. When found as a probable pathogen, most infections have been respiratory tract in origin and have occurred in severely compromised hosts.  相似文献   

6.
7.
Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica are closely related subspecies that cause respiratory tract infections in humans and other mammals and express many similar virulence factors. Their lipopolysaccharide (LPS) molecules differ, containing either a complex trisaccharide (B. pertussis), a trisaccharide plus an O-antigen-like repeat (B. bronchiseptica), or an altered trisaccharide plus an O-antigen-like repeat (B. parapertussis). Deletion of the wlb locus results in the loss of membrane-distal polysaccharide domains in the three subspecies of bordetellae, leaving LPS molecules consisting of lipid A and core oligosaccharide. We have used wlb deletion (Deltawlb) mutants to investigate the roles of distal LPS structures in respiratory tract infection by bordetellae. Each mutant was defective compared to its parent strain in colonization of the respiratory tracts of BALB/c mice, but the location in the respiratory tract and the time point at which defects were observed differed significantly. Although the Deltawlb mutants were much more sensitive to complement-mediated killing in vitro, they displayed similar defects in respiratory tract colonization in C5(-/-) mice compared with wild-type (wt) mice, indicating that increased sensitivity to complement-mediated lysis is not sufficient to explain the in vivo defects. B. pertussis and B. parapertussis Deltawlb mutants were also defective compared to wt strains in colonization of SCID-beige mice, indicating that the defects were not limited to interactions with adaptive immunity. Interestingly, the B. bronchiseptica Deltawlb strain was defective, compared to the wt strain, in colonization of the respiratory tracts of BALB/c mice beginning 1 week postinoculation but did not differ from the wt strain in its ability to colonize the respiratory tracts of B-cell- and T-cell-deficient mice, suggesting that wlb-dependent LPS modifications in B. bronchiseptica modulate interactions with adaptive immunity. These data show that biosynthesis of a full-length LPS molecule by these three bordetellae is essential for the expression of full virulence for mice. In addition, the data indicate that the different distal structures modifying the LPS molecules on these three closely related subspecies serve different purposes in respiratory tract infection, highlighting the diversity of functions attributable to LPS of gram-negative bacteria.  相似文献   

8.
The genomes of three closely related bordetellae are currently being sequenced, thus providing an opportunity for comparative genomic approaches driven by an understanding of the comparative biology of these three bacteria. Although the other strains being sequenced are well studied, the strain of Bordetella parapertussis chosen for sequencing is a recent human clinical isolate (strain 12822) that has yet to be characterized in detail. This investigation reports the first phenotypic characterization of this strain, which will likely become the prototype for this species in comparison with the prototype strains of B. pertussis (Tohama I), B. bronchiseptica (RB50), and other isolates of B. parapertussis. Multiple in vitro and in vivo assays distinguished each species. B. parapertussis was more similar to B. bronchiseptica than to B. pertussis in many assays, including in BvgS signaling characteristics, presence of urease activity, regulation of urease expression by BvgAS, virulence in the respiratory tracts of immunocompromised mice, induction of anti-Bordetella antibodies, and serum antimicrobial resistance. In other assays, B. parapertussis was distinct from all other species (in pigment production) or more similar to B. pertussis (by lack of motility and cytotoxicity to a macrophage-like cell line). These results begin to provide phenotypes that can be related to genetic differences identified in the genomic sequences of bordetellae.  相似文献   

9.
We have studied the interaction between the respiratory pathogen Bordetella bronchiseptica and murine spleen dendritic cells, important antigen-presenting cells that are found in the airway epithelium. Wild-type B. bronchiseptica 5376 attached very efficiently to dendritic cells, whereas the bvg mutant ATCC 10580, wild-type strain BB7865, and its spontaneous delta bvgS mutant BB7866 bound less efficiently. However, all tested B. bronchiseptica strains were able to invade dendritic cells and survive intracellularly for at least 72 h. These results suggest that bvg-independent or bvg-downregulated products are involved in the uptake and intracellular survival. Transmission electron microscopic analysis revealed that bacteria grew and replicated intracellularly and were present in typical phagosomes, which fused with lysosomes during the initial infection period. However, in later infection stages some bacteria seemed to escape into an unfused endocytic compartment, where individual bacteria were tightly surrounded by a membrane. The in vitro interaction of B. bronchiseptica with dendritic cells reported here may be relevant to natural infections caused by this organism that lead to chronicity or an altered immune response.  相似文献   

10.
Lipopolysaccharide (LPS), as the major surface molecule of gram-negative bacteria, interacts with the host in complex ways, both inducing and protecting against aspects of inflammatory and adaptive immunity. The membrane-distal repeated carbohydrate structure of LPS, the O antigen, can prevent antibody functions and may vary as a mechanism of immune evasion. Genes of the wbm locus are required for the assembly of O antigen on the animal pathogen Bordetella bronchiseptica and the human pathogen B. parapertussis. However, the important human pathogen B. pertussis lacks these genes and a number of in vitro and in vivo characteristics associated with O antigen in other organisms. To determine the specific functions of O antigen in these closely related Bordetella subspecies, we compared wbm deletion (Deltawbm) mutants of B. bronchiseptica and B. parapertussis in a variety of assays relevant to natural respiratory tract infection. Complement was not activated or depleted by wild-type bordetellae expressing O antigen, but both Deltawbm mutants activated complement and were highly sensitive to complement-mediated killing in vitro. Although the O-antigen structures appear to be substantially similar, the two mutants differed strikingly in their defects within the respiratory tract. The B. parapertussis Deltawbm mutant was severely defective in colonization of the tracheas and lungs of mice, while the B. bronchiseptica Deltawbm mutant showed almost no defect. While in vitro characteristics such as serum resistance may be attributable to O antigen directly, the role of O antigen during infection appears to be more complex, possibly involving factors differing among the closely related bordetellae or different interactions between each one and its host.  相似文献   

11.
Detection of Bordetella bronchiseptica by the polymerase chain reaction.   总被引:6,自引:0,他引:6  
Polymerase chain reaction (PCR) assays were developed that enabled not only discriminative detection of three Bordetella species, B. pertussis, B. parapertussis, and B. bronchiseptica (Bspp PCR), but also specific detection of B. bronchiseptica (Bb PCR). An upstream sequence of the flagellin gene was used as a target DNA region. This sequence contained differences in B. pertussis, B. parapertussis, and B. bronchiseptica DNA. These species could then be differentiated using two different sets of primers, Bspp and Bb. When oligonucleotide Bspp primers were used, PCR products were obtained from the three species of Bordetella. A fragment of the expected size (164 bp) was amplified using B. bronchiseptica and B. parapertussis DNA, but a fragment with a distinct molecular weight was amplified with B. pertussis DNA (195 bp). This Bspp PCR was specific and sensitive, but it could not differentiate between B. parapertussis and B. bronchiseptica. When Bb primers were used, a 237-bp PCR product was detected only from B. bronchiseptica DNA. No PCR products were identified after Bb PCR amplification of DNAs either from B. parapertussis isolates or B. pertussis isolates, nor from other respiratory pathogen DNAs tested. This second PCR assay had a sensitivity limit of less than 10 organisms of B. bronchiseptica after detection with a specific probe. The specificity and the sensitivity of the fla PCR assay were evaluated with purified DNA, as was its capacity for detecting the bacteria in human clinical samples and in lungs of infected mice.  相似文献   

12.
Bordetella bronchiseptica is a frequent cause of respiratory infections in animals but rarely causes disease in humans. We describe a patient with B. bronchiseptica pneumonia and bacteremia that developed following bone marrow transplantation. B. bronchiseptica infection persisted despite antimicrobial therapy and may have progressed because of the combined effects of the patient's underlying immunosuppression and the antimicrobial antagonism between doxycycline and ciprofloxacin.  相似文献   

13.
Reported here is a case of Bacillus cereus pneumonia that occurred in a patient with acute lymphoblastic leukemia. The presentation was severe, essentially marked by respiratory distress and pleuritic chest pain. Classic empirical treatment initiated for febrile neutropenia did not cover this rare pathogen and appropriate therapy was therefore delayed. B. cereus is most often a culture contaminant, but it can also be responsible for self-limited gastrointestinal intoxication and, more rarely, severe systemic diseases. Virulence in the case of systemic disease is attributed to tissue necrosis mediated by toxin release. B. cereus pneumonia, as described in the English-language literature, mainly affects immunocompromised patients and most often has a fatal outcome. Thus, the identification of B. cereus in clinical specimens of severely ill immunocompromised patients should lead physicians to question its clinical significance.  相似文献   

14.
Adenovirus is a common cause of acute upper respiratory tract infection and rarely causes respiratory failure or septic shock in immunocompetent patients. Severe disease is confined to immunocompromised patients. Human bocavirus (HBoV) is known as the fourth most common virus in respiratory samples from healthy subjects. In patients with respiratory complaints, it can be found alone or, more often, in combination with other viruses known to cause respiratory complaints. A well-documented fatal case of HBoV and adenovirus pneumonia with myocarditis in an immunocompetent child is described.  相似文献   

15.
Bordetella holmesii is a well-described pathogen in asplenic and immunocompromised patients. Here we report the first two published cases of septic arthritis caused by B. holmesii documented in apparently immunocompetent patients and unaccompanied by bacteremia.  相似文献   

16.
Bordetella bronchiseptica is a pathogen of laboratory, domestic, and wild animals and sometimes of humans. In the present study some characteristics of the virulence of B. bronchiseptica isolates of different origin were studied. All isolates had similar phenotypes, similar bacteriological characters, and synthesized adenylate cyclase-hemolysin, filamentous hemagglutinin and pertactin but not pertussis toxin. These isolates, however, differed in their ability to express dermonecrotic toxin and to cause a lethal infection, but no correlation was found with the human or animal origin of the isolates. The fact that the most virulent isolate did not express dermonecrotic toxin suggests that this toxin does not play an important role in the virulence of the bacteria in the murine model. After infection with virulent B. bronchiseptica a very early synthesis and a persistence of anti-adenylate cyclase-hemolysin and anti-filamentous hemagglutinin antibodies were observed in the sera of infected mice, suggesting a persistence of the bacteria or of its antigens. B. bronchiseptica adenylate cyclase-hemolysin was purified and was shown to be a major protective antigen against B. bronchiseptica infection. Furthermore, we showed that its immunological and protective properties were different from that of B. pertussis adenylate cyclase-hemolysin, confirming that Bordetella species are immunologically different.  相似文献   

17.
Mycobacterium avium is an opportunistic pathogen that infects individuals suffering from chronic lung disease or immunocompromised patients such as AIDS patients. Here we show that a highly virulent isolate of M. avium proliferated as extensively in T cell deficient as in immunocompetent mice. T cell deficient mice allowed a progressive growth of a less virulent AIDS-derived isolate of M. avium while immunocompetent mice arrested the growth of this isolate. Adoptive transfer of T cell enriched spleen cells between congenic strains of mice differing at the Bcg/Ity/Lsh locus showed that only naturally resistant BALB/c.Bcgr (C.D2) mice infected with the highly virulent strain of M. avium or the naturally susceptible BALB/c mice infected with the lower virulence isolate developed protective T cells and that these cells only mediated protection when transferred to naturally susceptible, but not to naturally resistant, mice. Both strains of M. avium proliferated in bone marrow-derived macrophages cultured in vitro and they were both susceptible to the bacteriostatic effects induced in the macrophages by crude lymphokines produced by concanavalin A-stimulated spleen cells.  相似文献   

18.
19.
The genus Bordetella includes a group of closely related mammalian pathogens that cause a variety of respiratory diseases in a long list of animals (B. bronchiseptica) and whooping cough in humans (B. pertussis and B. parapertussis). While past research has examined how these pathogens are eliminated from the lower respiratory tract, the host factors that control and/or clear the bordetellae from the upper respiratory tract remain unclear. We hypothesized that immunoglobulin A (IgA), the predominant mucosal antibody isotype, would have a protective role against these mucosal pathogens. IgA(-/-) mice were indistinguishable from wild-type mice in their control and clearance of B. pertussis or B. parapertussis, suggesting that IgA is not crucial to immunity to these organisms. However, na?ve and convalescent IgA(-/-) mice were defective in reducing the numbers of B. bronchiseptica in the upper respiratory tract compared to wild-type controls. Passively transferred serum from convalescent IgA(-/-) mice was not as effective as serum from convalescent wild-type mice in clearing this pathogen from the tracheae of naive recipient mice. IgA induced by B. bronchiseptica infection predominantly recognized lipopolysaccharide-containing O-antigen, and antibodies against O-antigen were important to bacterial clearance from the trachea. Since an IgA response contributes to the control of B. bronchiseptica infection of the upper respiratory tract, immunization strategies aimed at inducing B. bronchiseptica-specific IgA may be beneficial to preventing the spread of this bacterium among domestic animal populations.  相似文献   

20.
Human bocavirus (HBoV) is a parvovirus that was discovered only a decade ago and currently includes four genotypes. HBoV-1 is predominantly found in the respiratory tract, whereas HBoV-2, HBoV-3, and HBoV-4 are mainly detected in stool. HBoV-1 is known to be associated with respiratory tract infections. In stool, the prevalence of HBoV (1–4) is similar between patients with gastro-intestinal symptoms and healthy controls in most studies. Furthermore, often other viruses are concurrently present. Both findings suggest that HBoV in stool is an innocent bystander rather than a true pathogen. Nevertheless, several gaps in knowledge on the role of HBoV in stool remain to be addressed. All studies were performed in primarily immunocompetent patients. The role of HBoV in immunocompromised patients remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号