首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND—Primary pulmonary hypertension (PPH), resulting from occlusion of small pulmonary arteries, is a devastating condition. Mutations of the bone morphogenetic protein receptor type II gene (BMPR2), a component of the transforming growth factor beta (TGF-β) family which plays a key role in cell growth, have recently been identified as causing familial PPH. We have searched for BMPR2 gene mutations in sporadic PPH patients to determine whether the same genetic defect underlies the more common form of the disorder.
METHODS—We investigated 50 unrelated patients, with a clinical diagnosis of PPH and no identifiable family history of pulmonary hypertension, by direct sequencing of the entire coding region and intron/exon boundaries of the BMPR2 gene. DNA from available parent pairs (n=5) was used to assess the occurrence of spontaneous (de novo) mutations contributing to sporadic PPH.
RESULTS—We found a total of 11 different heterozygous germline mutations of the BMPR2 gene in 13 of the 50 PPH patients studied, including missense (n=3), nonsense (n=3), and frameshift (n=5) mutations each predicted to alter the cell signalling response to specific ligands. Parental analysis showed three occurrences of paternal transmission and two of de novo mutation of the BMPR2 gene in sporadic PPH.
CONCLUSION—The sporadic form of PPH is associated with germline mutations of the gene encoding the receptor protein BMPR-II in at least 26% of cases. A molecular classification of PPH, based upon the presence or absence of BMPR2 mutations, has important implications for patient management and screening of relatives.


  相似文献   

2.
Primary pulmonary hypertension (PPH) is a potentially lethal disorder, in which heterozygous mutations within the bone morphogenetic protein type II receptor (BMPR2) gene (BMPR2) have been identified. We conducted a molecular study of BMPR2 mutations in 4 Japanese families with familial PPH and 30 Japanese patients with sporadic PPH, and found 13 different mutations, of which 10 were novel, including missense (n=2), nonsense (n=4), frameshift (n=3), and splice-donor site (n=1) mutations. In total, BMPR2 mutations were found in all 4 familial PPH cases and 12 (40%) of the sporadic PPH cases. Further, a majority of the mutations found were predicted to cause premature termination, as previously reported. In the 9 mutations found in the sporadic cases, 2 were shown to be de novo, 2 were shared in multiple cases, 1 was shared with an FPPH case, and 1 was the same as previously reported in Caucasian FPPH. These results indicate that a substantial portion of Japanese PPH patients carry BMPR2 mutations with considerable heterogeneity.  相似文献   

3.
4.
5.
Two main colorectal polyposis syndromes have been described, familial adenomatous polyposis and MUTYH-associated polyposis syndromes. Some polyposis remains unexplained: 20% of adenomatous polyposis and serrated polyposis. The aim of this study was to evaluate in a cohort of patients with unexplained polyposis whether a genetic defect could be detected. Individuals presenting polyposis with more than 40 adenomas or more than 20 serrated polyps (hyperplastic, sessile serrated and mixed), without causative mutation identified, were included. Complementary explorations on APC or MUTYH were performed: search for APC mosaicism, splicing-affecting mutations, large genomic rearrangement of MUTYH. Four genes of Wnt pathway (AXIN2, PPP2R1B, WIF1, SFRP1) and two genes of transforming growth factor-β (TGF-β) pathway (SMAD4, BMPR1A) were screened for germline mutation. Twenty-five patients had an unexplained adenomatous polyposis (familial or sporadic). Five pathogenic mutations were found: four in APC gene (with one case of mosaicism) and one in BMPR1A gene. The exploration of APC mosaicism was better performed from adenoma DNA with high-resolution melting. The screening of the candidate genes did not find any causative mutation. Thirteen individuals had an unexplained serrated polyposis and a frameshift on SMAD4 gene was identified. All mutations were identified in familial cases of polyposis. After new pathological examination, both BMPR1A and SMAD4 cases were found to be associated with a juvenile polyposis while the polyposis was initially described as adenomatous or undetermined. In 17% (6/38) of the patients the causative mutation of the polyposis was identified. Genetic causes were heterogeneous. Sporadic polyposis patients must be considered as potential APC mosaicism. The histological classification of polyposis is strongly important in direct genetic exploration.  相似文献   

6.
7.
8.
Heterozygous missense mutations in the serine-threonine kinase receptor BMPR1B result typically in brachydactyly type A2 (BDA2), whereas mutations in the corresponding ligand GDF5 cause brachydactyly type C (BDC). Mutations in the GDF inhibitor Noggin (NOG) or activating mutations in GDF5 cause proximal symphalangism (SYM1). Here, we describe a novel mutation in BMPR1B (R486Q) that is associated with either BDA2 or a BDC/SYM1-like phenotype. Functional investigations of the R486Q mutation were performed and compared with the previously reported BDA2-causing mutation R486W and WT BMPR1B. Overexpression of the mutant receptors in chicken micromass cultures resulted in a strong inhibition of chondrogenesis with the R486Q mutant, showing a stronger effect than the R486W mutant. To investigate the consequences of the BMPR1B mutations on the intracellular signal transduction, we used stably transfected C2C12 cells and measured the activity of SMAD-dependent and SMAD-independent pathways. SMAD activation after stimulation with GDF5 was suppressed in both mutants. Alkaline phosphatase induction showed an almost complete loss of activation by both mutants. Our data extend the previously known mutational and phenotypic spectrum associated with mutations in BMPR1B. Disturbances of NOG-GDF5-BMPR1B signaling cascade can result in similar clinical manifestations depending on the quantitative effect and mode of action of the specific mutations within the same functional pathway.  相似文献   

9.
BACKGROUND: Most patients with primary pulmonary hypertension are thought to have sporadic, not inherited, disease. Because clinical disease develops in only 10 to 20 percent of persons carrying the gene for familial primary pulmonary hypertension, we hypothesized that many patients with apparently sporadic primary pulmonary hypertension may actually have familial primary pulmonary hypertension. METHODS: In a study conducted over 20 years, we developed a registry of 67 families affected by familial primary pulmonary hypertension. Through patient referrals, extensive family histories, and correlation of family pedigrees, we discovered shared ancestry among five subfamilies. We established the diagnosis of primary pulmonary hypertension by direct evaluation of patients and review of autopsy material and medical records. We assessed some family members for mutations in the gene encoding bone morphogenetic protein receptor II (BMPR2), which has recently been found to cause familial primary pulmonary hypertension. RESULTS: We linked five separately identified subfamilies that included 394 known members spanning seven generations, which were traced back to a founding couple in the mid-1800s. Familial primary pulmonary hypertension has been diagnosed in 18 family members, 12 of whom were first thought to have sporadic disease. The conditions of 7 of the 18 were initially misdiagnosed as other cardiopulmonary diseases. Six members affected with familial primary pulmonary hypertension and 6 of 10 at risk for carriage have been undergone genotype analysis, and they have the same mutation in BMPR2, a transversion of thymine to guanine at position 354 in exon 3. CONCLUSIONS: Many cases of apparently sporadic primary pulmonary hypertension may be familial. Failure to detect familial primary pulmonary hypertension results from incomplete expression within families, skipped generations, and incomplete family pedigrees. The recent discovery of mutations in BMPR2 should make it possible to identify those with susceptibility to disease.  相似文献   

10.
Juvenile polyposis (JP) is characterized by the development of multiple hamartomatous polyps and is inherited as an autosomal dominant trait. Germline mutations of the SMAD4 gene have been reported in JP. We have previously identified three SMAD4 germline mutations in five Korean JP patients. Recently, germline mutations of the BMPR1A (ALK3) gene were reported in JP cases without SMAD4 mutations. In order to determine whether BMPR1A could be involved in the development of JP, we screened all five patients using denaturing high-performance liquid chromatography (DHPLC) analysis. We found that one patient had a BMPR1A germline mutation without a SMAD4 mutation. This patient harbored a novel missense mutation (M470T) in exon 10. After close clinico-pathological examination, one patient who was previously diagnosed to have JP was excluded from the JP group. In total, all four Korean JP patients had either the SMAD4 or the BMPR1A mutation, with three having SMAD4 germline mutations and one carrying a BMPR1A germline mutation.  相似文献   

11.
Thanatophoric dwarfism (TD) is a sporadic lethal skeletal dysplasia with micromelic shortening of the limbs, macrocephaly, platyspondyly and reduced thoracic cavity. In the most common subtype (TD1), femurs are curved, while in TD2, straight femurs are associated with cloverleaf skull. Mutations in the fibroblast growth factor receptor 3 (FGFR3) gene were identified in both subtypes. While TD2 was accounted for by a single recurrent mutation in the tyrosine kinase 2 domain, TD1 resulted from either stop codon mutations or missense mutations in the extracellular domain of the gene. Here, we report the identification of FGFR3 mutations in 25/26 TD cases. Two novel missense mutations (Y373C and G370C) were detected in 8/26 and 1/26 TD1 cases respectively. Both mutations created cysteine residues in the juxta extramembrane domain of the receptor. Sixteen cases carried the previously reported R248C (9/26 cases), S249C (2/26 cases) or stop codon FGFR3 mutations (5/26 cases). Our results suggest that TD1 is a genetically homogeneous condition and give additional support to the view that newly created cysteine residues in the extracellular domain of the protein play a key role in the severity of the disease.   相似文献   

12.
Background: Juvenile polyposis (JP) is an autosomal dominant syndrome predisposing to colorectal and gastric cancer. We have identified mutations in two genes causing JP, MADH4 and bone morphogenetic protein receptor 1A (BMPR1A): both are involved in bone morphogenetic protein (BMP) mediated signalling and are members of the TGF-ß superfamily. This study determined the prevalence of mutations in MADH4 and BMPR1A, as well as three other BMP/activin pathway candidate genes in a large number of JP patients. Methods: DNA was extracted from the blood of JP patients and used for PCR amplification of each exon of these five genes, using primers flanking each intron–exon boundary. Mutations were determined by comparison to wild type sequences using sequence analysis software. A total of 77 JP cases were sequenced for mutations in the MADH4, BMPR1A, BMPR1B, BMPR2, and/or ACVR1 (activin A receptor) genes. The latter three genes were analysed when MADH4 and BMPR1A sequencing found no mutations. Results: Germline MADH4 mutations were found in 14 cases (18.2%) and BMPR1A mutations in 16 cases (20.8%). No mutations were found in BMPR1B, BMPR2, or ACVR1 in 32 MADH4 and BMPR1A mutation negative cases. Discussion: In the largest series of JP patients reported to date, the prevalence of germline MADH4 and BMPR1A mutations is approximately 20% for each gene. Since mutations were not found in more than half the JP patients, either additional genes predisposing to JP remain to be discovered, or alternate means of inactivation of the two known genes are responsible for these JP cases.  相似文献   

13.
Mounting evidence exists that perturbation of bone morphogenic protein (BMP) signaling is involved in cancer development, especially in gastrointestinal cancers. However, somatic mutations of the genes encoding BMP and BMP receptors have not yet been discovered in human cancer tissues. By analyzing a public database, we found that BMP receptor 2 (BMPR2) and BMP1 genes had mononucleotide repeats in their coding sequences that could be mutation targets in cancers with microsatellite instability (MSI). In this study, we analyzed the mutation of BMPR2 and BMP1 genes in gastric (GC) and colorectal cancers (CRC) with MSI [31 GC with high MSI (MSI-H), 13 GC with low MSI (MSI-L), 38 CRC with MSI-H and 15 CRC with MSI-L] by single-strand conformation polymorphism analysis and DNA sequencing. Overall, we found seven frameshift mutations in the BMPR2 gene, but not in the BMP1 gene. The mutations were an identical deletion mutation of one base in the repeats (c.1748delA) that would result in premature stops of the amino acid synthesis (p.Asn583ThrfsX44). The BMPR2 mutations were detected in 6.5% of GC and 13.2% of CRC with MSI-H. All the cancers with the BMPR2 mutation showed loss of BMPR2 expression. Our data indicate that frameshift mutation of BMPR2 gene occurs in GC and CRC with MSI-H, and suggest that the BMPR2 mutation might contribute to cancer pathogenesis by inactivating BMPR2-mediated BMP signaling.  相似文献   

14.
Pulmonary arterial hypertension (PAH) and hereditary hemorrhagic telangiectasia (HHT) are distinct clinical entities caused by germline mutations in genes encoding members of the TGFbeta/BMP superfamily: BMPR2 in PAH and ACVRL1, ENG, or SMAD4 in HHT. When PAH and HHT occasionally co-exist within the same family, ACVRL1 mutations predominate. We report a 36-year-old woman initially diagnosed with PAH at age 24. At 35, following massive hemoptysis, multiple pulmonary arteriovenous malformations were discovered, prompting evaluation for HHT. She met the Cura?ao diagnostic criteria for suspected HHT based on additional findings of nasal telangiectases and epistaxis. Mutation analysis of ACVRL1, ENG, and SMAD4 was normal, but a germline nonsense mutation in BMPR2 was identified. This is the first known report of HHT features, particularly pulmonary AVMs, associated with a BMPR2 mutation. It adds further weight to a common molecular pathogenesis in PAH and HHT, and highlights that BMPR2 gene analysis is indicated in patients affected with both HHT and PAH.  相似文献   

15.
16.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disease so far related to mutations in the cardiac ryanodine receptor (RYR2) or the cardiac calsequestrin (CASQ2) genes. Because mutations in RYR2 or in CASQ2 are not retrieved in all CPVT cases, we searched for mutations in the physiological protein partners of RyR2 and CSQ2 in a large cohort of CPVT patients with no detected mutation in these two genes. Based on a candidate gene approach, we focused our investigations on triadin and junctin, two proteins that link RyR2 and CSQ2. Mutations in the triadin (TRDN) and in the junctin (ASPH) genes were searched in a cohort of 97 CPVT patients. We identified three mutations in triadin which cosegregated with the disease on a recessive mode of transmission in two families, but no mutation was found in junctin. Two TRDN mutations, a 4 bp deletion and a nonsense mutation, resulted in premature stop codons; the third mutation, a p.T59R missense mutation, was further studied. Expression of the p.T59R mutant in COS-7 cells resulted in intracellular retention and degradation of the mutant protein. This was confirmed after in vivo expression of the mutant triadin in triadin knock-out mice by viral transduction. In this work, we identified TRDN as a new gene responsible for an autosomal recessive form of CPVT. The mutations identified in the two families lead to the absence of the protein, thereby demonstrating the importance of triadin for the normal function of the cardiac calcium release complex in humans.  相似文献   

17.
Craniofrontonasal syndrome (CFNS) is an X-linked disorder characterized by a more severe manifestation in heterozygous females than in hemizygous males. Heterozygous females have craniofrontonasal dysplasia (CFND) and occasionally extracranial manifestations including midline defects and skeletal abnormalities, whereas hemizygous males show no or only mild features such as hypertelorism and rarely show cleft lip or palate. Mutations in the EFNB1 gene in Xq12 are responsible for familial and sporadic CFNS. The EFNB1 gene encodes ephrin-B1, a transmembrane ligand that also exhibits receptor-like effects. We performed mutation analysis in nine unrelated families and 29 sporadic patients with CFNS. DNA sequencing revealed mutations in 33 (86.8%) cases including 26 distinct novel mutations. A recurrent nonsense mutation, c.196C>T/R66X, was detected in one family and four sporadic patients. The majority of mutations (26/33) were located in exons 2 and 3 of the EFNB1 gene encoding the extracellular ephrin domain. The mutation spectrum includes frameshift, nonsense, missense, and splice site mutations, with a predominance of frameshift and nonsense mutations resulting in premature truncation codons. For the first time we describe mutations in exons 4 and 5 of EFNB1. Of particular interest are the frameshift mutations located in the last 25 codons of EFNB1 encoding the carboxyterminal end of ephrin-B1. They result in an extension by 44 residues. These mutations disrupt the intracellular binding sites for Grb4 and PDZ-effector proteins involved in reverse signaling. We conclude that the major causes of familial as well as sporadic CFNS are loss of function mutations in the EFNB1 gene that comprise premature termination or abrogate receptor-ligand interaction, oligomerization, and ephrin-B1 reverse signaling.  相似文献   

18.
A substantial proportion of patients with pulmonary arterial hypertension (PAH) have mutations in the Bone Morphogenetic Protein Receptor type‐2 (BMPR2) gene. PAH due to BMPR2 mutations is inherited as an autosomal dominant trait with several unique features, including a wide variety of mutations, reduced penetrance, a skewed gender ratio, variable expressivity and genetic anticipation. To address the genetic background of these unique features of BMPR2 mutation, we conducted a systematic analysis of 15 PAH families with BMPR2 mutation. The exonic protein coding sequence of BMPR2 was amplified by polymerase chain reaction and the products were sequenced directly to detect point mutations in BMPR2. Parental identification was carried out to confirm the parental relationship using multiplex 15 loci analysis. Combining mutation detection in family members with parental identification, we described three cases of de novo mutation in the BMPR2 gene by different modes in a PAH family. These de novo mutations may account for the wide variety of mutations in BMPR2. Taken together with the juvenile onset of the disease, there is possibly some balance of de novo mutations and untransmittable mutations which keeps the frequency of PAH low in the general population.  相似文献   

19.
Heterozygous germline defects in a gene encoding a type II receptor for bone morphogenetic proteins (BMPR-II) underlie the majority of inherited cases of the vascular disorder known as pulmonary arterial hypertension (PAH). However, the precise molecular consequences of PAH causing mutations on the function of the receptor complex remain unclear. We employed novel enzymatic and fluorescence activity based techniques to assess the impact of PAH mutations on pre-mRNA splicing, nonsense-mediated decay (NMD) and receptor complex interactions. We demonstrate that nonsense and frameshift mutations trigger NMD, providing further evidence that haplo-insufficiency is a major molecular consequence of disease-related BMPR2 mutations. We identified heterogeneous functional defects in BMPR-II activity, including impaired type I receptor phosphorylation, receptor interactions and altered receptor complex stoichiometry leading to perturbation of downstream signalling pathways. Importantly, these studies demonstrate that the intracellular domain of BMPR-II is both necessary and sufficient for receptor complex interaction. Finally and to address the potential for resolution of stoichiometric balance, we investigated an agent that promotes translational readthrough of a BMPR2 nonsense reporter construct without interfering with the NMD pathway. We propose that stoichiometric imbalance, due to either haplo-insufficiency or loss of optimal receptor-receptor interactions impairs BMPR-II mediated signalling in PAH. Taken together, these studies have identified an important target for early therapeutic intervention in familial PAH.  相似文献   

20.
Juvenile polyposis syndrome is a hamartomatous intestinal polyposis associated with malignant changes in 20% of patients at an early age. Germline mutations mostly involve two genes, SMAD4 and BMPR1, with no strong evidence of phenotype-genotype correlation, which could be predictive of the specific long-term evolution. In contrast, PTEN mutations are more commonly associated with Cowden and related diseases. Forty-two unrelated patients affected by juvenile polyposis syndrome were analyzed for germline alterations in the BMPR1A and SMAD4 genes, and for clinical and histological features. Deleterious mutations were found in 14/42 (33%) patients: 5 in BMPR1A and 9 in SMAD4. Low-grade adenomas were present in both SMAD4 and BMPR1A mutation carriers; only patients with SMAD4 mutations harbored carcinoma lesions (5/9). Malformative vessels were present in all SMAD4 related polyps when the mutation involved codons prior to position 423. No gastric polyps were observed in BMPR1A mutation carriers. SMAD4 germline mutations are responsible for a more aggressive digestive phenotype in patients with juvenile polyposis. The presence of malformative vessels within the stromal component might be a useful tool to drive the subsequent genetic and clinical management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号