首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The GIGYF2 (Grb10-Interacting GYF Protein-2) gene has recently been proposed to be the responsible gene for the PARK11 locus. Ten different putative pathogenic variants were identified in cohorts of Parkinson's disease (PD) patients from Italy and France. Among these variants Asn56Ser and Asn457Thr were found repeatedly. In the present study we screened 669 PD patients (predominantly of central European origin) and 1051 control individuals for the presence of these two variants. Asn56Ser was found in one patient with a positive family history of the disease and in one control individual. The affected sister of the patient did not carry this variant. Asn457Thr was found in one patient, who was exceptional for his Egyptian origin and in three control individuals. This variant was not found in 50 control individuals from Egypt. We conclude that neither of these two variants plays a major role in the pathogenesis of PD in our study population.  相似文献   

2.
The response of wild-type and genetically engineered neuroectodermal tumor (NET) cells to exogenous and endogenously synthesized nerve growth factor (NGF) was investigated. Differences in cell proliferation rate, neurite formation, and expression of NGF binding sites were quantitatively determined. Ecotropic retroviral vectors were used to transfer the genes for beta-galactosidase (beta-GAL) and NGF into wild-type C-1300 and Neuro-2A murine neuroblastoma (MNB) and rat pheochromocytoma (PC-12) cells. Conditioned media obtained from NET cells infected with the NGF gene contained biologically active NGF, whereas media from beta-GAL infected cells did not. Infection with the NGF vector induced a short-term decrease in cell proliferation rate and increased neurite formation in wild-type, substrate-adherent PC-12 and Neuro-2A MNB cells (P > 0.05). Incubation of wild-type C-1300, Neuro-2A MNB, and PC-12 cells with NGF (0-200 ng/ml) for 5 days significantly reduced proliferation rates in a concentration-dependent manner and increased neurite extrusion. All NGF-NET cells had a significantly diminished response to the antiproliferative action of exogenous NGF. Ligand binding assays with 125I-NGF demonstrated a marked reduction in the number of NGF binding sites on NGF-NET cells compared to wild type. The attenuated response of NGF-NET cells to exogenous NGF correlated positively with the down-regulation of NGF binding sites. In conclusion, beta-NGF gene transfer into wild-type NET cells induces the synthesis and secretion of NGF, temporarily decreases cell proliferation rate, increases neurite extrusion, down-regulates NGF binding sites, and reduces NET cell responsiveness to NGF. A putative role for NGF may be the modulation of NET cell proliferation and differentiation.  相似文献   

3.
Lipoprotein lipase (LPL) plays an important role in lipid metabolism by hydrolyzing triglycerides in chylomicrons and very low density lipoproteins. An increasing number of studies have suggested an association of LPL gene variants with the risk of cardiovascular and cerebrovascular diseases. The aim of this study was to test whether HindIII polymorphism of LPL gene is associated with ischemic stroke and its subtypes as well as plasma lipid levels in a South Indian population from Andhra Pradesh. Five hundred and twenty five ischemic stroke patients and 500 controls were enrolled in this case-control study. The LPL HindIII polymorphism was determined by PCR-RFLP technique and the lipid levels were estimated using commercially available kits. We found significant difference in the genotypic distribution between patients and controls [for HindIII (+/+) vs. HindIII (-/-), χ(2)=4.916; p=0.02; Odds ratio=1.59 (95%CI; 1.054-2.413); HindIII (+/+) vs. HindIII (-/-) and HindIII (+/-), χ(2)=5.25; p=0.02; Odds ratio=1.24 (95%CI; 1.03-1.503)]. A stepwise multiple logistic regression analysis confirmedthese findings. The relationship between HindIII genotypes and plasma levels of HDL, LDL, VLDL and triglycerides was analyzed using ANOVA and further confirmed by Post-hoc analysis. The levels of triglycerides were found to be elevated in individuals bearing HindIII (+/+) genotype in comparison with HindIII (-/-) genotype. HDL levels were found to be significantly reduced and triglyceride levels significantly elevated in HindIII (+/+) genotype in comparison with HindIII (-/-). However, there was no difference in the levels of LDL and VLDL between the two genotypes. Examining the association of LPL gene HindIII polymorphism with stroke subtypes, we found significant association of HindIII polymorphism with Intracranial large artery atherosclerosis [Odds ratio=2.12 955CI (1.656-2.848); p=0.009]. Our results suggest that the HindIII polymorphism of LPL is significantly associated with ischemic stroke risk and elevated levels of plasma triglycerides and reduced HDL levels. Further, this polymorphism is significantly associated with intracranial large artery atherosclerosis which is the most frequent subtype in our region.  相似文献   

4.
Wang C  Sun T  Li H  Bai J  Li Y 《Thrombosis research》2011,128(5):e107-e112

Introduction

Previous studies suggested lipoprotein lipase (LPL) Ser447Ter and Asn291Ser polymorphisms were associated with the risk of ischemic heart disease, however, their effects on ischemic stroke were controversial. A meta-analysis was performed to assess the associations between these two LPL polymorphisms and the risk of ischemic stroke.

Methods

The electronic databases PubMed and Embase were used to identify relevant studies by two interviews independently. The pooled odds ratios (ORs) and weighted mean differences (WMD) with 95% confidence interval (CI) were estimated for the risk of ischemic stroke and the plasma lipids in various Ser447Ter genotypes respectively. A fixed or random effect model was selected for pooling data based on homogeneity test.

Results

13 studies including 4,681 ischemic stroke cases and 8,516 controls were involved in this meta-analysis. Overall, LPL Ter447 variant was associated with a significantly reduced risk for ischemic stroke (OR = 0.79, 95% CI: 0.68-0.93) both in Caucasian (OR = 0.87, 95% CI: 0.77-0.97) and East-Asian (OR = 0.65, 95% CI: 0.43-0.99), whereas no significant association of Ser291 variant was observed (OR = 1.25, 95% CI: 0.96-1.63). The Ser447Ter polymorphism may be more important in association with the decreased risk of atherosclerotic stroke (OR = 0.44, 95% CI: 0.32-0.62) which derived from significantly increased high density lipoprotein cholesterol, decreased triglyceride and total cholesterol in Ter447 carriers compared with non-carriers.

Conclusions

This meta-analysis indicated that LPL Ser447Ter polymorphism was associated with a significant reduction in the risk of ischemic stroke, especially atherosclerotic stroke subtype in both Caucasian and East-Asian.  相似文献   

5.
Retinoic acid can cause many types of cells,including mouse neuroblastoma Neuro-2 A cells,to differentiate into neurons.However,it is still unknown whether microRNAs(miRNAs)play a role in this neuronal differentiation.To address this issue,real-time polymerase chain reaction assays were used to detect the expression of several differentiation-related miRNAs during the differentiation of retinoic acid-treated Neuro-2 A cells.The results revealed that miR-124 and miR-9 were upregulated,while miR-125 b was downregulated in retinoic acid-treated Neuro-2 A cells.To identify the miRNA that may play a key role,miR-124 expression was regulated by transfection of miRNA mimics or inhibitors.Morphological analysis results showed that inhibition of miR-124 expression reversed the effects of retinoic acid on neurite outgrowth.Moreover,miR-124 overexpression alone caused Neuro-2 A cells to differentiate into neurons,and its inhibitor could block this effect.These results suggest that miR-124 plays an important role in retinoic acid-induced differentiation of Neuro-2 A cells.  相似文献   

6.
目的构建重组质粒pIRES2-EGFP-Aβ42,转染小鼠神经母细胞瘤Neuro-2a细胞,建立稳定表达Aβ42的Neuro-2a细胞系,为体外研究阿尔茨海默病提供新的途径。方法将质粒pGEMT-Aβ42上的Aβ42基因酶切后,与真核表达质粒pIRES2-EGFP连接,构建重组质粒pIRES2-EGFP-Aβ42。酶切鉴定正确后,采用脂质体介导法转染Neuro-2a细胞,800mg/L G418筛选4w,后续培养G418浓度维持在200mg/L。扩增细胞以低密度培养,HE染色观察细胞形态,免疫组织化学染色法检测Aβ42的表达。结果酶切鉴定显示重组质粒pIRES2-EGFP-Aβ42构建正确;pIRES2-EGFP-Aβ42转染Neuro-2a细胞,经G418筛选后扩增的细胞均表达绿色荧光蛋白,呈现绿色荧光;免疫组织化学染色显示经G418筛选后的细胞表达Aβ42;HE染色结果显示低密度培养条件下,细胞内表达的Aβ42未引起对细胞形态和增殖能力的明显改变。结论成功构建重组质粒pIRES2-EGFP-Aβ42,获得稳定表达Aβ42的细胞系。  相似文献   

7.
To characterize the putative biochemical modifications induced by the Ser 460 to Pro (Heerlen) mutation in protein S (PS), we expressed both wild-type (wt) and mutated recombinant PS in HEK cells. In SDS-polyacrylamide gels, r-PS Heerlen migrated at 71 kDa whereas r-wt PS migrated at 73 kDa, a difference abolished after deglycosylation by N-glycosidase, suggesting that the Ser 460 Pro mutation abolishes N-glycosylation of Asn 458. The affinity of r-wt PS and r-PS Heerlen for C4b-binding protein (C4b-BP) and for phospholipid vesicles was similar. Neither the enhancement of APC-dependent prolongation of the APTT, nor the specific enhancement of FVa and FVIIIa proteolysis by APC in purified systems was affected by the mutation. However, the Ser 460 Pro mutation induced a slight conformational change in the SHBG domain of the PS molecule, as shown by reduced binding affinity for monoclonal antibodies. The type III phenotype associated with the Heerlen mutation might thus result from a slightly modified rate of synthesis or catabolism. The resulting moderate decrease in the circulating PS concentration may modify the equilibrium between free PS and C4b-BP/PS complexes.  相似文献   

8.
Mutations of the neurofilament-light (NEFL/NF-L) gene were examined in 124 unrelated Japanese patients with Charcot-Marie-Tooth disease (CMT) without known gene mutations, and 248 normal Japanese individuals. A new method, which can detect basepair mismatches with RNase cleavage on agarose gel electrophoresis, coupled with DNA sequencing, identified 8 novel sequence variations in the NF-L gene. In these sequence variants, 5 variants were polymorphisms, including 3 single nucleotide polymorphisms (SNPs), and 3 other missense mutations (Pro22Thr, Asn97Ser and Ala148Val) were found in the patients with CMT phenotype. The variant alleles in the NF-L gene could influence the developing process of CMT phenotype and also might cause CMT phenotype.  相似文献   

9.
During development, embryonic cerebrospinal fluid(E-CSF) is involved in cell survival, proliferation, and neurogenesis of the neuroepithelial progenitor cells. We have recently identified a complex pattern of proteins in chick and rat E-CSF, which include apolipoproteins. Apolipoproteins play a critical role in the function of lipoproteins by interacting with receptors to deliver the lipid cargo to target cells. However, the function of these E-CSF apolipoproteins is unclear. Here, we characterized the chick E-CSF lipoprotein profile and analyzed the role of its lipoprotein fractions in neural differentiation. We found that the lipoprotein pattern of chick E-CSF differed significantly from that of adult plasma, with a major proportion of apoB-containing lipoproteins. Further, supplementation of lipoprotein-depleted fraction with E-CSF very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) resulted in 25% and 60%, respectively, of the neurogenesis induced by the whole E-CSF in chick neuroepithelium explants, whereas high-density lipoproteins caused the lowest induction. We further investigated the potential role of E-CSF LDL in vivo by analyzing neural differentiation in the neuroepithelium of wild-type (WT) and LDL receptor-knockout (LDLR KO) mouse embryos. E-CSF lipids were mainly associated with LDL in both WT and LDLR KO mice, and the latter exhibited a substantial increase in LDL lipids compared with WT mice. Externally, LDLR KO embryos were apparently normal, and they exhibited up to 26% reduction in the number of neural differentiating cells in comparison with WT mice, although this finding was not statistically significant. These data strongly suggest that E-CSF LDL plays a critical role during early neural differentiation.  相似文献   

10.
We report the identification of a new mutation resulting in type I antithrombin (AT) deficiency and the mechanism by which the deficiency arose. The single base substitution of G to A at nucleotide 2709 was identified in a proband with a family history of venous thrombosis. The mutation results in a substitution of 82 Ser by Asn, creating a new glycosylation site. Expression studies were then carried out, to confirm Asn-linked glycosylation occurred at this consensus site and that this resulted in the AT deficient phenotype. Cell-free translations using rabbit reticulocyte lysate in the presence of microsomes demonstrated that the 82 Asn variant was post-translationally processed efficiently. The 82 Asn variant protein was of a higher molecular weight than normal AT. consistent with the addition of a fifth glycan chain. Incubation of translation product with endoglycosidase H, confirmed that the higher molecular weight product had resulted from additional carbohydrate. Expression of the 82 Asn variant in COS-7 cells resulted in intracellular accumulation, with a low level of secretion of the protein into culture supernatant, consistent with type I AT deficiency. The addition of an extra carbohydrate side chain to residue 82 of antithrombin may block post-translational folding. trapping the variant intracellulary.  相似文献   

11.
Neurofilaments are neuron‐specific intermediate filaments essential for the radial growth of axons during development and the maintenance of axonal diameter. Pathogenic variants of Neurofilament Light (NEFL) are associated with CMT1F, CMT2E, and CMTDIG and have been observed in less than 1% of Charcot‐Marie‐Tooth (CMT) cases, resulting in the reporting of 35 variants in 173 CMT patients to date. However, only six variants have been reported in 17 patients with impaired hearing. No genotype‐phenotype correlations have yet been established. Here, we report an additional case: a 69‐year‐old female, who originally presented with axonal sensory and motor neuropathy at the age of 45, associated with moderate sensorineural hearing loss, with a slight slope at high frequencies. Next‐generation sequencing identified a novel pathogenic variant: c.269A > G, p.(Glu90Gly). Hearing impairment is often linked to CMT due to pathogenic variants of NEFL, especially p.(Glu90Lys) and p.(Asn98Ser), and in our case p.(Glu90Gly). These pathogenic variants are all located at hot spots, in the head domain and the two ends of the rod domain of the protein.  相似文献   

12.
In the mammalian central nervous system, monoacylglycerol lipase (MGL) is principally responsible for inactivating the endocannabinoid signaling lipid 2-arachidonoylglycerol (2-AG) and modulates cannabinoid-1 receptor (CB1R) desensitization and signal intensity. MGL is also a drug target for diseases in which CB1R stimulation may be therapeutic. To inform the design of human MGL (hMGL) inhibitors, we have engineered a Leu(Leu(169);Leu(176))-to-Ser(Ser(169);Ser(176)) double hMGL mutant (sol-hMGL) which exhibited enhanced solubility properties, and we further mutated this variant by substituting its catalytic-triad Ser(122) with Cys (sol-S-hMGL). The hMGL variants hydrolyzed both 2-AG and a fluorogenic reporter substrate with comparable affinities. Our results suggest that the hMGL cysteine mutant maintains the same overall architecture as wild-type hMGL. The results also underscore the superior nucleophilic nature of the reactive catalytic Ser(122) residue as compared to that of Cys(122) in the sol-S-hMGL mutant and suggest that the nucleophilic character of the Cys(122) residue is not commensurately enhanced within the three dimensional architecture of hMGL. The interaction of the sol-hMGL variants with the irreversible inhibitors AM6580 and N-arachidonylmaleimide (NAM) and the reversible inhibitor AM10212 was profiled. LC/MS analysis of tryptic digests from sol-S-hMGL directly demonstrate covalent modification of this variant by NAM and AM6580, consistent with enzyme thiol alkylation and carbamoylation, respectively. These data provide insight into hMGL catalysis, the key role of the nucleophilic character of Ser(122), and the mechanisms underlying hMGL inhibition by different classes of small molecules.  相似文献   

13.
PCR-SSCP and DNA sequence analysis of a factor XI (FXI) deficient patient (FXI:C 39 U/dL; FXI:Ag 27 U/dL) identified a C to T transition in exon 12 of the FXI gene (F11 c.1521C>T) that predicts the substitution of Thr475 by Ile (FXI T475I) within the serine protease domain of FXI. This mutation destroys a consensus sequence for N-linked glycosylation, N473-Y-T475, known to be utilized in vivo. The FXIT475I variant was generated by site-directed mutagenesis, together with other variants that could help explain the phenotype, and recombinant FXI variants were expressed in Chinese hamster ovary cells. FXI:Ag expression was analysed by Western blot analysis, ELISA and immunocytochemical staining. Wild-type FXI:Ag was secreted at high levels, however the mutant (FXI T475I) was secreted very poorly. Substitution of Thr475 by Ala, Pro, Lys or Arg (all of which abolish the glycosylation consensus sequence) also severely reduced the level of secreted FXI:Ag suggesting that glycosylation at Asn473 is required for folding or secretion. Concordant with this hypothesis the conservative substitution of Thr475 by Ser (which preserves the glycosylation consensus sequence) had no effect on FXI secretion. Thr/Ser475 is highly conserved in serine protease domains but the glycosylation site (Asn473) is not. Surprisingly, substitution of Asn473 by Ala (which removes the N-linked glycosylation site) had no effect on the levels of FXI:Ag secreted. In conclusion, although the FXI-T475I mutation destroys an N-linked glycosylation consensus sequence, the cause of failure to secrete FXI is not the loss of a glycosylation site but rather a direct effect of the substitution of this highly conserved residue.  相似文献   

14.
Neonatal alloimmune thrombocytopenia (NAIT) is caused by fetomaternal platelet incompatibility with maternal antibodies crossing the placenta and destroying fetal platelets. Antibodies against human platelet antigen-1a (HPA-1a) and HPA-5b are responsible for the majority of NAIT cases. We observed a suspected NAIT in a newborn with a platelet count of 25 G/l and petechial haemorrhages. Serological analysis of maternal serum revealed an immunisation against αIIbβ3 on paternal platelets only, indicating the presence of an antibody against a new rare alloantigen (Sec(a)) residing on αIIbβ3. The location of Sec(a) on αIIbβ3 was confirmed by immunoprecipitation. Nucleotide sequence analysis of paternal β3 revealed a single nucleotide exchange (G(1818)T) in exon 11 of the β3 gene (ITGB3), changing Lys(580) (wild-type) to Asn(580) (Sec(a)). Two additional members of the family Sec were typed Sec(a) positive, but none of 300 blood donors. Chinese hamster ovary cells expressing Asn(580), but not Lys(580) αIIbβ3, bound anti-Sec(a), which was corroborated by immunoprecipitation. Adhesion of transfected cells onto immobilised fibrinogen showed reduced binding of the Asn(580) variant compared to wild-type αIIbβ3. Analysis of transfected cells with anti-LIBS and PAC-1 antibody showed reduced binding when compared to the wild-type. No such effects were observed with Sec(a) positive platelets, which, however, are heterozygous for the Lys(580)Asn mutation. In this study, we describe a NAIT case caused by maternal alloimmunisation against a new antigen on αIIbβ3. Analysis with mutant transfected cells showed that the Lys(580)Asn mutation responsible for the formation of the Sec(a) antigenic determinant affects αIIbβ3 receptor function.  相似文献   

15.
BackgroundAn increasing number of rare, functionally relevant non-c.907_909delGAG (non-ΔGAG) variants in TOR1A have been recognized, associated with phenotypic expressions different from classic DYT1 childhood-onset generalized dystonia. Only recently, DYT1 genotype-phenotype correlations have been proposed, awaiting further elucidation in independent cohorts.MethodsWe screened the entire coding sequence and the 5′-UTR region of TOR1A for rare non-ΔGAG sequence variants in a large series of 940 individuals with various forms of isolated dystonia as well as in 376 ancestry-matched controls. The frequency of rare, predicted deleterious non-ΔGAG TOR1A variants was assessed in the European sample of the Exome Aggregation Consortium (ExAC) dataset.ResultsIn the case cohort, we identified a rare 5′-UTR variant (c.-39G > T), a rare splice-region variant (c.445-8T > C), as well as one novel (p.Ile231Asn) and two rare (p.Ala163Val, p.Thr321Met) missense variants, each in a single patient with adult-onset focal/segmental isolated dystonia. Of these variants, only p.Thr321Met qualified as possibly disease-related according to variant interpretation criteria. One novel, predicted deleterious missense substitution (p.Asn208Ser) was detected in the control cohort. Among European ExAC individuals, the carrier rate of rare, predicted deleterious non-ΔGAG variants was 0.4%.ConclusionsOur study does not allow the establishment of genotype-specific clinical correlations for DYT1. Further large-scale genetic screening accompanied by comprehensive segregation and functional studies is required to conclusively define the contribution of TOR1A whole-gene variation to the pathogenesis of isolated dystonia.  相似文献   

16.
Alpha-synuclein and its missense mutants (A30P, A53T) have been linked to the genesis of idiopathic and rare familial forms of Parkinson's disease, respectively. Here we show that, similar to the wild-type alpha-synuclein, the A30P mutant forms a strong complex with the human dopamine transporter (hDAT), through direct protein:protein interactions between the nonamyloid beta component (NAC) domain of the A30P mutant and the last 22 aminoacyl residues of the carboxy-terminal tail of hDAT. The A30P mutant negatively modulates hDAT functional activity and to a greater extent than wild-type alpha-synuclein, with reduced uptake of extracellular dopamine and dopamine-mediated, hDAT-dependent cytotoxicity. By contrast, the A53T mutant neither forms a strong protein:protein complex with hDAT nor modulates dopamine uptake by hDAT, and dopamine-mediated, hDAT-dependent cytotoxicity is higher than with either wild-type or the A30P variant of alpha-synuclein, but not significantly different from that of cells expressing hDAT alone. Confocal microscopy shows substantial overlap in colocalization of all three alpha-synuclein variants with hDAT, with only minor differences. Although the complex formation with hDAT occurs through the NAC domain of the alpha-synuclein variants, it is the familial Parkinson's disease-linked missense mutations present in the amino-terminal lipid binding domain of the alpha-synuclein variants that dictate the extent of the regulation of hDAT function. These studies highlight previously unknown properties of the A30P and the A53T mutants of alpha-synuclein with respect to the modulation of hDAT activity and/or regulation, and its subsequent functional outcome, which are uniquely distinct.  相似文献   

17.
Bernard-Soulier syndrome (BSS) is an extremely rare hereditary bleeding disorder, caused by mutations occurring in the Glycoprotein (GP) Ibalpha, GPIbbeta and GP9 genes that encode for the corresponding subunits of platelet GPIb-V-IX adhesion receptor complex. BSS has been reported in many populations, mostly behaving in an autosomal-recessive manner.While the great majority of BSS mutations are unique to a single individual or family, the GP9 1828A>G Asn45Ser mutation, which we have identified in an undocumented Australian Caucasian, has already been reported in multiple unrelated Caucasian families from various Northern and Central European countries. Haplotype analysis of 19 BSS patients from 15 unrelated Northern European families (including 2 compound heterozygote siblings from a British family previously published, and 17 1828A>G Asn45Ser homozygotes), showed that 14 of these BSS patients from 11 of the 1828A>G Asn45Ser homozygote families share a common haplotype at the chromosomal region 3' to the GP9 gene. Hence, the results suggest that the GP9 1828A>GAsn45Ser mutation in these families is ancient, and its frequent emergence in the European population is the result of a founder effect rather than recurrent mutational events. Association of the 1828A>G Asn45Ser mutation with variant haplotypes in 4 other Northern European BSS families raised the possibility of a second founder event, or rare recombinations in these families. Additional members from these 'atypical' lineages would need to be screened to resolve this question.  相似文献   

18.
Antithrombin (AT) is a plasma protein with four sites of N-linked glycosylation. Asn 135 is incompletely glycosylated, and the resulting 3-glycan AT is cleared more rapidly in vivo than the 4-glycan form. The Asn codons in each of the four sites of glycosylation were altered in turn, to create four mutant rabbit AT cDNAs. Permanently transfected CHO cell lines were generated following transfection of the resulting constructs, encoding either the wild-type rabbit AT (AT-WT) or one of the four underglycosylated variants (AT-N96Q, AT-N135Q, AT-N155Q, and AT-N155Q). Comparison of the five resulting recombinant AT proteins revealed that the major AT species of each variant co-migrated on SDS gels, and migrated more rapidly than the major form of AT-WT. The shift in mobility, from 60 to 57 kDa, was consistent with the loss of one fully sialylated complex N-linked glycan. Neither the amount of AT secreted (range: 1.25 to 4.2 microg/10(6) cells/day) nor the kinetics of secretion differed significantly between cell lines expressing AT-WT or any of the AT variants. All forms of recombinant rabbit AT were capable of forming denaturation-resistant complexes with thrombin. Purification and radioiodination of each of the five recombinant AT proteins permitted pharmacokinetic analysis of their individual clearance in rabbits. While neither the equilibration half-life (t(0.5)alpha) nor the terminal catabolic half-life (t(0. 5)beta) differed significantly between plasma-derived rabbit AT and AT-WT, the t(0.5)beta of all the underglycosylated variants was decreased relative to that of AT-WT (maximum reduction in mean: from 70.1+/-3.2 h to 52.4+/-2.5 h). These results suggest that the overall extent of glycosylation, rather than the location within AT of the glycan chains, is a primary determinant of AT clearance.  相似文献   

19.
Alpha-synuclein (α-syn) is a soluble protein highly enriched in presynaptic terminals of neurons. Accumulation of α-syn as intracellular filamentous aggregates is a pathological feature of sporadic and familial forms of Parkinson's disease (PD). Changes in α-syn post-translational modifications, as well as mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Here we assessed the correlation between α-syn phosphorylation at serine 129 (Ser129), the formation of reactive oxygen species (ROS) and mitochondrial dysfunction in SH-SY5Y cells expressing A53T mutant or wild-type (WT) α-syn, exposed to ferrous iron (FeSO4) and rotenone (complex I inhibitor). Under basal conditions, prolonged expression of A53T mutant α-syn altered mitochondria morphology, increased superoxide formation and phosphorylation at Ser129, which was linked to decreased activity of protein phosphatase 2A (PP2A). Exposure to FeSO4 or rotenone enhanced intracellular ROS levels, including superoxide anions, in both types of cells, along with α-syn Ser129 phosphorylation and mitochondrial depolarization. Most of these changes were largely evident in A53T mutant α-syn expressing cells. Overall, the data suggest that stimuli that promote ROS formation and mitochondrial alterations highly correlate with mutant α-syn phosphorylation at Ser129, which may precede cell degeneration in PD.  相似文献   

20.
Murine Neuro-2A neuroblastoma cells were exposed to ethanol in culture under two experimental paradigms: (1) short-term (24 hr or less) and low concentrations (0.05 to 0.5%; 8.5 to 86 mM) and (2) longterm (48 hr at 0.5%; 86 mM). Long-term ethanol exposure did not affect Neuro-2A viability, determined by DNA synthesis or the ability to exclude Trypan Blue. Similarly, long-term ethanol treatment did not inhibit differentiation, exhibited by the extension of neurites, promoted by either dibutyryl-cyclic-AMP or by incubation with exogenous ganglioside GMI. The incorporation of exogenous ganglioside GM1 into plasma membranes was not influenced by varying concentrations of ethanol (up to 1.2%; 204 mM). In contrast, ethanol did influence Neuro-2A cell attachment to collagen in a dualistic manner. During short-term ethanol exposure, cell attachment was enhanced. However, when cells were initially exposed to ethanol for 48 hr a marked inhibition of subsequent attachment was observed. Long-term ethanol exposure also inhibited attachment to other substrata, including laminin, fibronectin and vitronectin. Incubation of Neuro-2A cells with either exogenous ganglioside Gull or a mixture of brain gangliosides partially reversed the inhibition of attachment to collagen. This reversal did not appear to be due to any one particular ganglioside structure, however. Mixed brain gangliosides were fractionated into three fractions, according to the number of sialic acid residues. Each of the three fractions were equally effective in partially restoring Neuro-2A cell attachment to collagen after long-term ethanol treatment. The results suggest that the mechanism by which these effects occur is at the level of plasma membrane fluidity, because both ethanol and glycosphingolipid content are known to influence membrane lateral mobility, although other mechanisms, such as changes in headgroup hydration, are possible. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号