首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PET and PET/CT in pediatric oncology   总被引:9,自引:0,他引:9  
18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and FDG-PET/computed tomography (CT) are becoming increasingly important imaging tools in the noninvasive evaluation and monitoring of children with known or suspected malignant diseases. In this review, we discuss the preparation of children undergoing PET studies and review radiation dosimetry and its implications for family and caregivers. We review the normal distribution of 18F-fluorodeoxyglucose (FDG) in children, common variations of the normal distribution, and various artifacts that may arise. We show that most tumors in children accumulate and retain FDG, allowing high-quality images of their distribution and pathophysiology. We explore the use of FDG-PET in the study of children with the more common malignancies, such as brain neoplasms and lymphomas, and the less-common tumors, including neuroblastomas, bone and soft-tissue sarcomas, Wilms' tumors, and hepatoblastomas. For comparison, other PET tracers are included because they have been applied in pediatric oncology. Multiple multicenter trials are underway that use FDG-PET in the management of children with neoplastic disease; these studies should give us greater insight into the impact FDG-PET can make in their care. PET is emerging as an important diagnostic imaging tool in the evaluation of pediatric cancers. The recent advent of dual-modality PET-computed tomography (PET/CT) imaging systems has added unprecedented diagnostic capability by revealing the precise anatomical localization of metabolic information and metabolic characterization of normal and abnormal structures. The use of CT transmission scanning for attenuation correction has shortened the total acquisition time, which is an especially desirable attribute in pediatric imaging. Moreover, expansion of the regional distribution of the most common PET radiotracer, FDG, and the introduction of mobile PET units have greatly increased access to this powerful diagnostic imaging technology. Here, we review the clinical applications of PET and PET/CT in pediatric oncology. General considerations in patient preparation and radiation dosimetry will be discussed.  相似文献   

3.

Introduction  

Integration of positron emission tomography (PET) and magnetic resonance (MR) has become a topic of increasing interest to the imaging community over the past two years.  相似文献   

4.
18F-DOPA PET and PET/CT.   总被引:1,自引:0,他引:1  
  相似文献   

5.
Functional information provided by PET tracers together with the superior image quality and the better data quantification by PET technology had a changing effect on the significance of nuclear medicine in medical issues. Recently introduced hybrid PET/CT systems together with the introduction of novel PET radiopharmaceuticals have contributed to the fact that nuclear medicine has become a growing diagnostic impact on endocrinology. In this review imaging strategies, different radiopharmaceuticals including the basic mechanism of their cell uptake, and the diagnostic value of PET and PET/CT in endocrine tumours except differentiated thyroid carcinomas will be discussed.  相似文献   

6.
This study assessed the feasibility and functionality of the use of a high-speed image fusion technology to generate and display positron emission tomography (PET)/computed tomography (CT) fluoroscopic images during PET/CT-guided tumor ablation procedures. Thirteen patients underwent 14 PET/CT-guided ablations for the treatment of 20 tumors. A Food and Drug Administration–cleared multimodal image fusion platform received images pushed from a scanner, followed by near–real-time, nonrigid image registration. The most recent intraprocedural PET dataset was fused to each single-rotation CT fluoroscopy dataset as it arrived, and the fused images were displayed on an in-room monitor. PET/CT fluoroscopic images were generated and displayed in all procedures and enabled more confident targeting in 3 procedures. The mean lag time from CT fluoroscopic image acquisition to the in-room display of the fused PET/CT fluoroscopic image was 21 seconds ± 8. The registration accuracy was visually satisfactory in 13 of 14 procedures. In conclusion, PET/CT fluoroscopy was feasible and may have the potential to facilitate PET/CT-guided procedures.  相似文献   

7.
8.
9.
Integrated whole‐body PET/MR hybrid imaging combines excellent soft tissue contrast and various functional imaging parameters provided by MR with high sensitivity and quantification of radiotracer metabolism provided by positron emission tomography (PET). While clinical evaluation now is under way, integrated PET/MR demands for new technologies and innovative solutions, currently subject to interdisciplinary research. Attenuation correction of human soft tissues and of hardware components has to be MR‐based to maintain quantification of PET imaging because computed tomography (CT) attenuation information is missing. This brings up the question of how to provide bone information with MR imaging. The limited field‐of‐view in MR imaging leads to truncations in body imaging and MR‐based attenuation correction. Another research field is the implementation of motion correction technologies to correct for breathing and cardiac motion in view of the relatively long PET data acquisition times. Initial clinical applications of integrated PET/MR in oncology, neurology, pediatric oncology, and cardiovascular disease are highlighted. The hybrid imaging workflow here has to be tailored to the clinical indication to maximize diagnostic information while minimizing acquisition time. PET/MR introduces new artifacts that need special observation and innovative solutions for correction. Finally, the rising need for appropriate phantoms and standardization efforts in PET/MR hybrid imaging is discussed. J. Magn. Reson. Imaging 2014;39:243–258 . © 2013 Wiley Periodicals, Inc .  相似文献   

10.
PET/CT artifacts     
There are several artifacts encountered in positron emission tomography/computed tomographic (PET/CT) imaging, including attenuation correction (AC) artifacts associated with using CT for AC. Several artifacts can mimic a 2-deoxy-2-[18F] fluoro-d-glucose (FDG) avid malignant lesions and therefore recognition of these artifacts is clinically relevant. Our goal was to identify and characterize these artifacts and also discuss some protocol variables that may affect image quality in PET/CT.  相似文献   

11.
12.
13.
14.

Objective

To explore the value of 18F fluorodeoxy-glucose (FDG) positron emission tomography (PET) in Burkitt's lymphoma.

Methods

All Burkitt's lymphoma patients referred for FDG PET or FDG PET/computed tomography (CT) exams at our institution from June 2003 to June 2006 were included. Selected patients were followed and clinical information was reviewed retrospectively. Results from FDG PET-PET/CT, as blindly reviewed by a consensus of two experienced readers, were compared with the status of the disease as determined by other laboratory, clinical and imaging exams and clinical follow-up. FDG PET-PET/CT results were classified as true positive or negative and false positive or negative. The degree of FDG uptake in the positive lesions was semiquantified as maximum standard uptake value (SUVmax).

Results

Fifty-seven FDG PET-PET/CT exams were done in 15 patients. Seven exams were done for initial staging, 8 during and 14 after the completion of therapy, and 28 for disease surveillance. For nodal disease FDG PET-PET/CT was true positive in 8, true negative in 47 and false positive in 2 exams (sensitivity 100%, specificity 96%). For extranodal disease FDG PET-PET/CT was true positive in 6, true negative in 48 and false positive in 3 exams (sensitivity 100%, specificity 94%). The mean SUVmax for the positive nodal lesions was 15.7 (range 6.9-21.7, median 18.5) and for extranodal lesions was 14.2 (range 6.2-24.3, median 12.4).

Conclusions

FDG PET-PET/CT is sensitive for the detection of viable disease in Burkitt's lymphoma. Affected areas demonstrated high degree of uptake that was reversible upon successful implementation of treatment.  相似文献   

15.
PET/CT combines functional and morphologic data and increases diagnostic accuracy in a variety of malignancies. This study prospectively compares the agreement between contrast-enhanced full-dose PET/CT and unenhanced low-dose PET/CT in lesion detection and initial staging of Hodgkin's disease and non-Hodgkin's lymphoma. METHODS: Forty-seven biopsy-proven lymphoma patients underwent a 18F-FDG PET/CT study that included unenhanced low-dose CT and enhanced full-dose CT for initial staging. Patients who had undergone previous diagnostic CT for initial staging were excluded. For every patient, each modality of PET/CT images was evaluated by either of 2 pairs of readers, with each pair comprising 1 experienced radiologist and 1 experienced nuclear physician. While evaluating one of the 2 types of PET/CT, the readers were unaware of the results of the other type. Lesion detection, number of sites affected in each anatomic region, and disease stage were assessed. Agreement between techniques was determined by the kappa-statistic, and discordances were studied by the McNemar test. Clinical, analytic, histopathologic, diagnostic CT, and PET data; data from other imaging techniques; and follow-up data constituted the reference standard. RESULTS: For region-based analysis, no significant differences were found between unenhanced low-dose PET/CT and contrast-enhanced full-dose PET/CT, although full-dose PET/CT showed fewer indeterminate findings and a higher number of extranodal sites affected than did low-dose PET/CT. Agreement between the 2 types of PET/CT was almost perfect for disease stage (kappa = 0.92; P < 0.001). CONCLUSION: Our study showed a good correlation between unenhanced low-dose PET/CT and contrast-enhanced full-dose PET/CT for lymph node and extranodal disease in lymphomas, suggesting that unenhanced low-dose PET/CT might suffice in most patients as the only imaging technique for the initial staging of lymphomas, reserving diagnostic CT for selected cases.  相似文献   

16.
17.
18.
PET and PET/CT in management of the lymphomas   总被引:1,自引:0,他引:1  
Within recent years, F-18 fluorodeoxyglucose (FDG) PET has become the most important nuclear medicine and radiology imaging modality in the management of lymphoma. FDG-PET detects more disease sites and involved organs than conventional staging procedures, including CT, and has a large influence on staging. FDG-PET performed during and after therapy seems to provide considerable prognostic information. The impact on patient outcome is not clear, however, because no controlled trials have yet been conducted and follow-up periods are generally short.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号