首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
beta-Adrenoceptor blocking agents (beta-blockers) that at low concentrations antagonize cardiostimulant effects of catecholamines, but at high concentrations also cause cardiostimulation, have been appearing since the late 1960s. These cardiostimulant beta-blockers, coined non-conventional partial agonists, antagonize the effects of catecholamines through a high-affinity site (beta(1H)AR), but cause cardiostimulation mainly through a low-affinity site (beta(1L)AR) of the myocardial beta(1)-adrenoceptor. The experimental non-conventional partial agonist (-)-CGP12177 increases cardiac L-type Ca(2+) current density and Ca(2+) transients, shortens action potential duration but augments action potential plateau, increases heart rate and force, as well as causes arrhythmic Ca(2+) transients and arrhythmic cardiocyte contractions. Other beta-blockers, which do not cause cardiostimulation, consistently have lower affinity for beta(1L)AR than beta(1H)AR. These sites were verified and the cardiac pharmacology of non-conventional partial agonists confirmed on recombinant beta(1)-adrenoceptors and on beta(1)-adrenoceptors overexpressed into the heart. A targeted mutation of Asp138 to Glu138 virtually abolished the pharmacology of beta(1H)AR but left intact the pharmacology of beta(1L)AR. Non-conventional partial agonists may be beneficial for the treatment of peripheral autonomic neuropathy but probably due to their arrhythmic propensities, may be harmful for the treatment of chronic heart failure.  相似文献   

2.
Pharmacological responses to aryloxypropanolamines were examined in cells expressing rat or human beta(1)-adrenergic receptors (ARs) using adenylyl cyclase assays. The aryloxypropanolamines CGP 12177 and LY 362884, originally developed as beta(3)-AR agonists, were found to stimulate the beta(1)-AR. Interestingly, both CGP 12177 and LY 362884 exhibited an anomalous biphasic effect on beta(1)-AR. Low concentrations of either CGP 12177 or LY 362884 potently blocked isoproterenol-induced stimulation of beta(1)-AR, whereas higher concentrations of these compounds stimulated the beta(1)-AR. The unusual interaction of these aryloxypropanolamine ligands with the beta(1)-AR was further characterized using beta-AR antagonists. Activation of beta(1)-AR by CGP 12177 or LY 362884 was observed to be significantly more resistant to blockade by beta-AR antagonists compared with activation by catecholamines. These results suggest that catecholamines and aryloxypropanolamines interact with distinct active conformations of the beta(1)-AR: a state that is responsive to catecholamines and is blocked with high affinity by CGP 12177 and LY 362884, and a novel state that is activated by aryloxypropanolamines but is resistant to blockade by standard beta-AR antagonists. Moreover, dependence of antagonist affinity on agonist structure is unprecedented, and its implications on the use of beta-AR agonists such as CGP 12177 in receptor classification are discussed.  相似文献   

3.
Demonstration of an in vivo functional beta 3-adrenoceptor in man.   总被引:4,自引:4,他引:4       下载免费PDF全文
Although it is well established in several mammalian species that beta 3-adrenoceptors play a major role in regulating lipolysis and thermogenesis in adipose tissue, the functional existence and role of this receptor subtype in man has been controversial. We investigated whether the beta 3-adrenoceptor functionally co-exists with beta 1- and beta 2-adrenoceptors in vivo in human adipose tissue. Subcutaneous abdominal adipose tissue of healthy non-obese subjects was microdialyzed with equimolar concentrations of dobutamine (selective beta 1-adrenoceptor agonist), terbutaline (selective beta 2-adrenoceptor agonist), or CGP 12177 (selective beta 3-adrenoceptor agonist). All three agents caused a rapid, sustained, concentration-dependent and significant elevation of the glycerol level in the microdialysate (lipolysis index). However, only terbutaline stimulated the nutritive blood flow in adipose tissue, as measured by an ethanol escape technique. Dobutamine and CGP 12177 was equally effective in elevating the glycerol level (maximum effect 150% above baseline). Terbutaline was significantly more effective than the other two beta-agonists (maximum effect 200% above baseline). When adipose tissue was pretreated with the beta 1/beta 2-selective adrenoceptor blocker propranolol the glycerol increasing effect of dobutamine or terbutaline was inhibited by 80-85% but the glycerol response to CGP 12177 was not influenced. It is concluded that a functional beta 3-adrenoceptor is present in vivo in man. It co-exists with beta 1- and beta 2-adrenoceptors in adipose tissue and may therefore play a role in lipolysis regulation. It appears, however, that the beta 2-adrenoceptor is the most important beta-adrenoceptor subtype for the mobilization of lipids from abdominal subcutaneous adipose tissue because of its concomitant stimulatory effect on lipolysis and blood flow.  相似文献   

4.
Antagonist affinity measurements have traditionally been considered important in defining the receptor or receptor subtypes present within cells or tissues. Any change in this value has normally been taken as evidence for the presence of a second receptor. However, highly efficacious ligands induce a time and phosphorylation-dependent change in the beta2-adrenoceptor resulting in 10-fold lower affinity for antagonists. Also the beta1-adrenoceptor is now considered to exist in two different active conformations which are distinguished by their pharmacological properties. In this study, the site of action of a range of beta-agonists and beta-antagonists was determined using the human beta1-adrenoceptor stably expressed in Chinese hamster ovary cells with cyclic AMP response element reporter genes. Adrenaline and noradrenaline were confirmed as having agonist actions via the catecholamine site, whereas all antagonists had higher affinity for the catecholamine rather than secondary site. However, the rank order of affinity for the two sites was different suggesting that they are indeed separate entities. The measurements of antagonist affinity at the catecholamine site, however, were found to depend upon the agonist present. For example, xamoterol, cimaterol, terbutaline, and formoterol agonist responses were more readily antagonized by CGP 20712A[2-hydroxy-5-(2-[{hydroxy-3-(4-[1-methyl-4-trifluoromethyl-2-imidazolyl]phenoxy)propyl}amino]ethoxy)benzamide] than the catecholamine responses themselves. This, however, was not related to agonist efficacy as has previously been reported for the human beta2-adrenoceptor. Therefore, it may be that some agonists (e.g., cimaterol) purely activate the catecholamine site and others purely activate the secondary site (e.g., CGP 12177 [(-)-4-(3-tert-butylamino-2-hydroxypropoxy)-benzimidazol-2-one]), whereas the others (e.g., catecholamines) activate both sites to differing degrees.  相似文献   

5.
A supersensitivity of the beta-adrenoceptor-mediated chronotropic response has been demonstrated in atria isolated from rats subjected to septic shock. Our study was undertaken to investigate whether bacterial endotoxin/LPS affects the increase in heart rate induced by beta-adrenoceptor agonists in the rat also in vivo. In pithed and vagotomized rats, the nonselective beta-adrenoceptor agonist isoprenaline (0.05-0.15 nmol/kg) and agonists at the high- and low-affinity state of beta1-adrenoceptors, that is, prenalterol (0.3-3 nmol/kg) and (+/-)-4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazole-2-one (CGP 12177; 3-6 nmol/kg), respectively, and at beta2-adrenoceptors, that is, fenoterol (1-5 nmol/kg), increased heart rate by 50 to 60 beats/min. Administration of LPS (0.4, 1, and 1.5 mg/kg), under continuous infusion of vasopressin, dose-dependently amplified the chronotropic response to isoprenaline, prenalterol, and fenoterol (by 80%, 50%, and 100%, respectively) but not to CGP 12177. The beta2-adrenoceptor antagonist erythro-(+/-)-1-(7-methylindan-4-yloxy)-3-isopropylaminobutan-2-ol (ICI 118551 0.1 mumol/kg) did not affect the chronotropic responses of isoprenaline, fenoterol, and prenalterol under non-endotoxic conditions, but abolished the potentiation of tachycardia produced by LPS (1.5 mg/kg). The beta1-adrenoceptor antagonist (+/-)-2-hydroxy-5-[2-[[2-hydroxy-3-[4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]-phenoxy]propyl]-amino]ethoxy]-benzamide CGP 20712A; 0.1 mumol/kg almost completely reduced the chronotropic effects of isoprenaline, fenoterol, and prenalterol both in control rats and in animals exposed to LPS (1.5 mg/kg). We conclude that LPS sensitizes cardiac beta-adrenoceptors by recruiting functionally active beta2-adrenoceptors, but the amplification of tachycardia occurs only when both beta1- and beta2-adrenoceptors are concomitantly activated. The pithed rat may serve as a model to examine the beta-adrenoceptor supersensitivity in vivo.  相似文献   

6.
7.
l-Isoproterenol has been proposed to stimulate lipolysis in rat epididymal adipocytes via atypical beta adrenergic receptors, whereas radioligand binding studies only revealed the presence of beta 1 adrenergic receptors on adipocyte membranes. We have made use of the unique properties of CGP12177 to evidence that both the beta 1 and the atypical beta adrenergic receptor subtypes are mediating the lipolytic response of rat epididymal adipocytes to l-isoproterenol. CGP12177, an antagonist with high affinity for beta 1 receptors, triggers lipolysis by specifically stimulating the atypical receptors. For this response, CGP12177 displays low potency (EC50 = 68 nM), but high intrinsic activity (94% relative to l-isoproterenol). At low concentrations (3 nM), CGP12177 inhibits the lipolytic response to 10 nM l-isoproterenol by 43%, indicating that at least this fraction of the response is beta 1 receptor-mediated. The response to BRL37344, which is a selective agonist for the atypical receptors, is not inhibited by CGP12177. The pA2 values of the beta adrenergic antagonists propranolol, metoprolol and atenolol were calculated from the rightward shifts that they impose on dose-response curves of both l-isoproterenol and CGP12177. With l-isoproterenol, these values (6.54, 5.83 and 5.07, respectively) are lower than those expected for beta 1 and beta 2 receptors, indicating that atypical receptors are also involved in the lipolytic response to this agonist. With CGP12177, the pA2 values of propranolol, metoprolol and atenolol are even lower (5.80, 5.03 and 4.06, respectively), and are likely to be a more accurate reflection of their affinities for the atypical receptors.  相似文献   

8.
The interaction of [(-)-4-(3-t-butylamino-2-hydroxy-propoxy)benzimidazol-2-one] (CGP 12177) (CGP) with receptors that couple to adenylate cyclase was examined in membrane homogenates from rat interscapular brown adipose tissue (IBAT). Although typically regarded as a beta adrenoceptor antagonist, CGP stimulated adenylate cyclase activity with an activation constant of about 3 microM. Consistent with its classification as an antagonist, CGP inhibited norepinephrine-stimulated cyclase activity and did so at concentrations that had little or no stimulatory effect. CGP also inhibited activity stimulated by the atypical agonist [(R*,R*)-4-[2-[[2[(3-chlorophenyl)-2- hydroxyethyl]amino]propyl]phenyl]phenoxyacetic acid (BRL 37344), but only at CGP concentrations that stimulated activity when tested alone. The beta-1-selective antagonist ICI 89,406 blocked norepinephrine-stimulated adenylate cyclase activity, but did not inhibit the activity stimulated by CGP. Together, these results indicate that CGP modulates IBAT adenylate cyclase by interacting with two receptors. One is the beta-1 receptor of which CGP is a high-affinity antagonist. The second appears to be an atypical receptor of which CGP is a partial agonist.  相似文献   

9.
This study investigates the effect of the aryloxypropanolamines 4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one (CGP 12177), bupranolol, and 3-(2-ethylphenoxy)-1[(1S)-1,2,3,4-tetrahydronaphth-1-ylamino]-(2S)-2-propanol oxalate (SR 59230A) [commonly used as beta(3)- and/or atypical beta-adrenergic receptors (beta-AR) ligands] on the contractile function of rat intralobar pulmonary artery. Affinities of beta-AR ligands for alpha(1)-adrenergic receptors (alpha(1)-AR) were also evaluated using [(3)H]prazosin binding competition experiments performed in rat cortical membranes. In intralobar pulmonary artery, CGP 12177 did not modify the basal tone, but antagonized the contraction induced by the alpha(1)-AR agonist phenylephrine (PHE). In arteries precontracted with PHE, CGP 12177 elicited relaxation, whereas in those precontracted with prostaglandin F(2alpha) (PGF(2alpha)), it further enhanced contraction. CGP 12177 induced an increase in intracellular calcium concentration in pressurized arteries loaded with Fura PE-3 and precontracted with PGF(2alpha). In PGF(2alpha) precontracted arteries, phentolamine (an alpha-AR antagonist) and phenoxybenzamine (an irreversible alpha-AR antagonist) antagonized the contractile responses to PHE and CGP 12177. Both responses were also decreased by bupranolol and SR 59230A. Specific [(3)H]prazosin binding was displaced by CGP 12177, bupranolol, and SR 59230A with pK(i) values of 5.2, 5.7, and 6.6, respectively. In contrast, (+/-)-(R*,R*)-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acetic acid sodium (BRL 37344) and disodium 5-[(2R)-2-([(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino)propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL 316243) (nonaryloxypropanolamines beta(3)-AR agonists) displayed very low affinity for [(3)H]prazosin binding sites (pK(i) values below 4). These data suggest that CGP 12177 exhibits partial agonist properties for alpha(1)-AR in rat pulmonary artery. They also show that bupranolol and SR 59230A exert an alpha(1)-AR antagonist effect. As a consequence, these aryloxypropanolamine compounds should be used with caution when investigating the role of beta(3)- and atypical beta-AR in the regulation of vascular tone.  相似文献   

10.
Xamoterol is a new orally active partial beta-adrenoceptor agonist. Its kinetics, hemodynamic and metabolic effects, and cardioselectivity were investigated in eight normal subjects. Plasma xamoterol concentrations after 100 micrograms/kg iv declined biexponentially over 8 hr and t 1/2 beta averaged 2.6 hr. Resting heart rate (HR) increased slightly in the supine position but was unchanged on sitting. Systolic blood pressure (SBP) rose by 5 to 10 mm Hg and cardiac index (CI) rose 15% to 20%. Both parameters were above control values 6 hr after dosing, when plasma xamoterol concentrations had fallen to about 10 ng/ml. There were no changes in diastolic or mean arterial pressure (MAP). During graded exercise the effects of xamoterol on HR and SBP were the reverse of those at rest, with lowering of exercise HR and SBP at higher work loads. CI during exercise was not altered by xamoterol. Doses of xamoterol were calculated from the kinetic data to give plasma concentrations of 100, 200, 400, and 800 ng/ml. HR and blood pressure effects at each xamoterol level were compared before and after inhibition of cardiovascular reflexes with prazosin, atropine, and clonidine. Hemodynamic effects of xamoterol and isoproterenol were compared. Before autonomic block xamoterol increased HR by 10 bpm and MAP by 7 mm Hg at the highest dose. After autonomic block there was a 200% to 300% rise in HR at each dose and MAP still rose. The rise in MAP after block could be entirely accounted for by a 23% increase in CI because total peripheral resistance did not change. The effects of isoproterenol after autonomic block were a rise in HR and a fall in MAP. Metabolic responses to xamoterol were measured at the four dose levels. There was a dose-related increase in nonesterified fatty acids and a fall in plasma lactate levels but no changes in plasma renin activity or blood glucose. Results suggest that xamoterol is a cardioselective partial beta-adrenoceptor agonist in man.  相似文献   

11.
In membrane preparations derived from primary cultures of chick myocardial cells, beta adrenergic receptors modeled for a single low-affinity site for both betaxolol (beta-1-selective) and ICI 118551 (beta-2-selective) displacement of [125I]iodocyanopindolol (ICYP), indicating that the chick beta receptor is pharmacologically distinct from both mammalian beta-1 and beta-2 adrenergic receptors with respect to these antagonists. However, the highly beta-1-selective compound CGP 20712A was able to distinguish two binding sites on ICYP competition curves, a high-affinity "beta-1 site" (75%) and a low-affinity "beta-2 site" (25%). Also, in chick heart cell membranes the relative ability of agonists to displace ICYP produced a profile typical of beta-1 adrenergic receptors with a rank order of potency or efficacy of: isoproterenol greater than epinephrine = norephinephrine. When agonist-mediated adenylyl cyclase stimulation was assessed the order of potency was slightly different, isoproterenol greater than epinephrine greater than or equal to norepinephrine. Additionally, antagonism of isoproterenol stimulation of adenylyl cyclase by CGP 20712A yielded a Kb value (1.16 +/- 0.35 x 10(-7) M) intermediate between the high and low-affinity binding sites of CGP 20712A, suggesting that the low-affinity site is coupled to adenylyl cyclase. In membrane preparations of frog myocardial cells, ICYP/antagonist competition curves modeled for a mixed population of receptors, with subtype percentages varying from 50:50 beta-1:beta-2 to 100% beta-2 depending on the specific antagonist used and the individual cell preparation. For ICYP/agonist competition binding experiments the relative ability to displace ICYP was isoproterenol greater than epinephrine = norepinephrine, a profile typical of beta-1 adrenergic receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The pharmacological effects of xamoterol, a beta adrenoceptor antagonist with partial agonistic activity, were examined in guinea pig cardiac preparations and compared with those of isoproterenol to assess possible mechanisms of its cardiac stimulant actions. Xamoterol produced a positive inotropic effect in the papillary muscles and a positive chronotropic effect in the spontaneously beating right atria in a concentration-dependent manner. The maximum inotropic and chronotropic effects of xamoterol were about 33 and 35% of those of isoproterenol, respectively. Although xamoterol failed to produce a consistent increase in contractile force in the left atria, the positive inotropic effect of the agent was observed clearly in preparations obtained from reserpine-pretreated animals. The positive inotropic and chronotropic effects of xamoterol were antagonized by atenolol, but not by ICI 118,551. On the other hand, xamoterol antagonized competitively the positive inotropic and chronotropic responses to isoproterenol. In papillary muscles the increases in contractile force induced by xamoterol and isoproterenol were depressed markedly in the presence of carbachol or adenosine. In all of left atria, right atria and papillary muscles obtained from reserpine-pretreated animals, xamoterol caused a significant elevation in cyclic AMP levels, while inhibiting the isoproterenol-induced increase in cyclic AMP levels. Computer-assisted analysis of concentration-response curves for the inhibition by xamoterol of the binding of [125I]iodocyanopindolol in the membranes from guinea pig ventricles showed the existence of the 5'-guanylylimidodiphosphate sensitive, highly affinity site of beta adrenoceptors for xamoterol, suggesting that xamoterol may induce the formation of a ternary complex with the beta adrenoceptor and a stimulatory guanine nucleotide regulatory protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In congestive heart failure patients, treatment with beta-adrenoceptor antagonists improves symptoms and decreases mortality. However, intrinsic sympathomimetic activity of beta-adrenoceptor antagonists might be disadvantageous in chronic heart failure. The nonselective beta1- and beta2-adrenoceptor antagonist bucindolol has failed to decrease mortality in clinical trials. A putative beta4-adrenoceptor, which mediates positive inotropic effects by activation of the adenylate cyclase has been described. Recently, this putative beta4-adrenoceptor has been identified to be a propranolol-insensitive state of the beta1-adrenoceptor. The present study aimed to characterize whether bucindolol exhibits agonistic activity on this atypical beta1-adrenoceptor state as one possible reason for clinical inefficiency. For comparison (S)-4-(3'-t-butylamino-1'-hydroxypropoxy)-benzimidozole-2 (CGP 12177), metoprolol, and nebivolol were investigated. Bucindolol did not reveal intrinsic sympathomimetic activity in electrically driven (1 Hz, 37 degrees C), forskolin-stimulated, left ventricular papillary muscle strips (donor hearts, nonfailing; n = 5) and in right auricular trabeculae (bypass operation; n = 4). Functional studies on the propranolol-insensitive state of beta1-adrenoceptors were performed in isolated muscle preparations after beta1- and beta2-adrenoceptor antagonism (propranolol, 1 microM), inhibition of beta3-mediated inotropic effects (N-nitro-L-arginine, 100 microM) and forskolin treatment (0.3 microM). Positive inotropic response to stimulation of atypical state beta1-adrenoceptors could be demonstrated in right auricular as well as left ventricular human myocardium (CGP 12177 treatment, 10 microM). Under these conditions, also bucindolol, but not metoprolol and nebivolol, significantly increased contractility (all 10 microM). In conclusion, bucindolol but not metoprolol or nebivolol mediate positive inotropic effects in human myocardium due to activation of atypical state beta1-adrenoceptors. Thus, the agonistic activity of bucindolol may influence outcome in heart failure patients.  相似文献   

14.
15.
Interactions of dl-flerobuterol with central beta adrenoceptors were investigated. It inhibited the binding of [3H]CGP 12177, a selective beta adrenoceptor ligand, to membranes prepared from rat cerebral cortex, cerebellum, heart and lung. The affinity of dl-flerobuterol was very close in all tissues (Ki approximately 1 microM). In cerebral cortex, binding inhibition of [3H]CGP 12177 was stereospecific, l-flerobuterol (Ki = 483 nM) being 70-fold more potent than d-flerobuterol (Ki = 34 microM). Moreover, dl-flerobuterol (Ki = 926 nM) was 7-fold less potent than isoproterenol (Ki = 140 nM) to displace [3H]CGP 12177 binding, but 5-fold more potent than salbutamol (Ki = 4600 nM). Flerobuterol did not inhibit the radioligand binding to the other receptors at the highest concentration tested, thus leading to a very high beta adrenergic selectivity. Flerobuterol increased the concentration of cyclic AMP in slices of rat cerebral cortex in a dose-dependent manner; this effect was antagonized by atenolol and propranolol. Compared to isoproterenol or norepinephrine, which produced cyclic AMP maximal increases of 380 and 460%, respectively, it showed a weaker activity with a maximal stimulation obtained at 100 microM, corresponding to a cAMP increase of 140% over basal value (100%). These data revealed that flerobuterol possessed a beta adrenergic agonist activity. Moreover, it antagonized competitively the isoproterenol- or norepinephrine-stimulated accumulation of cAMP. At low concentrations of isoproterenol or norepinephrine, the stimulation of adenylate cyclase was only due to the action of flerobuterol, but at higher concentrations, the response of isoproterenol or norepinephrine was competitively blocked by flerobuterol. At 10 microM, isoproterenol surmounted fully this antagonism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study examines the role of prejunctional and postjunctional beta-adrenoceptors in the modulation of sympathetic cotransmission in the guinea pig vas deferens. The prejunctional involvement of beta-adrenoceptors was evaluated by testing the effects of several agonists and antagonists on the nerve stimulation-evoked overflow of ATP and norepinephrine (NE) from the "in vitro" vas deferens. The nonsubtype-selective beta-adrenoceptor agonist isoproterenol and the beta2-subtype-selective agonist clenbuterol increased, to a similar degree, the overflow of ATP and NE, while the beta1-subtype-selective agonist xamoterol and the beta3-subtype-selective agonist BRL 37 344 had no effect. Pretreatment with ICI 118, 551, a beta2-subtype-selective antagonist, abolished the facilitation of cotransmitter release by isoproterenol and clenbuterol, while the beta1-subtype-selective antagonist atenolol had no effect. Activation of beta-adrenoceptors by either isoproterenol or clenbuterol, but not by xamoterol and BRL 37 344, reduced the amplitude of contractions evoked by exogenously applied ATP. Pretreatment with propranolol or ICI 118, 551, but not atenolol, prevented these inhibitory effects. Isoproterenol in lower concentrations produced dose-dependent reduction of the purinergic but not the adrenergic phase of nerve stimulation-induced contraction of the guinea pig vas deferens. When applied in concentrations greater than 1 microM, isoproterenol, but not clenbuterol, actually produced a concentration-dependent facilitation of contractions evoked by both nerve stimulation and exogenously applied ATP. Antagonists of alpha-adrenoceptors blocked these facilitatory effects. Together, these results demonstrate that beta2-adrenoceptors can influence sympathetic neuroeffector transmission both prejunctionally, where they facilitate equally well the release of sympathetic cotransmitters and postjunctionally, where they inhibit smooth muscle contractions evoked by ATP.  相似文献   

17.
18.
Summary— The aim of this study was to investigate in rabbits the diastolic arterial blood pressure, plasma glucose and plasma lactate responses to salbutamol (a selective beta-2 adrenoceptor agonist) and BRL 37344 (a selective beta-3 adrenoceptor agonist) in comparison with CGP 12177 (a potent beta-1 and beta-2 adrenoceptor antagonist which also acts as a partial beta-3 agonist), isoprenaline (a non-selective beta-1, beta-2 and beta-3 adrenoceptor agonist) and adrenaline (a non-selective beta and alpha adrenoceptor agonist). All drugs were iv infused at the same dose: 0.3 μg/kg/min (30 min). In sodium pentobarbitone (40 mg/kg)-anasthetized animals none of these compounds altered diastolic arterial blood pressure. BRL 37344 (0.1, 0.3, 1 μg/kg/min) did not modify this parameter either. In conscious 24-h fasted rabbits, only adrenaline was able to increase plasma glucose levels. By contrast, under the same experimental conditions, salbutamol, isoprenaline and adrenaline, but not BRL 37344 or CGP 12177, induced a significant increase in plasma lactate levels. Finally, the salbutamol-mediated plasma lactate response was inhibited in the presence of clonidine (2 μg/kg/min, an alpha-2 adrenoceptor agonist), a drug considered to have opposite effects (stimulatory and inhibitory) on the adenylate cyclase system. In conclusion, these data suggest that only beta-2 adrenoceptor stimulation is able to increase plasma lactate levels, a response which is inhibited by alpha-2 adrenoceptor stimulation.  相似文献   

19.
Presynaptically localized adrenoceptors occur on a variety of neurones. In particular, alpha2-adrenoceptors, occurring on neurones of the peripheral and central nervous system, inhibit the release of the respective transmitters whereas beta2-adrenoceptors on some types of postganglionic sympathetic neurones facilitate noradrenaline release. Since only little information is available whether there are also presynaptic beta3-adrenoceptors, we examined the effect of beta3-adrenoceptor agonists on noradrenaline release from the resistance vessels and the hippocampus of the rat and on serotonin and acetylcholine release from the rat hippocampus. In rat hippocampal slices preincubated with (H-noradrenaline, 3H-serotonin and 3H-choline and superfused in the presence of an inhibitor of the neuronal transporter of the respective neurone, the beta3-adrenoceptor agonist CL 316243 did not affect the electrically evoked tritium overflow. The latter was, however, inhibited by at least 50% by agonists of the respective autoreceptors. CL 316243 and another three beta3-adrenoceptor agonists (BRL 37344, ZD 2079 and CGP 12177) failed to affect the electrically evoked tritium overflow also in slices preincubated with 3H-noradrenaline and superfused in the presence of the alpha2-adrenoceptor antagonist rauwolscine whereas prostaglandin E2 caused a marked inhibition. In pithed and vagotomized rats, the increase in diastolic blood pressure induced by electrical stimulation of the sympathetic outflow was also not affected by CL 316243 but markedly inhibited by the cannabinoid receptor agonist WIN 55212-2. CL 316243 and WIN 55212-2 were devoid of an effect on the rise in diastolic blood pressure induced by exogenous noradrenaline. In conclusion, our data suggest that the noradrenergic neurones innervating the resistance vessels of the rat and the noradrenergic, serotoninergic and cholinergic neurones of the rat hippocampus are not endowed with presynaptic beta3-adrenoceptors.  相似文献   

20.
The stimulation of adenylyl cyclase by catecholamines in neonatal brown adipose tissue (BAT) is markedly biphasic, suggesting the existence of receptors that have both high and low affinities for catecholamines. The identities of these receptors were examined by comparing responses in neonatal BAT membranes to those of Chinese hamster ovary cells which had been transfected to express the cloned rat beta 1 and beta 3 receptors. The results from these experiments indicate that high-affinity stimulation of adenylyl cyclase by catecholamines in BAT is mediated by beta 1 receptors, as evidenced by the potencies of norepinephrine and isoproterenol at this receptor and the potent blockade of the receptor by alprenolol. The low-affinity catecholamine receptor appears to be the beta 3 receptor, as indicated by the low potency of catecholamine agonists and the inability of low concentrations of alprenolol to block this activity. Furthermore, this receptor, like the cloned rat beta 3 receptor, was antagonized by (-)-4-(3-t-butylamino-2-hydroxypropoxy)benzimidazol-2-one (CGP 12177) and was stimulated by (R',R')-4-(2-[(2[(3-chlorophenyl)-2- hydroxyethyl]amino)propyl]phenyl)phenoxyacetic acid (BRL 37344). These results indicate that both beta 1 and beta 3 receptors couple to adenylyl cyclase in BAT and that activation of adenylyl cyclase in neonatal BAT is mediated primarily by beta 3 receptors. Beta 3 receptors were also clearly detected in weanling BAT with the beta 3-selective agonist BRL 37344. However, when catecholamines were used to stimulate activity, the activation of adenylyl cyclase by beta 1 receptors, which occurred at low concentrations of catecholamines, obscured the activation of adenylyl cyclase by beta 3 receptors, which occurred only at high concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号