首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
BACKGROUND: Muscle-eye-brain disease is a congenital muscular dystrophy with eye and brain involvement due to POMGnT1 mutations. OBJECTIVE: To describe the clinical and molecular features of 3 Italian patients with POMGnT1 mutations. DESIGN: Case reports. PATIENTS: One patient had muscle and brain abnormalities without eye involvement. Two patients had a classic muscle-eye-brain disease phenotype with different levels of clinical severity. RESULTS: Brain magnetic resonance imaging showed cortical malformation and posterior fossa involvement. Immunofluorescence for glycosylated alpha-dystroglycan performed on muscle biopsy specimens demonstrated an absent signal in 1 patient and reduced staining in 2 patients. Molecular analysis identified 5 mutations, 2 of which are novel. CONCLUSION: This article adds to what is known about the genotype-phenotype correlation and expands our awareness of the clinical spectrum associated with POMGnT1 mutations.  相似文献   

2.
INTRODUCTION: FKRP mutations cause a muscular dystrophy which may present in the neonatal period (MDC1C) or later in life (LGMD2I). Intelligence and brain imaging have been previously reported as being normal in FKRP-associated muscular dystrophy, except in rare cases presenting with mental retardation associated with structural brain abnormalities. PATIENTS AND METHODS: We studied cerebral MRIs in twelve patients with FKRP-associated muscular dystrophy presenting in infancy or early childhood, at ages between 14 months and 43 years. Two patients had severe cognitive deficits, four had mild-moderate mental retardation and the rest were considered to have normal intelligence. All, but one were wheelchair-bound and 7 were mechanically ventilated. RESULTS: Brain MRI was abnormal in 9 of 12 patients. Brain atrophy was seen in 8 patients. One child had isolated ventricular enlargement at 4 years. Cortical atrophy involved predominantly temporal and frontal lobes and was most important at later ages. In two cases with serial images this atrophy seemed progressive. Three patients, two with severe and one with moderate mental retardation, showed structural abnormalities of the posterior fossa with hypoplasia of the vermis and pons, and cerebellar hemispheric cysts. These abnormalities were stable with time. Two of these three patients also showed diffuse white matter abnormalities in early childhood, which regressed with time. CONCLUSIONS: MRI abnormalities are common in patients with FKRP-associated muscular dystrophy presenting at birth or in early childhood. Progressive brain atrophy is the most frequent finding. Posterior fossa malformations and transient white matter changes may be seen in patients with associated mental retardation.  相似文献   

3.
Mutations in the gene encoding fukutin related protein (FKRP) produce a spectrum of disease including congenital muscular dystrophy and limb girdle muscular dystrophy. FKRP is one member of a class of molecules thought to be glycosyltransferases that mediate O-linked glycosylation. The primary target of these glycosyltransferases is thought to be dystroglycan. We now report two unrelated Mexican children with congenital muscular dystrophy who each have the identical, novel 1387A>G, N463D mutation. Muscle biopsies from these children show a reduction of alpha-dystroglycan and also show reduction of beta-dystroglycan, and alpha-, beta-, and gamma-sarcoglycan, suggesting that FKRP mutations can perturb membrane associated proteins beyond dystroglycan.  相似文献   

4.
It has become clear in the past half decade that a number of forms of congenital muscular dystrophy are in fact congenital disorders of glycosylation. Genes for Walker Warburg syndrome, muscle-eye-brain disease, Fukuyama congenital muscular dystrophy, congenital muscular dystrophy 1C and 1D, and limb girdle muscular dystrophy 21 have been identified, and gene mutations resulting in these diseases all cause the underglycosylation of alpha dystroglycan with O-linked carbohydrates. Unlike congenital disorders of glycosylation involving the N-linked pathway, these O-linked disorders possess distinctive muscle, eye, and brain phenotypes. Studies using mice and patient tissues strongly suggest that underglycosylation of dystroglycan inhibits the binding extracellular matrix proteins, effectively divorcing this important cell adhesion molecule from its extracellular environment. Moreover, defects in dystroglycan alone can account for most, if not all, cellular pathology. Thus, these disorders are now collectively referred to as dystroglycanopathies.  相似文献   

5.
We report three Tunisian patients affected by congenital muscular dystrophy with mental retardation and cerebellar cysts on cranial magnetic resonance imaging. The clinical features were characterized by hypotonia at birth, joint contractures associated with severe psychomotor retardation, absence of speech, inability to walk in three patients, but calf hypertrophy was noted only in two patients. Brain magnetic resonance imaging showed several cerebellar cysts and vermis hypoplasia in all of the patients. Abnormality of the white matter was present in two patients. The pattern of gyration was normal in all cases. Serum creatine kinase was elevated in all three cases and their muscle biopsy showed dystrophic changes compatible with congenital muscular dystrophy. The immunohistochemical analysis of the skeletal muscle revealed partial merosin deficiency, more pronounced for the N-terminal antibody. Linkage analysis excluded congenital muscular dystrophy loci on chromosomes 6q22, 9q31, 1p32 and 1q42. These patients constituted a particular form of congenital muscular dystrophy with a combination of severe motor delay, mental retardation, partial merosin deficiency and cerebellar cysts. Two patients showed white matter abnormalities on magnetic resonance imaging and hypertrophy of the calves. These cases, in addition to those reported previously, confirmed the large phenotypic variability in the group of secondary merosin deficiency congenital muscular dystrophy.  相似文献   

6.
Classical merosin (2 laminin)-positive congenital muscular dystrophy is a heterogeneous subgroup of disorders; a few cases characterized by severe mental retardation, brain involvement and no ocular abnormalities were called Fukuyama-like congenital muscular dystrophy. We report a family of healthy non-consanguineous parents, with four affected siblings, of which one died at the age of 7 months due to an intercurrent illness, who presented congenital hypotonia, severe mental retardation, microcephaly, delayed psychomotor development, generalized muscular wasting and weakness with mild facial involvement, calf pseudohypertrophy, joint contractures and areflexia. Muscle biopsy disclosed severe muscular dystrophy. Immunostaining for laminin 2 80 kDa and clone Mer3/22B2 monoclonal antibodies, 1 and 1 chain was preserved. Magnetic resonance imaging findings were consistent with pontocerebellar hypoplasia, bilateral opercular abnormalities and focal cortical dysplasia as well as minute periventricular white matter changes. Clusters of small T2-weighted focal hyperintensities in both cerebellar hemispheres consistent with cysts were observed in two of the three siblings studied with magnetic resonance imaging. Ophthalmologic and cardiologic examination was normal. Haplotype analysis using microsatellite markers excluded the Fukuyama congenital muscular dystrophy, LAMA2 and muscle-eye-brain disease loci. Thus, a wider spectrum of phenotypes, gene defects and protein deficiencies might be involved in congenital muscular dystrophy with brain abnormalities.  相似文献   

7.
The congenital muscular dystrophies (CMD) constitute a clinically and genetically heterogeneous group of autosomal recessive myopathies. Patients show congenital hypotonia, muscle weakness, and dystrophic changes on muscle biopsy. Mutations in four genes (FKT1, POMGnT1, POMT1, FKRP) encoding putative glycosyltransferases have been identified in a subset of patients characterized by a deficient glycosylation of -dystroglycan on muscle biopsy. FKRP mutations account for a broad spectrum of patients with muscular dystrophy, from a severe congenital form with or without mental retardation (MDC1C) to a much milder limb-girdle muscular dystrophy (LGMD2I). We identified two novel homozygous missense FKRP mutations, one, A455D, in six unrelated Tunisian patients and the other, V405L, in an Algerian boy. The patients, between the ages of 3 and 12 years, presented with a severe form of MDC1C with calf hypertrophy and high serum creatine kinase levels. None had ever walked. Two had cardiac dysfunction and one strabismus. They all had mental retardation, microcephaly, cerebellar cysts, and hypoplasia of the vermis. White matter abnormalities were found in five, mostly when cranial magnetic resonance imaging was performed at a young age. These abnormalities were shown to regress in one patient, as has been observed in patients with Fukuyama CMD. Identification of a new microsatellite close to the FKRP gene allowed us to confirm the founder origin of the Tunisian mutation. These results strongly suggest that particular FKRP mutations in the homozygous state induce structural and clinical neurological lesions in addition to muscular dystrophy. They also relate MDC1C to other CMD with abnormal protein glycosylation and disordered brain function.  相似文献   

8.
《Pediatric neurology》2014,50(5):491-497
BackgroundTo evaluate clinical, genetic, and radiologic features of our patients with muscle-eye-brain disease.MethodsThe data of patients who were diagnosed with muscle-eye-brain disease from a cohort of patients with congenital muscular dystrophy in the Division of Pediatric Neurology of Dokuz Eylül University School of Medicine and Gaziantep Children's Hospital between 2005 and 2013 were analyzed retrospectively.ResultsFrom a cohort of 34 patients with congenital muscular dystrophy, 12 patients from 10 families were diagnosed with muscle-eye-brain disease. The mean age of the patients was 9 ± 5.5 years (2-19 years). Mean serum creatine kinase value was 2485.80 ± 1308.54 IU/L (700-4267 IU/L). All patients presented with muscular hypotonia at birth followed by varying degrees of spasticity and exaggerated deep tendon reflexes in later stages of life. Three patients were able to walk. The most common ophthalmologic and radiologic abnormalities were cataracts, retinal detachment, periventricular white matter abnormalities, ventriculomegaly, pontocerebellar hypoplasia, and multiple cerebellar cysts. All of the patients had mutations in the POMGNT1 gene. The most common mutation detected in 66% of patients was c.1814 G > A (p.R605H). Two novel mutations were identified.ConclusionsWe suggest that muscle-eye-brain disease is a relatively common muscular dystrophy in Turkey. It should be suspected in patients with muscular hypotonia, increased creatine kinase, and structural eye and brain abnormalities. The c.1814 G > A mutation in exon 21 of the POMGNT1 gene is apparently a common mutation in the Turkish population. Individuals with this mutation show classical features of muscle-eye-brain disease, but others may exhibit a milder phenotype and retain the ability to walk independently. Congenital muscular dystrophy patients from Turkey carrying the clinical and radiologic features of muscle-eye-brain disease should be evaluated for mutations in POMGNT1 gene.  相似文献   

9.
Muscular dystrophies are composed of a variety of genetic muscle disorders linked to different chromosomes and loci and associated with different gene mutations that lead to progressive muscle atrophy and weakness. Fukuyama congenital muscular dystrophy is frequently associated with partial and generalized epilepsy and congenital brain anomalies, including cobblestone complex and other neuronal migration defects. We report generalized convulsive epilepsy in a boy with normal brain magnetic resonance imaging and Duchenne muscular dystrophy with deletion of dystrophin gene, and we report absence epilepsy with normal brain magnetic resonance imaging in another boy with limb girdle muscular dystrophy with partial calpain deficiency. We, therefore, review coexisting muscular dystrophies and epilepsy in children. In addition to Fukuyama congenital muscular dystrophy, partial or generalized epilepsy has also been reported in the following types of muscular dystrophies, including Duchenne/Becker dystrophy, facioscapulohumeral dystrophy, congenital muscular dystrophy with partial and complete deficiency of laminin alpha2 (merosin) chain, and limb girdle muscular dystrophy with partial calpain deficiency.  相似文献   

10.
Hypoglycosylation of α‐dystroglycan characterizes a subgroup of muscular dystrophies of variable severity, including Fukuyama congenital muscular dystrophy. We found fukutin gene mutations in a 4.5‐year‐old Italian patient, with reduced α‐dystroglycan expression, dystrophic features on muscle biopsy, hypotonia since birth, mild myopathy, but no brain involvement. Mutations in the fukutin gene can be associated with much milder phenotypes than classical Fukuyama congenital muscular dystrophy, and, although rare, can occur in non‐Japanese. Muscle Nerve, 2009  相似文献   

11.
Mutations in the gene encoding fukutin-related protein (FKRP) cause limb-girdle muscular dystrophy 2I (LGMD2I) and congenital muscular dystrophy (MDC1C). Cardiac involvement was frequently reported with numerous mutations including C826A and 1364C > A mutations. The original Tunisian family with LGMD2I included 12 patients sharing the LGMD phenotype and homozygous to the 1486T > A mutation but who did not display any cardiac involvement. In this study, we report the clinical data, cardiac assessment and mutation analysis in four sibs belonging to a second Tunisian LGMD2I family. All patients showed the LGMD phenotype, the oldest brother and sister had mild cardiac involvement, whereas two twin sisters displayed severe cardiomyopathy leading to death. The patients shared the compound heterozygous 1486T > A, 1364C > A mutation in the FKRP gene suggesting that the association of a compound heterozygous state of mutation responsible for LGMD2I and the MDC1C phenotype could lead to cardiac involvement.  相似文献   

12.
MDC1C and LGMD2I are two allelic forms of muscular dystrophies caused by mutations in the gene encoding for fukutin related protein (FKRP). FKRP encodes for a putative glycosyltransferase, the precise function of which is unknown. However, the marked reduction of -dystroglycan glycosylation in the muscle of MDC1C and LGMD2I patients suggests a role for FKRP in dystroglycan processing. Using a polyclonal antibody raised against FKRP we now show that endogenous FKRP locates to the Golgi apparatus of neuronal, oligodendroglial, and the cardiac muscle cell line H9c2. In differentiated C2C12 myotubes and in transverse sections of normal skeletal and cardiac muscle, endogenous FKRP surrounded the myonuclei. This localisation was unaffected in the skeletal muscle of patients with MDC1C and LGMD2I carrying various FKRP mutations. These observations imply a specific role for FKRP during striated muscle, neuronal and glial development and suggest that protein mis-localisation is not a common mechanism of disease in FKRP-related dystrophies.  相似文献   

13.
BACKGROUND: Limb-girdle muscular dystrophy type 2I is caused by mutations in the fukutin-related protein gene (FKRP). FKRP encodes a putative glycosyltransferase protein that is involved in alpha-dystroglycan glycosylation. OBJECTIVES: To identify patients with limb-girdle muscular dystrophy type 2I and to derive genotype-phenotype correlations. DESIGN: Two hundred fourteen patients who showed muscle histopathologic features consistent with muscular dystrophy or myopathy of unknown etiology were studied. The entire 1.5-kilobase FKRP coding sequence from patient DNA was analyzed using denaturing high-performance liquid chromatography of overlapping polymerase chain reaction products, followed by direct sequencing of heteroduplexes. RESULTS: Thirteen patients with limb-girdle muscular dystrophy type 2I (6% of all patients tested) were identified by FKRP mutation analysis, and 7 additional patients were identified by family screening. Six missense mutations (1 novel) were identified. The 826C>A nucleotide change was a common mutation, present in 35% of the mutated chromosomes. Clinical presentations included asymptomatic hyperCKemia, severe early-onset muscular dystrophy, and mild late-onset muscular dystrophy. Dilated cardiomyopathy and ventilatory impairment were frequent features. Significant intrafamilial and interfamilial clinical variability was observed. CONCLUSIONS: FKRP mutations are a frequent cause of limb-girdle muscular dystrophies. The degree of respiratory and cardiac insufficiency in patients did not correlate with the severity of muscle involvement. The finding of 2 asymptomatic patients with FKRP mutations suggests that modulating factors may ameliorate the clinical phenotype.  相似文献   

14.
We describe four Italian patients (aged 3, 4, 12, and 13 years ) affected by a novel autosomal form of recessive congenital muscular dystrophy. These patients were from three non-consanguineous families and presented an almost identical phenotype. This was characterized by hypotonia at birth, joint contractures associated with severe psychomotor retardation, absent speech, inability to walk and almost no interest in their surroundings. In addition, all patients had a striking enlargement of the calf and quadriceps muscles. Ophthalmologic examination revealed no structural ocular abnormalities in any of the children; one patient had severe myopia. In all cases a magnetic resonance imaging of the brain showed an abnormal posterior cranial fossa with enlargement of the cisterna magna and variable hypoplasia of the vermis of the cerebellum. Abnormality of the white matter was also present in all patients, in the form of patchy signal most evident in the periventricular areas. Serum CK was grossly elevated in all. The muscle biopsy from all cases showed dystrophic changes compatible with congenital muscular dystrophy. Immunofluorescence studies showed mild to moderate partial deficiency of laminin 2 chain. Linkage analysis in the only informative family excluded the known loci for congenital muscular dystrophy, including laminin 2 chain on chromosome 6q2, the Fukuyama congenital muscular dystrophy locus on 9q3 and the muscle-eye-brain disease on chromosome 1p3. We propose that this represent a novel severe variant of congenital muscular dystrophy, with associated central nervous system involvement.  相似文献   

15.
Six genes including POMT1, POMT2, POMGNT1, FKRP, Fukutin (FKTN) and LARGE encode proteins involved in the glycosylation of α-dystroglycan (α-DG). Abnormal glycosylation of α-DG is a common finding in Walker-Warburg syndrome (WWS), muscle-eye-brain disease (MEB), Fukuyama congenital muscular dystrophy (FCMD), congenital muscular dystrophy types 1C and 1D and some forms of autosomal recessive limb-girdle muscular dystrophy (LGMD2I, LGMD2K, LGMD2M), and is associated with mutations in the above genes. FCMD, caused by mutations in Fukutin (FKTN), is most frequent in Japan, but an increasing number of FKTN mutations are being reported outside of Japan. We describe four new patients with FKTN mutations and phenotypes ranging from: severe WWS in a Greek-Croatian patient, to congenital muscular dystrophy and cobblestone lissencephaly resembling MEB-FCMD in two Turkish patients, and limb-girdle muscular dystrophy and no mental retardation in a German patient. Four of the five different FKTN mutations have not been previously described.  相似文献   

16.
At least six different forms of congenital muscular dystrophy are associated with structural changes of the central nervous system, and three of these have been mapped: merosin-deficient congenital muscular dystrophy on chromosome 6q2, Fukuyama congenital muscular dystrophy on chromosome 9q31, and muscle eye brain disease on chromosome 1p32. Walker-Warburg syndrome, congenital muscular dystrophy with calf hypertrophy, pontocerebellar hypoplasia, and normal eyes, and congenital muscular dystrophy with severe mental retardation and cerebellar cysts are nosologically distinct and have been excluded from the known congenital muscular dystrophy loci with structural changes of the central nervous system. Here, we describe a novel congenital muscular dystrophy syndrome which is phenotypically distinct from the recognized forms of congenital muscular dystrophy with brain involvement. Two siblings, a boy and a girl, were born to consanguineous parents from Sicily. Both children were born with adducted thumbs and toe contractures. They were floppy from birth, walked late, showed profound generalized muscle weakness including facial muscles, elevated creatine kinase levels of 200-700U/l, and histological changes compatible with muscular dystrophy. In addition, both showed ptosis, external ophthalmoplegia, mild mental retardation, and mild cerebellar hypoplasia on MRI. Immunocytochemistry showed normal expression of muscle membrane proteins including laminin alpha 2, laminin beta 2, and alpha-dystroglycan. Linkage analysis excluded the candidate loci on chromosomes 6q2, 9q31, and 1q32. The gene locus for congenital muscular dystrophy 1B, MDC 1B, on chromosome 1q42 was also excluded. Adducted thumbs are a distinct clinical sign that has not been reported in congenital muscular dystrophy before and should facilitate recognition of further patients with this disorder.  相似文献   

17.
Congenital muscular dystrophy (CMD) is a group of heterogeneous disorders characterized clinically by delayed milestones due to generalized muscle weakness and dystrophic muscle pathology. The discovery of fukutin, responsible gene for Fukuyama CMD (FCMD) and defective glycosylation in its muscle biopsy has lead significant advances in CMD researches, especially disorders with glycosylation defects to a dystroglycan (alphaDG). The highly glycosylated a DG is one of the major dystrophin-associated proteins anchored a basement membrane protein, laminin 2 to the dystrophin molecule. The disorders with the defective glycosylation are now categorized as a dystroglycanopathies which include FCMD, muscle-eye-brain (MEB) disease, Walker-Warburg syndrome (WWS) and diseases with mutations in fukutin-related protein (FKRP) and LARGE genes. Among them, MEB and WWS were proven to have mutations in the glycosyltransferase genes, POMGnT1 (protein O-mannose beta 1,2-N-acetylglucosaminyl/transferase 1) and POMT1 (protein O-mannosyltransferase 1), respectively, though others are still unknown how the glycosylation defect is induced. Although the disease with FKRP mutation has variable phenotypes from CMD to limb-girdle muscular dystrophy, others with defective to decreased a DG show CMD, central nervous system involvement with migration disorder (polymicrogyria) and ocular abnormalities.  相似文献   

18.
Mutations in the fukutin-related protein gene (FKRP) are associated with a spectrum of diseases from mild limb-girdle muscular dystrophy type 2I to severe congenital muscular dystrophy type 1C, muscle-eye-brain disease (MEB), and Walker-Warburg syndrome (WWS). The effect of mutations on the transportation of the mutant proteins may constitute the underlying mechanisms for the pathogenesis of these diseases. Here we examined the subcellular localization of mouse and human normal and mutant FKRP proteins in cells and in muscle in vivo. Both normal human and mouse FKRPs localize in part of the Golgi apparatus in muscle fibers. Mutations in the FKRP gene invariably altered the localization of the protein, leading to endoplasmic reticulum retention within cells and diminished Golgi localization in muscle fibers. Our results therefore suggest that an individual missense point mutation can confer at least two independent effects on the protein, causing (1) reduction or loss of the presumed glycosyltransferase activity directly and (2) mislocalization that could further alter the function of the protein. The complexity of the effect of individual missense point mutations may partly explain the wide variation of the FKRP-related myopathies.  相似文献   

19.
Fukuyama congenital muscular dystrophy (FCMD) is frequent in Japan, due to a founder mutation of the fukutin gene (FKTN). Outside Japan, FKTN mutations have only been reported in a few patients with a wide spectrum of phenotypes from Walker–Warburg syndrome to limb-girdle muscular dystrophy (LGMD2M). We studied four new Caucasian patients from three unrelated families. All showed raised serum CK initially isolated in one case and muscular dystrophy. Immunohistochemical studies and haplotype analysis led us to search for mutations in FKTN. Two patients (two sisters) presented with congenital muscular dystrophy, mental retardation, and posterior fossa malformation including cysts, and brain atrophy at Brain MRI. The other two patients had normal intelligence and brain MRI. Sequencing of the FKTN gene identified three previously described mutations and two novel missense mutations. Outside Japan, fukutinopathies are associated with a large spectrum of phenotypes from isolated hyperCKaemia to severe CMD, showing a clear overlap with that of FKRP.  相似文献   

20.
A heterogeneous group of patients with congenital muscular dystrophy associated with clinical or radiologic central nervous system involvement other than the severe classic form with merosin deficiency, muscle-eye-brain disease, and Walker-Warburg syndrome is described. A probable hereditary or familial occurrence could be suggested in all patients. One merosin-positive patient presented severe motor incapacity and cerebral atrophy without any clinical manifestation of central nervous system involvement. A second patient, also merosin-positive, had moderate motor and mental handicap, and epilepsy with no changes in neuroimaging. A third patient, found to have partial merosin deficiency by muscle biopsy, manifested severe psychomotor retardation and cerebral atrophy with foci of abnormal white-matter signal on magnetic resonance imaging. Finally, two merosin-positive siblings with microcephaly, mental retardation, and an incapacitating progressive neuromuscular course, exhibited cataracts without defects of neuronal migration or brain malformation. This report emphasizes the broad clinical spectrum and heterogeneity of merosin-positive congenital muscular dystrophy with associated central nervous system involvement, and illustrates the importance of further studies on clinical, immunohistochemical, and genetic grounds for identifying new subsets of congenital muscular dystrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号