首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的探讨p38MAPK在二烯丙基三硫(DATS)抑制脂多糖(LPS)诱导小鼠肺泡巨噬细胞促炎细胞因子表达中的作用。方法体外培养MH-S细胞,用DATS和(或)LPS进行干预,Western blot检测细胞p38及磷酸化p38(p-p38)的表达;用LPS和(或)SB203580孵育细胞,反转录PCR检测细胞中TNF-α、IL-1βmRNA表达,Western blot检测细胞磷酸化(p-IκB)及非磷酸化IκB的表达。结果 LPS刺激MH-S细胞可导致p-p38表达增加,呈时间依赖性;用DATS(0.1、0.5、2.5、5.0 mg.L-1)预处理细胞30 min后再给予LPS刺激,p-p38表达呈剂量依赖性下降;单独DATS对p-p38表达无明显影响。p38特异性抑制剂SB203580可剂量依赖性地抑制LPS诱导的p-IκB蛋白、TNF-α及IL-1βmR-NA表达。结论 DATS可通过抑制p38MAPK通路抑制IκB磷酸化及NF-κB活化,进而下调LPS诱导小鼠肺泡巨噬细胞TNF-α、IL-1βmRNA表达。  相似文献   

2.
目的探讨二烯丙基三硫(DATS)抑制脂多糖(LPS)诱导小鼠肺泡巨噬细胞肿瘤坏死因子-α(TNF-α)及白介素-1β表达的信号转导机制。方法体外培养MH-S细胞,用DATS和(或)LPS进行干预。反转录PCR检测细胞中TNF-α、IL-1β mRNA表达,电泳迁移率改变分析(EMSA)检测细胞核因子-κB(NF-κB)活性,Western blot检测细胞磷酸化(p-IκB)及非磷酸化IκB的表达。结果LPS刺激MH-S细胞可导致TNF-α、IL-1β mRNA、p-IκB表达增加及NF-κB活性升高。用DATS(0.1、0.5、2.5、5.0mg.L-1)预处理细胞30min后再给予LPS刺激,可使TNF-α、IL-1β mRNA表达降低,并呈剂量依赖性;升高的NF-κB活性及p-IκB表达均显不同程度的抑制。单独DATS对TNF-α、IL-1β mRNA表达及NF-κB活性无影响。结论DATS可通过抑制IκB磷酸化及NF-κB活化,进而下调LPS诱导小鼠肺泡巨噬细胞TNF-α、IL-1β mRNA表达。  相似文献   

3.
Taraxerol, a triterpenoid compound, has potent anti-inflammatory effects. However, the molecular mechanisms are not clear. In the study, taraxerol concentration dependently inhibited nitric-oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels and these inhibitions decreased the production of nitric oxide (NO), prostaglandin 2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β induced by LPS. Furthermore, we found that taraxerol suppressed translocation of nuclear factor-κB (NF-κB), phosphorylation of IκBα, blocked the IκBα degradation as well as IKK and mitogen-activated protein kinase (MAPK) activation by inactivation of TGF-β-activated kinase-1 (TAK1) and Akt. In addition, taraxerol significantly inhibited the formation of TAK1/TAK-binding protein1 (TAB1), which was accompanied by inducing degradation of TAK1, decreasing LPS-induced polyubiquitination of TAK1 as well as TAK1 phosphorylation. Taken together, our data suggest that taraxerol downregulates the expression of proinflammatory mediators in macrophages by interfering with the activation of TAK1 and Akt, thus preventing NF-κB activation.  相似文献   

4.
Jolkinolide B (JB) and 17-hydroxy-JB (HJB) are diterpenoids from plants and it has been reported that the presence of a C-17 hydroxy group in JB significantly enhances the anti-inflammatory potency of JB. In this study, two HJB derivatives HJB-1 and HJB-2 were generated by the chemical modification of a 17-hydroxy group of HJB. HJB-1 more effectively inhibited TNF-α, IL-1β and IL-6 release in LPS-stimulated mouse peritoneal macrophages. In addition, HJB-1 reduced LPS-induced mRNA expression of TNF-α, IL-1β, IL-6, COX-2 and iNOS in a concentration-dependent manner, but did not alter IL-10 mRNA expression. LPS-induced NF-κB activation and MAPK phosphorylation were also effectively inhibited by HJB-1. These results demonstrate that HJB-1 exerts anti-inflammatory effects on LPS-activated mouse peritoneal macrophages by inhibiting NF-κB activation and MAPK phosphorylation and modification of a 17-hydroxy group of HJB may enhance the anti-inflammatory potency of HJB derivatives.  相似文献   

5.
[TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence “N”-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-“C”). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24 h, and TR6 treatment was initiated 1 h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment.  相似文献   

6.
Genipin has been reported to have anti-inflammatory effect. However, its role on lipopolysaccharide (LPS)-induced acute lung injury (ALI) has not been explored. This study aimed to evaluate the effect of genipin on murine model of acute lung injury induced by LPS. The mice were treated with genipin 1 h before LPS administration. 12 h later, the myeloperoxidase (MPO) in lung tissues and lung wet/dry ratio were detected. The levels of TNF-α, IL-1β and IL-6 in bronchoalveolar lavage fluid (BALF) were measured by ELISA. Apart from this, we use western blot to detect the protein expression in the NF-κB and NLRP3 signaling pathways. The results showed that the treatment of genipin markedly attenuated the lung wet/dry ratio and the MPO activity. Moreover, it also inhibited the levels of TNF-α, IL-1β, IL-6 in the BALF. In addition, genipin significantly inhibited LPS-induced NF-κB and NLRP3 activation. In conclusion, these results demonstrate that genipin protected against LPS-induced ALI through inhibiting NF-κB and NLRP3 signaling pathways.  相似文献   

7.
Taraxasterol, a pentacyclic-triterpene isolated from Taraxacum officinale, has been reported to have potent anti-inflammatory properties. However, the effect of taraxasterol on lipopolysaccharide (LPS)-induced mice acute lung injury has not been investigated. The aims of this study were to investigate whether taraxasterol could ameliorate the inflammation response in LPS-induced acute lung injury and to clarify the possible mechanism. Male BALB/c mice were pretreated with taraxasterol 1 h before intranasal instillation of LPS. 7 h after LPS administration, the myeloperoxidase (MPO) in lung tissues, lung wet/dry ratio and inflammatory cells in the bronchoalveolar lavage fluid (BALF) were detected. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) in the BALF were measured by ELISA. The extent of phosphorylation of IκB-α, p65 NF-κB, p46–p54 JNK, p42–p44 ERK, and p38 were determined by western blotting. The results showed that taraxasterol attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), lung wet/dry ratio, and the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, western blotting results showed that taraxasterol inhibited the phosphorylation of IκB-α, p65 NF-κB, p46–p54 JNK, p42–p44 ERK, and p38 caused by LPS. Our data suggest that anti-inflammatory effects of taraxasterol against the LPS-induced ALI may be due to its ability of inhibition of the NF-κB and MAPK signaling pathways.  相似文献   

8.
Catalpol, an iridiod glucoside isolated from Rehmannia glutinosa, has been reported to have anti-inflammatory properties. Although anti-inflammatory activity of catalpol already reported, its involvement in lung protection has not been reported. Thus, we investigated the role of catalpol on lipopolysaccharide (LPS)-induced acute lung injury in this study. Mice acute lung injury model was induced by intranasal instillation of LPS. Catalpol was administrated 1 h prior to or after LPS exposure. The severity of pulmonary injury was evaluated 12 h after LPS administration. The results showed that catalpol inhibited lung W/D ratio, myeloperoxidase activity of lung samples, the amounts of inflammatory cells and TNF-α, IL-6, IL-4 and IL-1β in BALF induced by LPS. The production of IL-10 in BALF was up-regulated by catalpol. In vitro, catalpol inhibited TNF-α, IL-6, IL-4 and IL-1β production and up-regulated IL-10 expression in LPS-stimulated alveolar macrophages. Moreover, western blot analysis showed that the activation of NF-κB and MAPK signaling pathways was inhibited by catalpol. Furthermore, catalpol was found to inhibit TLR4 expression induced by LPS. In conclusion, catalpol potently protected against LPS-induced ALI. The protective effect may attribute to the inhibition of TLR4-mediated NF-κB and MAPK signaling pathways.  相似文献   

9.
鬼针草总黄酮对肝纤维化大鼠细胞因子的影响   总被引:3,自引:4,他引:3  
目的观察鬼针草总黄酮(totalflavones of Bidenspilo-saL,TFB)对肝纤维化大鼠细胞因子的影响。方法将大鼠随机分成正常组、对照组、TFB160、80、40mg·kg-1组和秋水仙碱(Col)0.1mg·kg-1阳性药对照组。除正常组外,其余各组采用四氯化碳(CCl4)诱导肝纤维化模型。于造模wk9起,给药组分别灌胃相应的受试药物,正常组和对照组灌胃等容量的生理盐水,疗程10wk。实验结束后,股动脉采血,放免法测定血清中肿瘤坏死因子-α(TNF-α)和白细胞介素-1β(IL-1β)的含量,同时取固定部位肝脏组织,免疫组化技术测定TFB对肝组织中TGF-β1和NF-κB蛋白表达的影响,RT-PCR技术测定TFB对肝组织中TGF-β1 mRNA表达的影响。结果TFB160、80mg·kg-1能明显降低肝纤维化大鼠血清TNF-α、IL-1β含量,抑制肝纤维化大鼠肝组织中NF-κB、TGF-β1蛋白和TGF-β1 mRNA表达。结论TFB通过降低肝纤维化大鼠炎症细胞因子而抗肝纤维化。  相似文献   

10.
目的研究八肽胆囊收缩素(CCK-8)对LPS诱导RAW264.7细胞IL-1β表达的影响及相关机制。方法用ELISA及RT-PCR法检测RAW264.7细胞IL-1βmRNA及蛋白表达;用Western blot检测RAW264.7细胞p38 MAPK的磷酸化水平。结果①LPS可时间依赖性的诱导RAW264.7细胞IL-1βmRNA及蛋白的表达,分别于刺激后3 h及6 h达到高峰;②10-10 mol.L-1 CCK-8对LPS诱导的RAW264.7细胞IL-1β表达无影响;10-8、10-6 mol.L-1CCK-8浓度依赖性地抑制了LPS诱导的RAW264.7细胞IL-1β表达;③10-10 mol.L-1 CCK-8未影响LPS诱导的p-p38MAPK水平,10-8、10-6 mol.L-1 CCK-8浓度依赖性地抑制了LPS诱导的p-p38 MAPK水平;④p38 MAPK特异性抑制剂SB203580可抑制LPS诱导的RAW264.7细胞IL-1β表达,与CCK-8共同作用后,抑制作用进一步加强。结论 CCK-8通过抑制p38 MAPK磷酸化而抑制了LPS诱导的RAW264.7细胞IL-1β表达,这可能是CCK-8发挥抗炎作用的信号转导机制之一。  相似文献   

11.
In an earlier study, we found that Antrodia camphorata inhibited the production of lipopolysaccharide (LPS)-induced cytokines, inducible nitric oxide synthase, and cyclooxygenase-2 by blocking nuclear factor-κB (NF-κB) activation in cultured RAW 264.7 macrophages. This study was aimed at evaluating the inhibitory effects of the fermented culture broth of A. camphorata in terms of LPS-induced NF-κB activation in transgenic mice by using a non-invasive, real-time NF-κB bioluminescence imaging technique. Transgenic mice carrying the luciferase gene under the control of NF-κB were given A. camphorata (570 mg/kg, p.o.) for three consecutive days and then injected with LPS (4 mg/kg, i.p.). In vivo imaging showed that treatment with LPS increased the luminescent signal, whereas A. camphorata suppressed the LPS-induced inflammatory response significantly. Ex vivo imaging showed that A. camphorata suppressed LPS-induced NF-κB activity in the small intestine, mesenteric lymph nodes, liver, spleen, and kidney. Immunohistochemical staining revealed that A. camphorata suppressed production of the LPS-induced tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and NF-κB p65 subunit in these organs. Furthermore, A. camphorata attenuated the productions of LPS-induced TNF-α and IL-1β in serum from transgenic mice. We report the first confirmation of the anti-inflammatory action in vivo of this potentially beneficial mushroom.  相似文献   

12.
Pediatric pneumonia is an infectious lung disease with high morbidity and mortality. Sinomenine, an alkaloid extracted from Caulis Sinomenii, exerts anti-inflammatory and anti-apoptotic activities. Lipopolysaccharide (LPS) is widely used for the establishment of an inflammatory model. This research aimed to explore the influences of sinomenine on LPS-caused inflammatory injuries in fetal lung WI-38 cells. WI-38 cells were treated with LPS to establish a cellular model of pediatric pneumonia. Cell viability was evaluated using CCK-8 assay. Apoptosis was evaluated using TUNEL staining and caspase-3 activity assays. Inflammatory cytokines and NF-κB p65 phosphorylation levels were measured by Enzyme-Linked Immunosorbent Assay. Glutathione S-transferase M1 (GSTM1) expression was detected by western blotting. Results showed that LPS reduced WI-38 cell viability, and sinomenine protected cells against LPS-induced viability reduction. Sinomenine concentration-dependently attenuated LPS-induced inflammation by reducing TNF-α, IL-1β and MCP-1, and increasing IL-10 levels. Sinomenine mitigated LPS-induced apoptosis. GSTM1 was screened by matching the targets of sinomenine and pediatric pneumonia. GSTM1 was upregulated in LPS-treated WI-38 cells, and this effect was attenuated after sinomenine treatment. GSTM1 was upstream of NF-κB pathway. Overexpression of GSTM1 reversed the suppressive functions of sinomenine on LPS-stimulated inflammation and apoptosis. Overall, sinomenine attenuates inflammation and apoptosis in WI-38 cells stimulated by LPS via inhibiting GSTM1 expression, indicating the therapeutic potential of sinomenine in pediatric pneumonia.  相似文献   

13.
14.
Recently, we reported the synthesis of damaurone D (DD), originally derived from Rosa damascene, and its anti-inflammatory effect in macrophages. Here, we investigated the molecular mechanism underlying the anti-inflammatory effect of DD in macrophages and further tested whether DD is protective against lipopolysaccharide (LPS)-induced liver injury. DD inhibited LPS-stimulated expression of pro-inflammatory genes and cytokine/chemokine secretion in a concentration-dependent manner in RAW 264.7 cells and thioglycolate-elicited mouse peritoneal macrophages. DD suppressed LPS-stimulated nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, as demonstrated by reduction in IκB kinase α/β phosphorylation, IκBα degradation, and levels of phosphorylated ERK, JNK, and p38 MAPK. The luciferase reporter activity of NF-κB and activator protein 1 was also attenuated by DD pretreatment. Furthermore, DD treatment induced AMP-activated protein kinase (AMPK) activation in cells and mouse liver, although the anti-inflammatory effect of DD was similar in dominant-negative AMPK-overexpressing cells. Lastly, DD-treated mice were protected against LPS-induced acute liver injury, based on morphologic and immunohistochemical observations; reduction in the plasma levels of aspartate aminotransferase, TNF-α, and MCP-1; and a decrease in inflammatory gene expression. In summary, our findings indicate that DD can protect against LPS-stimulated inflammation and liver injury at least partly by suppression of NF-κB and MAPK signaling pathways.  相似文献   

15.
Previously, the authors reported that zaprinast, an inhibitor of cGMP-selective phosphodiesterases, induced the secretions of TNF-α and IL-1β by microglia and enhanced the induction of iNOS by lipopolysaccharide (LPS). In this study, the signaling mechanism responsible for microglial activation by zaprinast was investigated and the effects of zaprinast and LPS on microglial activation were compared. Zaprinast was found to activate ERK1/2, p38 MAPK, JNK, NFκB, and PI3K/Akt, and subsequently, induce the mRNA expressions of IL-1α, IL-1β, TNF-α, CCL2, CCL4, CXCL1, CXCL2, and CD14. Associations between signaling pathways and gene expressions were examined by treating microglia with signal inhibitors. PDTC inhibited the induction of all the above genes by zaprinast, and SB203580 inhibited all genes except CXCL1. SP600125, PD98059, and LY294002 inhibited the induction of at least CCL2. Microglial activation by zaprinast was then compared with full-blown activation by LPS. The zaprinast-induced phosphorylations of MAPKs and IκB were less prompt than LPS-induced phosphorylations. IκB degradation by LPS was significant at 10min and did not return to normal, whereas zaprinast induced a later, transient degradation. LPS induced the mRNA expressions of IL-1β, TNF-α, IL-6, CCL2, iNOS, and COX-2, and although zaprinast significantly induced the expressions of all except IL-6 and iNOS, these inductions were far less than those induced by LPS. Collectively, zaprinast was found to upregulate microglial activity mainly via NFκB and p38 MAPK signaling and the subsequent expressions of inflammatory genes. Although, zaprinast was found to have obvious effects on microglia, these were weaker than the effects of LPS.  相似文献   

16.
17.
D(−)-Salicin is a traditional medicine which has been known to exhibit anti-inflammation and other therapeutic activities. The present study aimed to investigate whether D(−)-Salicin inhibited the LPS-induced inflammation in vivo and in vitro. We evaluated the effect of D(−)-Salicin on cytokines (TNF-α, IL-1β, IL-6 and IL-10) in vivo and in vitro by enzyme-linked immunosorbent assay and signaling pathways (MAPKs and NF-κB) in vivo by Western blot. The results showed that D(−)-Salicin markedly decreased TNF-α, IL-1β and IL-6 concentrations and increased IL-10 concentration. In addition, western blot analysis indicated that D(−)-Salicin suppressed the activation of MAPKs and NF-κB signaling pathways stimulated by LPS. To examine whether D(−)-Salicin ameliorated LPS-induced lung inflammation, inhibitors of MAPKs and NF-κB signaling pathways were administrated intraperitoneally to mice. Interference with specific inhibitors revealed that D(−)-Salicin-mediated cytokine suppression was through MAPKs and NF-κB pathways. In the mouse model of acute lung injury, histopathologic examination indicted that D(−)-Salicin suppressed edema induced by LPS. So it is suggest that D(−)-Salicin might be a potential therapeutic agent against inflammatory diseases.  相似文献   

18.
Jingting Kang  Chao Ji 《中国药学》2022,31(10):773-781
In the present study, we aimed to evaluate the anti-inflammatory mechanism of galanthamine, a classic therapeutic drug for Alzheimer’s disease (AD). The co-culture system of hippocampal nerve cell line HT-22 and microglial cell line BV-2 was established to observe the effect of galanthamine on the expressions of inflammatory factors induced by lipopolysaccharide (LPS). MTT method was used to observe the protective effect of galanthamine on neurons. ELISA and qPCR methods were used to detect the expressions of interleukin-1β (IL-1β) and IL-1 receptor antagonist (IL-1RA) at the protein and mRNA levels, respectively. IL-1β and IL-1RA were evaluated by the ELISA method after pretreating with galanthamine and α7 nAChR blocker α-bungarotoxin (α-bun), mAChR blocker atropine (Atr), PI3K inhibitor LY294002, IKKβ inhibitor SC514, or MEK inhibitor PD98059, respectively. The results showed that galanthamine significantly inhibited LPS-induced increased IL-1β and IL-1RA expressions and maintained the ratio of IL-1β/IL-1RA. α-Bun could block the regulatory effect of galanthamine on IL-1β and IL-1RA. As PI3K and NF-κB pathways were blocked, the regulatory effect of galanthamine on the IL-1β expression was significantly inhibited. Blocking PI3K and MEK pathways could significantly inhibit the regulation of galanthamine on IL-1RA expression. In summary, galanthamine regulated the inflammatory activity of the IL-1 subfamily to play an anti-inflammatory role mediated by α7 nAChR and PI3K/NF-κB/MAPK pathways, which probably provided a new strategy for AD treatment.  相似文献   

19.
Ginsenoside Rg3 (GRg3), one of the major active saponins isolated from ginseng (the root of Panax ginseng C.A. Meyer, Araliaceae), has been reported with many health benefits. Currently, the protective effect of GRg3 on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice was investigated. The results indicated that GRg3 treatment could greatly attenuate LPS-induced histopathological alterations in the lung in a concentration-dependent manner. LPS-induced increase of lung wet-to-dry weight ratio (W/D ratio) was also dose-dependently reduced by GRg3 treatment. LPS-induced increases of the total cells, neutrophils and macrophages in the bronchoalveolar lavage fluids (BALFs) were significantly inhibited by GRg3 treatment in a dose-dependent fashion. The levels of pro-inflammatory cytokines including TNF-α, IL-1β and IL-6 in BALFs increased after LPS-induced ALI, which was inhibited by GRg3. Western blot results showed that during ALI LPS activated NF-κB pathway in the lung tissues by upregulating NF-κB p65 phosphorylation and its downstream COX-2 expression; however, these effects of LPS were inhibited by GRg3 treatment. Taken together, these findings in present study suggested that GRg3 provided protective effects against LPS-induced ALI in animal model and might harbor the potential to be considered as drug for the treatment of ALI in clinic.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号