首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clinical evidence suggests that nicotine reduces anxiety in stressful situations. In the present study, we investigated the effect of nicotine on restraint-enhanced anxiety-like behavior, c-Fos expression, an index of neuronal activation in the brain, and plasma corticosterone. Two-hour restraint stress-enhanced anxiety-like behavior in the elevated plus-maze (EPM) and nicotine hydrogen tartrate (0.25 mg/kg, i.p.) attenuated the stress-induced changes. Pretreatment with the centrally acting nicotinic antagonist, mecamylamine (2 mg/kg), blocked nicotine's effects. In addition, restraint led to significant increases of c-Fos expression in several brain regions related to stress or anxiety including paraventricular hypothalamic nucleus (PVN), lateral hypothalamic area (LH), central amygdaloid nucleus (CeA), medial amygdaloid nucleus (MeA) and cingulate and retrosplenial cortices (Cg/RS), paraventricular thalamic nucleus (PVT), and basolateral amygdaloid nucleus (BLA). Nicotine attenuated the restraint-induced expression of c-Fos in the PVN, LH, CeA, MeA, and Cg/RS, while leaving the BLA and PVT unaffected. In contrast, nicotine did not reverse the increased levels of plasma corticosterone induced by restraint. These findings suggest that nicotine may modify the stress-induced behavioral changes via regulating the neuronal activation in selected brain regions rather than affecting hypothalamo-pituitary-adrenocortical axis hormone responses.  相似文献   

2.

Objective

The present study was aimed to enumerate the role of metformin-associated H2S release against lipopolysaccharide (LPS) induced neuroinflammation.

Materials and methods

Five groups of animals were subjected to treatment as control (normal saline), toxic control (LPS, 125 µg/kg, i.p.), and three separate groups treated with 6.25, 12.5, and 25 mg/kg of metformin along with LPS for a period of 28 days. LPS was administered on 1st, 2nd, 3rd, 4th, 23rd, 24th, 25th and 26th day. The animals were evaluated for behavioral (elevated plus maze, rotarod and actophotometer); biochemical (plasma and tissue H2S, COX, LOX and NO), antioxidant (TBARS, SOD, catalase, protein carbonyl and GSH) and liver toxicity (SGOT and SGPT) markers. The brain tissues were further evaluated histopathologically, free fatty acid profile and NF-κB expression.

Result

The LPS could not hasten any significant behavioral, biochemical, antioxidant and histopathological changes in the brain tissue. LPS also failed to modify the free fatty acid profile and NF-κB expression in the brain tissue. The LPS demarcated a well-defined peripheral inflammation as perceived through the plasma H2S, NO, SGOT and SGPT. Metformin administration demonstrated a marked effect on the peripheral inflammation induced by LPS.

Conclusion

The LPS (i.p.) administration is devoid of any neuroinflammatory effects; however, precipitates peripheral inflammatory reactions and the same can could be attributed to the fact that LPS is devoid of/confined by very minimal permeability across the blood brain barrier. Metformin demonstrated a significant effect on peripheral inflammatory reactions precipitated through LPS.
  相似文献   

3.
Most in vivo studies demonstrating decreased activities of hepatic cytochromes P450 with inflammation have used Gram-negative bacterial lipopolysaccharide (LPS) as the inflammatory stimulant. But products of Gram-positive bacteria, such as staphylococcal enterotoxin B (SEB), also stimulate inflammatory mediators, albeit with a different pattern than LPS. Therefore, effects of SEB on the regulation of murine constitutive P450s were determined in this study and compared with those of LPS. LPS-responsive C3H/HeN and LPS-unresponsive C3H/HeJ mice were injected with either LPS (0.5 mg/kg) or SEB (0.66 to 6.6 mg/kg), and hepatic cytochromes P450 and serum tumor necrosis factor-alpha, interleukin-6, nitrate/nitrite, and serum amyloid A concentrations were determined up to 24 hr. HeJ mice were generally less responsive than HeN mice to both stimuli, with lower cytokine, nitrate/nitrite, and serum amyloid A responses. However, in both mouse strains SEB caused more prolonged cytokine, higher nitrate/nitrite, and lower serum amyloid A concentrations than LPS. Despite these differences, in HeN mice, after both SEB and LPS administration, total P450 concentrations were equally depressed by 40%. Both SEB and LPS depressed CYP1A1 and 1A2 microsomal protein concentrations by 45 and 30%, respectively; CYP2E1 by 64%; and CYP3A by 70%. There was comparable inhibition of enzymatic activities. In HeJ mice, SEB was only slightly more effective in depressing P450s than LPS, as might be expected. These data showed that the Gram-positive bacterial inflammatory stimulant SEB caused effects on murine hepatic cytochromes P450 similar to those of LPS, even though the pattern of inflammatory mediators induced after SEB exposure was different.  相似文献   

4.
Neuroinflammation, characterized by activation of microglia and expression of major inflammatory mediators, contributes to neuronal damage in addition to acute and chronic central nervous system (CNS) disease progression. The present study investigated the immune modulatory effects of ginsenoside Rg(3), a principle active ingredient in Panax ginseng, on pro-inflammatory cytokines and microglia activation in brain tissue induced by systemic lipopolysaccharide (LPS) treatment in C57BL/6 mice. Systemic LPS treatment induces immediate microglia activation in the brain. Based on this information, ginsenoside Rg(3) was treated orally with 10, 20, and 30?mg/kg 1?h prior to the LPS (3?mg/kg, intraperitoneally (i.p.)) injection. Ginsenoside Rg(3) at 20 and 30?mg/kg oral doses significantly attenuated up-regulation of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and IL-6 mRNA in brain tissue at 4?h after LPS injection. Morphological activation of microglia and Iba1 protein expression by systemic LPS injection were reduced with ginsenoside Rg(3) (30?mg/kg) treatment. In addition, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in brain tissue were also attenuated with oral treatment of ginsenoside Rg(3) at 30?mg/kg. These results indicate that ginsenoside Rg(3) plays a modulatory role in neuroinflammation. This study shows that ginsenoside Rg(3) attenuates microglia activation using an in vivo animal model.  相似文献   

5.
Ketamine-induced changes in kindled amygdaloid seizures   总被引:2,自引:0,他引:2  
The effects of ketamine on seizures kindled by repetitive electrical stimulation of the amygdala were determined in the rat. The response of fully developed kindled amygdaloid seizures (KAS) to 20, 40, 80 and 120 mg/kg (i.p.) ketamine, administered from 5 to 60 min prior to elicitation of seizures was examined. Ketamine reduced the afterdischarge duration (AD) and behavioral response (BR) in a dose-dependent fashion. However, the effect of ketamine on the afterdischarge duration and behavioral response was not clearly time-dependent for each dose (20–120 mg/kg). A dose-dependent increase in the seizure spiking frequencies in the amygdala and cortex during kindled amygdaloid seizures was also induced by ketamine. Blood plasma and brain levels of ketamine and its metabolites were determined 15 min after 20, 40, 80 and 120 mg/kg ketamine as well as 60 min after 80 mg/kg ketamine. Brain and plasma levels of ketamine and nor-ketamine were similar to those previously reported. Low plasma levels of dehydro-nor-ketamine were seen only at 60 min after 80 mg/kg ketamine. The decrease in afterdischarge duration and behavioral response and the increase in afterdischarge duration spiking frequency seen at 15 min correlated with elevated levels of ketamine and nor-ketamine in brain and plasma. However, by 60 min plasma levels of ketamine remained high, yet the brain levels of both ketamine and nor-ketamine had decreased. This is despite the fact that afterdishcarge duration and behavioral response were still attenuated and afterdischarge duration spiking frequency was still increased. Thus, the exact contribution by ketamine and nor-ketamine to the alteration of afterdischarge duration, behavioral response and afterdischarge spiking frequency cannot be made at this time. It was apparent that inhibition of the afterdischarge duration and behavioral response along with an increase in spiking frequency was not dependent on dehydro-nor-ketamine. The possibility that an unidentified metabolite may contribute to the modification of kindled amygdaloid seizures by ketamine is discussed.  相似文献   

6.
Classical antipsychotic drugs such as haloperidol produce akinesia and catalepsy, whereas clozapine and related atypical antipsychotics fail to elicit these behaviors even at relatively high doses. Despite these behavioral differences, a cataleptic dose of haloperidol (2.0 mg/kg) produces changes in neuronal activity in the neostriatum and nucleus accumbens comparable to those produced by a non-cataleptic dose of clozapine (20.0 mg/kg). To further elucidate the brain mechanisms underlying the differential behavioral response to these drugs, an electrophysiological analysis was extended to neurons in the rat amygdaloid complex. Whereas an intraperitoneal injection of 2.0 mg/kg haloperidol generally failed to alter the firing rate of amygdaloid neurons, 20.0 mg/kg clozapine typically produced a prolonged increase in activity. Similarly, clozapine, but not haloperidol, reversed the depression of firing rate produced by 1.0 mg/kg d-amphetamine. The results suggest that neurons in the amygdaloid complex are more responsive to antipsychotic drugs devoid of extrapyramidal side effects than to antipsychotics which elicit parkinsonian-like motor dysfunctions.  相似文献   

7.
RATIONALE: The hypothesis that proinflammatory cytokines play a causative role in the pathophysiology of depression has been recently tested by studying the effect of antidepressants on production of endogenous cytokines, and on sickness behavior induced by exogenous cytokines. In this last case, however, the effect of antidepressants has been only studied on the effect of peripherally administered cytokines. OBJECTIVES: The aim of the present study was to determine whether the antidepressant tianeptine can attenuate both peripheral and central cytokine actions. METHODS: Rats were injected IP with acute (10 mg/kg) or chronic (10 mg/kg, 2 times/day, 17 days) tianeptine. The effects of this treatment were assessed on the behavioral (social exploration, locomotion) and metabolic (food intake, body weight) alterations induced by peripheral or central administration of the cytokine inducer lipopolysaccharide (LPS) (250 microg/kg IP; 100 ng/rat ICV) or the prototypical proinflammatory cytokine interleukin-1 (IL-1)beta (15 microg/rat IP; 90 ng/rat ICV). RESULTS: Chronic, but not acute, treatment with tianeptine attenuated the behavioral signs of sickness behavior induced by peripheral, but not central, LPS or IL-1beta. CONCLUSIONS: This work, which is the first in vivo study assessing the effect of an antidepressant on centrally induced immune activation, shows a clear dissociation between peripheral and central cytokine effects, and suggests a peripheral site of action of tianeptine. It also provides the first evidence that the protective effects of classical antidepressants on LPS-induced sickness behavior extend to an atypical antidepressant, and that the protective effect of antidepressants also applies to IL-1beta.  相似文献   

8.
Activation of the immune system elicits several behavioral changes that are collectively called sickness behavior and consists in a strategy to overcome infection. Sleep deprivation can increase susceptibility to pathogens and to behavioral alterations. Thus, the present study aimed to determine how paradoxical sleep deprivation (PSD) affects the behavioral and neurochemical responses to lipopolysaccharide (LPS, potent activator of the immune response). Adult inbred mice were paradoxical sleep deprived (72 h), whereas the control group was kept in their home cages. Both groups received either an injection of saline or LPS (5, 10 or 20 µg/animal ip) before behavioral tasks and tissue collection. During the recovery sleep period, LPS provoked a strong inhibition of sleep rebound due to a suppression of paradoxical sleep. PSD increased the susceptibility of mice to LPS-induced immobility in the open field, which was capable of affecting the anxiety-like behavior also. These altered behavioral responses to LPS were accompanied by reduction in dopamine turnover within the striatum and increased expression of cyclooxygenase-2 in the cortex. The study provides some insights into how the sleep–wake cycle affects the expression of sickness behavior induced by LPS.  相似文献   

9.
The aim of this study was to evaluate the effect of prenatal lipopolysaccharide (LPS) treatment, which is an animal developmental model of schizophrenia, on MK-801-induced psychotomimetic behavioral changes and brain aminergic system activity in adult offspring. Repeated LPS (1 mg/kg) injection in rats, that had started from 7th day of pregnancy and was continued every second day till delivery, resulted in a long-lasting disruption of prepulse inhibition (PPI) and elevation of locomotor activity in their offspring. The prenatally LPS-treated rats showed hypersensitivity to MK-801 (0.1 and 0.4 mg/kg) as evidenced by the enhancement of acoustic startle amplitude, reduced PPI, and enhanced locomotor activity.These behavioral changes were accompanied by a decrease in the dopamine and its metabolite, DOPAC concentration in the frontal cortex, enhanced dopaminergic system activity in the striatum and no changes in noradrenaline (NA) level. Furthermore, the significant augmentation of 5-HT and 5-HIAA content in the frontal cortex of females only was detected. No changes in the cortical NA tissue level were found. Summing up, the present study demonstrated that the activation of the immune system in prenatal period led to persistent behavioral hypersensitivity to psychotomimetic action of a non-competitive NMDA receptor antagonist, and attention/information processing deficits. The foregoing data indicate that prenatal administration of LPS model some of the clinical aspects of schizophrenia and these behavioral effects are connected with neurochemical changes.  相似文献   

10.
Yang WW  Krukoff TL 《Neuropharmacology》2000,39(11):2075-2089
An immune challenge initiates a complex cascade of events in the body including important responses from the central nervous system. As nitric oxide (NO) has been implicated in the central regulation of neuroendocrine and autonomic responses, this study was performed to determine if NO regulates physiological responses, neuronal activation, and/or interleukin-1 beta (IL-1 beta) gene expression in the paraventricular nucleus of the rat hypothalamus (PVN) in response to intravenous endotoxin, lipopolysaccharide (LPS, 100 microg/kg). Intracerebroventricular injections of NO synthase (NOS) inhibitors (7-nitroindazole sodium salt for neuronal NOS, N(G)-nitro-L-arginine for neuronal NOS and endothelial NOS, and aminoguanidine for inducible NOS) in LPS-treated rats showed that inhibition of NOS eliminated the drop in body temperature and led to increased neuronal activation in the PVN as assessed by immunohistochemistry for Fos-like immunoreactivity. Activation of NO-producing PVN neurons was also increased in these rats suggesting that NO influences neuronal NOS activity in PVN neurons. Finally, increased IL-1 beta gene expression in the PVN of LPS-treated rats receiving N(G)-nitro-L-arginine showed that NO regulates brain IL-1 beta gene expression. The results obtained with the NOS inhibitors support the hypothesis that NO produced from eNOS in the brain participates in temperature regulation, and inhibits PVN neuronal activity and IL-1 beta gene expression during immune stress.  相似文献   

11.
Increasing evidence suggests that pre- or perinatal events that influence the immune system contribute to the development of behavioral or neuropsychiatric disorders. For instance, exposure of pregnant rats to the bacterial endotoxin lipopolysaccharide (LPS) disrupts sensorimotor information processing, as assessed by the prepulse inhibition test (PPI), and also the immune function in adult offspring, which might be of particular relevance as regards schizophrenia. However, the consequences of maternal LPS exposure during pregnancy on synaptic functioning in adult offspring and, more importantly, the therapeutic opportunity to re-establish PPI and immune function have still to be demonstrated. In this work, we analyzed the consequences of prenatal LPS exposure on dopaminergic neurotransmission and presynaptic markers in adult brain areas related to PPI circuitry. In addition, we tested whether oral treatment with the typical antipsychotic drug haloperidol (HAL) could reinstate PPI performances and cytokine serum levels in six-month-old male rats with prenatal LPS exposure. Both sensory information processing deficits and immune anomalies induced by prenatal exposure to LPS were accompanied by changes in dopaminergic neurotransmission and synaptophysin expression. It is important to note that PPI disruption and serum increases in cytokines induced by prenatal LPS exposure were both reversed by HAL. Taken together, these results demonstrate the critical influence of prenatal immune events on the functioning of adult nervous and immune systems, in association with the putative role of the immune system in the development of behavior relevant to schizophrenia.  相似文献   

12.
Antidepressants produce various immunomodulatory effects, as well as an attenuation of the behavioral responses to immune challenges, such as lipopolysaccharide (LPS). To explore further the effects of antidepressants on neuroimmune interactions, rats were treated daily with either fluoxetine (Prozac) or saline for 5 weeks, and various behavioral, neuroendocrine, and immune functions were measured following administration of either LPS or saline. Chronic fluoxetine treatment significantly attenuated the anorexia and body weight loss, as well as the depletion of CRH-41 from the median eminence and the elevation in serum corticosterone levels induced by LPS. Chronic treatment with imipramine also attenuated LPS-induced adrenocortical activation. In rats and in mice, which normally display a biphasic body temperature response to LPS (initial hypothermia followed by hyperthermia), chronic treatment with fluoxetine completely abolished the hypothermic response and facilitated and strengthened the hyperthermic response. The effects of antidepressants on the responsiveness to LPS are probably not mediated by their effects on peripheral proinflammatory cytokine production, because LPS-induced expression of TNFalpha and IL-1beta mRNA in the spleen (assessed by semiquantitative in situ hybridization) was not altered following chronic treatment with either fluoxetine or imipramine. The effects of antidepressants on the acute phase response may have important clinical implications for the psychiatric and neuroendocrine disturbances that are commonly associated with various medical conditions.  相似文献   

13.
Lipopolysaccharide (LPS) administration in rats induces a characteristic syndrome termed 'sickness behavior', including profound changes on locomotor activity and circulating stress and inflammatory mediators. The aim of the present investigation was to evaluate whether the behavioral and the peripheral biomarker responses induced by LPS could be modified by acute treatment with the p38 mitogen-activated protein kinase inhibitor SB-239063. Male Sprague-Dawley rats were treated orally either with vehicle or SB-239063 (3, 10 and 30 mg/kg) 1h before an intraperitoneal injection of either saline or LPS 125 μg/kg. Two hours after LPS injection, rats were placed in a novel open field arena for locomotion assessment during both the light and dark periods. Inflammation and stress mediators were evaluated in plasma 2, 3, 5 or 14 h into the dark phase. Pre-treatment with SB-239063 significantly reversed the locomotor deficits induced by LPS injection. Interleukin (IL)-1β, IL-6, IL-10, Granulocyte-Macrophage-Colony Stimulating Factor, Interferon-γ, and C-reactive-protein levels were increased significantly by LPS, but not when LPS was preceded by SB-239063 treatment. LPS significantly decreased growth-hormone and Prolactin, and this effect was attenuated by SB-239063. Tumor Necrosis Factor-α, Adrenocorticotropic Hormone and Corticosterone levels were significantly higher in LPS-treated rats and were not normalized by SB-239063. Thus, we demonstrate that acute treatment with SB-239063 may have ameliorating effects in early changes of LPS-induced sickness behavior and alteration in the peripheral cytokines/hormones. As such, our procedure may offer an opportunity to test the activity of novel anti-inflammatory compounds on specific symptoms of sickness associated with neuroimmune dysfunctions.  相似文献   

14.
We aim to evaluate the protective role of the central angiotensin-converting enzyme (ACE) inhibitor perindopril, compared with the standard reactive oxygen species (ROS) scavenger tempol, against lipopolysaccharide (LPS)-induced cognition impairment and amyloidogenesis in a simulation to Alzheimer’s disease (AD). Mice were allocated into a control group, an LPS control group (0.8 mg/kg, i.p., once), a tempol (100 mg/kg/day, p.o., 7 days) treatment group, and two perindopril (0.5 and 1 mg/kg/day, p.o., 7 days) treatment groups. A behavioral study was conducted to evaluate spatial and nonspatial memory in mice, followed by a biochemical study involving assessment of brain levels of Aβ and BDNF as Alzheimer and neuroplasticity markers; tumor necrosis factor-alpha (TNF-α), nitric oxide end-products (NOx), neuronal nitric oxide synthase (nNOS), and inducible nitric oxide synthase (iNOS) as inflammatory markers; and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione reduced (GSH), and nitrotyrosine (NT) as oxido-nitrosative stress markers. Finally, histopathological examination of cerebral cortex, hippocampus, and cerebellum sections was performed using both routine and special staining. Tempol and perindopril improved spatial and nonspatial memory in mice without affecting locomotor activity; decreased brain Aβ deposition and BDNF depletion; decreased brain TNF-α, NOx, nNOS, iNOS, MDA, and NT levels; and increased brain SOD and GSH contents, parallel to confirmatory histopathological findings. Tempol and perindopril may be promising agents against AD progression via suppression of Aβ deposition and BDNF decline, suppression of TNF-α production, support of brain antioxidant status, and amelioration of oxido-nitrosative stress and NT production.  相似文献   

15.
Behavioral aspects and metabolic fate of N,N-dimethyltryptamine (DMT) were studied in mice pretreated with beta-diethylaminoethyl-diphenylpropylacetate (SKF 525-A), iproniazid or chlorpromazine (CPZ). DMT at doses of 2.5, 10.0, and 25.0 mg/kg produced several behavioral changes in a dose-related manner: inhibition of spontaneous locomotor movement, enhanced fright responses to sound stimuli, trembling, head twitching, inco-ordinated movements of hind-legs, flat or extended tail and abnormal posture with the extension of hind-legs. Pretreatment with ipromazid (153 mg/kg; 4 hr) but not SKF 525-A (50 mg/kg; 1 hr) prolonged the behavioral effects produced by 2.5 mg/kg DMT while CPZ (15 mg/kg; 0.5 hr) completely abolished the responses induced by 25 mg/kg DMT. Earlier behavioral effects generally coincided with the brain concentrations of DMT. Dose-dependent increases with rapid uptake and disappearance in the brain, plasma and hepatic levels of DMT were measured with doses of 10 and 25 mg/kg DMT. Iproniazid but not SKF 525-A markedly enhanced tissue levels of DMT. it is concluded that DMT is metabolized chiefly by monoamine oxidase rather than by drug-metabolizing hepatic microsomal enzymes and that DMT-induced behavioral effects are due to the parent compound rather than its metabolite.  相似文献   

16.
We have shown that anorexic response is induced by intraperitoneal injection of zymosan in mice, although the role of prostaglandins in this response is relatively unknown as compared with lipopolysaccharide (LPS)-induced anorexic response. Indomethacin (0.5 and 2.0 mg/kg), a non-selective cyclooxygenase (COX) inhibitor, as well as meloxicam (0.5 mg/kg), a selective COX-2 inhibitor, but not FR122047 (2.0 mg/kg), a selective COX-1 inhibitor, attenuated zymosan-induced anorexia. Zymosan injection elevated COX-2 expression in brain and liver but not in small intestine and colon. Meloxicam (0.5 mg/kg) and FR122047 treatment (2.0 mg/kg) similarly suppressed the generation of brain prostaglandin E(2) (PGE(2)) and peritoneal prostacyclin (PGI(2)) upon zymosan injection. PGE(2) generation in liver upon zymosan injection was suppressed by meloxicam (0.5 mg/kg) but not by FR122047 treatment (2.0 mg/kg). Our observations suggest that COX-2 plays an important role in zymosan-induced anorexia, which is a similar feature in LPS-induced anorexic response. However, non-selective inhibition by selective COX-1 and COX-2 inhibitors of brain PGE(2) generation upon zymosan injection does not support the role of COX-2 expressed in brain in zymosan-induced anorexic response. PGE(2) generation in liver may account for peripheral role of COX-2 in zymosan-induced anorexic response.  相似文献   

17.
This experiment was designed to investigate the hypothesis that single small dosages of lithium (1.5 mEq/kg), the muscarinic agent pilocarpine (15 mg/kg) and spinal cord emulsion encourage perivascular infiltration of lymphocytes into the brain even when overt symptoms of experimental allergic encephalomyelitis are not apparent. The brains of rats that had received this small dosage of lithium and pilocarpine exhibited discernable infiltrations of lymphocytes within limbic tracts but no discernable neuronal loss. Although the brains of the rats that displayed overt seizures following larger dosages of lithium (3 mEq/kg) and pilocarpine (30 mg/kg) exhibited the usual pattern of neuronal loss within multiple thalamic and limbic structures and conspicuous foci of lymphocytic infiltration (particularly within the hippocampal formation) the correlation between the numbers of foci and the proportions of neuronal damage in these structures was not significant statistically. These results indicate that infiltrations of lymphocytes into brain parenchyma are not simple artifacts of the amount of neuronal damage and may be sensitive toxicological markers for subclinical interactions between drugs and immune responses.  相似文献   

18.
Immune responses represent a source of systemic stress which impacts the brain and modifies various neuroendocrine and behavioral functions. Therefore, the immune system has been conceived of as a potential contributor to stress-related behavioral abnormalities, such as depression. Much of this knowledge has been gained through research focused largely on the administration of cytokines and/or bacterial endotoxin (eg., LPS), which targets innate immune cells, such as macrophages. However, fewer studies have addressed the effects of T cell activation on central nervous system (CNS) function. The discovery and characterization of bacterial superantigens (SAgs) has introduced an important opportunity for studying how T cell activation influences CNS function. Superantigens target unique variable regions of the beta chain of the mouse and human T cell receptor. This is restricted by the class II molecule of the major histocompatibility complex (MHC), and results in the production of a cytokine cascade that includes interleukin-2 (IL-2), interferon-gamma (IFNgamma), tumor necrosis factor (TNF) and many other cytokines, including IL-6. The best studied SAgs are the staphylococcal enterotoxins, of which staphylococcal enterotoxins A and B (SEA and SEB), have been shown to produce significant changes in behavior and activation of the hypothalamic-pituitary-adrenal (HPA) axis. Importantly, a T cell requirement was necessary to produce these changes. Furthermore, the anorexic or hypophagic effects of SAg challenge in mice appears to be related to anxiety-like processes, since challenge with both SEA or SEB reduces consumption of mainly novel food or food presented in a novel context. In the present paper, these studies are reviewed and related to known alterations in both anxiogenic and anxiolytic neuropeptides. It is suggested that immunologically-induced changes in the brain activate both categories of neuropeptides, thereby sustaining an adaptive state of arousal that promotes appropriate behavioral adjustments during infectious illness.  相似文献   

19.
The spontaneous motor activity, overt behavioral responses, and concentration of NA and DA in the brain were studied in young rats at different postnatal ages following the administration of l-DOPA (100 mg/kg) or NA and DA receptor-stimulating or blocking agents. l-DOPA induced marked hyperactivity even at one day of age and the duration of the l-DOPA-induced hyperactivity and increase in NA and DA concentrations in the brain decreased with ontogenic development. At 21 days, the apparent behavioral response to l-DOPA was one of depression rather than marked excitation. Pretreatment of 21 day-old animals with MK-486, a peripheral decarboxylase inhibitor, produced excitation with aggressive responses, whereas in younger animals the effect of this drug was only to lengthen the duration of the response. It was concluded that not until around 21 days of age does the capacity of the peripheral decarboxylase become a major factor in determining the behavioral response to l-DOPA.Clonidine, a NA-receptor-stimulating agent elicited behavioral rssponses from one day of age similar to the responses observed after l-DOPA. A response to apomorphine, a DA-receptor-stimulating agent, was not readily observed until 4 days of age and then the response was rather variable. Marked stereotyped behavior was not observed in response to apomorphine until 21 days of age. This difference between clonidine and apomorphine stimulation was considered to suggest that NA receptors may develop at an earlier age than DA receptors.  相似文献   

20.
Effects of cinnarizine on immune response in mice were investigated. Mice were orally administered with cinnarizine and were immunized with sheep red blood cells (SRBC) intravenously. Numbers of plaque forming cells (PFC) to SRBC in spleen of these mice were assayed and delayed-type hypersensitivity (DTH) response to SRBC was measured. 1) PFC response in immunization with 5 X 10(6) cells/mouse of SRBC was enhanced by administration of 25 mg/kg of cinnarizine, while the response in immunization with 5 X 10(8) cells/mouse was suppressed by 25 to 200 mg/kg of cinnarizine. 2) From study on timing of administration, suppression of PFC response by 6.25 to 200 mg/kg of cinnarizine was observed at 24 hr. after the immunization. 3) 12.5 to 200 mg/kg of cinnarizine suppressed polyclonal B cell activation induced by lipopolysaccharide (LPS). 4) Colchicine induced suppressor T cell inactivation was prevented by administration of 50 mg/kg of cinnarizine and it was suggested that cinnarizine may induce suppressor T cells from the study of adoptive cell transfer system. 5) 50 mg/kg of cinnarizine showed the suppression of DTH response in expression phase, but not in induction phase. It was concluded that immune responses in mice were modified by cinnarizine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号