首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have examined the effect of hydroxyurea (HU), clotrimazole (CLT), magnesium oxide (Mg), and combined CLT+Mg therapies on the erythrocyte characteristics and their response to chronic hypoxia in a transgenic sickle mouse (SAD) model. SAD mice were treated for 21 days with 1 of the following regimens (administered by gavage): control (n = 6), HU (200 mg/d; n = 6), CLT (80 mg/kg/d, n = 5), Mg (1,000 mg/kg/d, n = 5), and CLT+Mg (80 and 1,000 mg/kg/d, respectively, n = 6). Nine normal mice were also treated as controls (n = 3), HU (n = 3), and CLT+Mg (n = 3). Treatment with HU induced a significant increase in mean corpuscular volume and cell K content and a decrease in density in SAD mice. Treatment with the CLT and Mg, either alone or in combination, also increased cell K and reduced density in SAD mice. After 21 days of treatment, the animals were exposed to hypoxia (48 hours at 8% O(2)) maintaining the same treatment. In the SAD mice, hypoxia induced significant cell dehydration. These hypoxia-induced changes were blunted in either HU- or Mg-treated SAD mice and were completely abolished by either CLT or CLT+Mg treatment, suggesting a major role for the Gardos channel in hypoxia-induced dehydration in vivo.  相似文献   

2.
Prevention of erythrocyte dehydration by specific blockade of the transport pathways promoting loss of potassium (K) is a potential therapeutic strategy for sickle cell (SS) disease. Dietary magnesium (Mg) pidolate supplementation over a 4-week period has been shown to inhibit K-Cl co-transport and reduce dehydration. We report here the results in 17 of 20 patients with SS disease treated in an open-label unblinded study of the effects of long-term (6 months) oral Mg pidolate administration (540 mg Mg/d). A significant decrease (P < 0.0025) was observed with Mg therapy in the distribution widths for red cell mean cell haemoglobin concentration (MCHC) (haemoglobin distribution width; HDW), reticulocyte mean cell volume (red cell distribution width of reticulocytes; RDWr) and MCHC (reticulocyte HDW; HDWr), activity of red cell K-Cl co-transport, Na/Mg exchanger and Ca2+-activated (Gardos) K+ channel, whereas red cell K and Mg contents were significantly increased. Hb levels and absolute reticulocyte counts did not change with Mg therapy. Two patients did not complete the trial because of diarrhoea and one did not complete the trial for unrelated reasons. Although the median number of painful days in a 6-month period decreased from 15 (range 0-60) in the year before the trial to 1 (range 0-18; P < 0.0005) during the period of Mg therapy, no firm conclusion on therapeutic efficacy could be drawn from this unblinded open-label trial.  相似文献   

3.
A prominent feature of sickle cell anemia is the presence of dehydrated red blood cells (RBCs) in circulation. Loss of potassium (K(+)), chloride (Cl(-)), and water from RBCs is thought to contribute to the production of these dehydrated cells. One main route of K(+) loss in the RBC is the Gardos channel, a calcium (Ca(2+))-activated K(+) channel. Clotrimazole (CLT), an inhibitor of the Gardos channel, has been shown to reduce RBC dehydration in vitro and in vivo. We have developed a chemically novel compound, ICA-17043, that has greater potency and selectivity than CLT in inhibiting the Gardos channel. ICA-17043 blocked Ca(2+)-induced rubidium flux from human RBCs with an IC(50) value of 11 +/- 2 nM (CLT IC(50) = 100 +/- 12 nM) and inhibited RBC dehydration with an IC(50) of 30 +/- 20 nM. In a transgenic mouse model of sickle cell disease (SAD), treatment with ICA-17043 (10 mg/kg orally, twice a day) for 21 days showed a marked and constant inhibition of the Gardos channel activity (with an average inhibition of 90% +/- 27%, P <.005), an increase in RBC K(+) content (from 392 +/- 19.9 to 479.2 +/- 40 mmol/kg hemoglobin [Hb], P <.005), a significant increase in hematocrit (Hct) (from 0.435 +/- 0.007 to 0.509 +/- 0.022 [43.5% +/- 0.7% to 50.9% +/- 2.2%], P <.005), a decrease in mean corpuscular hemoglobin concentration (MCHC) (from 340 +/- 9.0 to 300 +/- 15 g/L [34.0 +/- 0.9 to 30 +/- 1.5 g/dL], P <.05), and a left-shift in RBC density curves. These data indicate that ICA-17043 is a potent inhibitor of the Gardos channel and ameliorates RBC dehydration in the SAD mouse.  相似文献   

4.
The intracellular concentration of Hb S is an important determinant of the kinetic of polymer formation and cell sickling. A variable fraction of dense, dehydrated erythrocytes with high Hb S concentration is seen in the blood of patients with sickle cell disease; these dense cells play an important role in the pathophysiology of the vasoocclusive events of sickle cell disease, due to their higher tendency to polymerize and sickle. Sickle cell dehydration is due to loss of K+, Cl-, and water: the two major determinant pathways of dehydration of sickle erythrocytes are the Ca2+-activated K+ channel (IK1 or Gardos channel) and the K-Cl cotransport (KCC). Specific inhibitors of these pathways being tested in patients with sickle cell disease are Mg2+ pidolate, which inhibits KCC by increasing the sickle cell content of Mg2+, and clotrimazole and derivatives of clotrimazole metabolites, which specifically block the Gardos channel. An inhibitor of Cl- conductance has been shown to reduce dehydration in a transgenic mouse model of sickle cell disease but has not been tested in humans. If clinical efficacy and benefit are demonstrated, an inhibitor of cell dehydration could be used in patients as a single agent or in combination with existing therapies, such as hydroxyurea.  相似文献   

5.
beta thalassemia (beta thal) in DBA/2J mice is a consequence of the spontaneous and complete deletion of the beta major globin gene. Homozygous beta thal mice have clinical and biological features similar to those observed in human beta thal intermedia. Erythrocytes in human beta thal are characterized by a relative cell dehydration and reduced K+ content. The role of this erythrocyte dehydration in the reduced erythrocyte survival, which typifies the disease, has not previously been evaluated. We examined for 1 month the effects on the anemia and the erythrocyte characteristics of beta thal mice of daily treatment with either clotrimazole (CLT), an inhibitor of red blood cell (RBC) dehydration via the Gardos channel, or human recombinant erythropoietin (r-HuEPO), or hydroxyurea (HU). The use of either r-HuEPO or HU induced a significant increase in hemoglobin (Hb), hematocrit (Hct), erythrocyte K+ and a decrease in percent reticulocytes, suggesting improved erythrocyte survival. CLT alone decreased only mean corpuscular hemoglobin concentration (MCHC) and cell density and increased cell K+. Thus, though the Gardos channel plays a major role in cell dehydration of murine beta thal erythrocyte survival. Combination therapy with r-HuEPO plus HU produced no incremental benefit beyond those of single drug therapy. However, addition of CLT to r-HuEPO, to HU, or to combined r-HuEPO plus HU led to statistically significant increase in Hb, Hct, and erythrocyte K+ compared with any of the regimens without CLT. These results suggest that CLT not only inhibits erythrocyte dehydration, but also potentiates the erythropoietic and cellular survival responses to r-HuEPO and HU.  相似文献   

6.
The dehydration of sickle red blood cells (RBCs) through the Ca-activated K channel depends on the parallel movement of Cl ions. To study whether Cl-conductance block might prevent dehydration of sickle RBCs, a novel Cl-conductance inhibitor (NS3623) was characterized in vitro using RBCs from healthy donors and sickle cell patients and in vivo using normal mice and a transgenic mouse model of sickle cell disease (SAD mice). In vitro, NS3623 reversibly blocked human RBC Cl-conductance (g(Cl)) with an IC(50) value of 210 nmol/L and a maximal block of 95%. In vivo, NS3623 inhibited RBC g(Cl) after oral administration to normal mice (ED(50) = 25 mg/kg). Although g(Cl), at a single dose of 100 mg/kg, was still 70% inhibited 5 hours after dosing, the inhibition disappeared after 24 hours. Repeated administration of 100 mg/kg twice a day for 10 days caused no adverse effects; therefore, this regimen was chosen as the highest dosing for the SAD mice. SAD mice were treated for 3 weeks with 2 daily administrations of 10, 35, and 100 mg/kg NS3623, respectively. The hematocrit increased, and the mean corpuscular hemoglobin concentration decreased in all groups with a concomitant increase in the intracellular cation content. A loss of the densest red cell population was observed in conjunction with a shift from a high proportion of sickled to well-hydrated discoid erythrocytes, with some echinocytes present at the highest dosage. These data indicate feasibility for the potential use of Cl-conductance blockers to treat human sickle cell disease.  相似文献   

7.
[(Dihydroindenyl)oxy]alkanoic acid (DIOA) was recently introduced as a potent inhibitor of the K+Cl- cotransport system without side effects on other cation transport systems [Garay, R. P., Nazaret, C., Hannaert, P.A. & Cragoe, E. J., Jr. (1988) Mol. Pharmacol. 33, 696-701]. In sickle cells, an abnormal activation of this K+Cl- cotransport system was proposed to be involved in cell K+ loss and dehydration. We found that DIOA inhibited the abnormal sickle cell K+ loss and specifically reduced sickle cell density upon stimulation of the net outward K+Cl- cotransport--i.e., low pH, hypoosmolarity, and activation by N-ethylmaleimide. DIOA opens another therapeutic approach to sickle cell disease by inhibiting cell dehydration, which favors HbS polymerization and reduces erythrocyte deformability.  相似文献   

8.
Patients with sickle cell disease exhibit both acute and chronic activation of the coagulation and fibrinolytic systems. To test the relationship between sickle cell pathology and activation of the hemostatic system, mice with targeted deletions of plasminogen (Plg) or fibrinogen (Fib) were crossed with transgenic mice expressing Hb SAD [beta(6Glu-Val) (HbS), beta(23Val-Ile) (HbAntilles), and beta(121Glu-Gln) (HbD-Punjab)]. Fibrinogen deficiency dramatically reduced the survival of mice with Hb SAD to a much greater degree than mice with normal hemoglobin. The combination of Hb SAD and fibrinogen deficiency had a greater effect on mortality than that obtained by adding the mortality risks of each defect alone. The deleterious effect of the combination of Hb SAD and fibrinogen deficiency on mortality was accelerated by hypoxia. The excess mortality associated with plasminogen deficiency was identical in SAD and control mice. The adverse effect of fibrinogen deficiency on mortality in SAD mice is not consistent with the simple hypothesis that fibrin deposition is uniformly deleterious in the context of vaso-occlusive sickle cell disease. Rather, our findings suggest that the contribution of fibrinogen to tissue repair may in some contexts limit sickle cell disease pathophysiology.  相似文献   

9.
Romero JR  Suzuka SM  Nagel RL  Fabry ME 《Blood》2002,99(4):1103-1108
Nitric oxide (NO), essential for maintaining vascular tone, is produced from arginine by nitric oxide synthase. Plasma arginine levels are low in sickle cell anemia, and it is reported here that low plasma arginine is also found in our sickle transgenic mouse model that expresses human alpha, human beta(S), and human beta(S-Antilles) and is homozygous for the mouse beta(major) deletion (S+S-Antilles). S+S-Antilles mice were supplemented with a 4-fold increase in arginine that was maintained for several months. Mean corpuscular hemoglobin concentration (MCHC) decreased and the percent high-density red cells was reduced. Deoxy K(+) efflux is characteristic of red cells in sickle cell disease and contributes to the disease process by increasing the MCHC and rendering the cells more susceptible to polymer formation. This flux versus the room air flux was reduced in S+S-Antilles red cells from an average value of 1.6 +/- 0.3 mmol per liter of red cells x minute (FU) in nonsupplemented mice to 0.9 +/- 0.3 FU (n = 4, P < .02, paired t test) in supplemented mice. In room air, V(max) of the Ca(++)-activated K(+) channel (Gardos) was reduced from 4.1 +/- 0.6 FU (off diet) to 2.6 +/- 0.4 FU (n = 7 and 8, P < .04, t test) in arginine-supplemented mice versus clotrimazole. In conclusion, the major mechanism by which arginine supplementation reduces red cell density (MCHC) in S+S-Antilles mice is by inhibiting the Ca(++)-activated K(+) channel.  相似文献   

10.
Both green tea extract (GTE or tea polyphenols) and aged garlic extract (AGE) effectively inhibited in vitro dehydration of sickle red blood cells induced by K-Cl cotransport or red cell storage. For K-Cl cotransport induced by 500 mM urea, 0.3 mg/ml EGCg (epigallocatechin gallate; a major component in GTE) almost completely inhibited dehydration, and 6 mg/ml AGE inhibited dehydration to 30% of the control level. Both vitamins E and C had no effect at the level of 2 mM. Different tea extracts had different degrees of inhibition, but the inhibitory activity increased when the number of hydroxyl groups in the compounds increased. With storage of sickle cells at 4 degrees C for 6 days, the cells started to undergo spontaneous dehydration when incubated at 37 degrees C. Neither inhibitors for Ca-induced K efflux nor K-Cl cotransport could inhibit cell dehydration of stored sickle cells, but both GTE and AGE effectively inhibited it. Chloride efflux measurements using a chloride electrode demonstrated that both GTE and AGE inhibited anion transport in red blood cells. The inhibitory mechanism of these compounds may be related to anion transport inhibition, although involvement of their antioxidant activities can not yet be ruled out.  相似文献   

11.
Joiner CH  Rettig RK  Jiang M  Franco RS 《Blood》2004,104(9):2954-2960
KCl cotransport (KCC) activation by cell swelling and pH was compared in sickle (SS) and normal (AA) red blood cells (RBCs). KCC fluxes had the same relationship to mean corpuscular hemoglobin concentration (MCHC) in SS and AA RBCs when normalized to the maximal volume-stimulated (VS(max)) flux (MCHC < 270 g/L [27 g/dL]). Acid-stimulated (pH 6.9) KCC flux in SS RBCs was 60% to 70% of VS(max) KCC versus 20% in AA RBCs. Density gradients were used to track changes in reticulocyte MCHC during KCC-mediated regulatory volume decrease (RVD). Swelling to MCHC of 260 g/L (26 g/dL) produced Cl-dependent RVD that resulted in higher MCHC in SS than AA reticulocytes. In acid pH, RVD was also greater in SS than AA reticulocytes. Sulfhydryl reduction by dithiothreitol (DTT) lowered VS(max) KCC flux in AA and SS RBCs by one third but did not alter swelling-induced RVD. DTT lowered acid-activated KCC in SS RBCs by 50% and diminished acid-induced RVD in SS reticulocytes. Thus, swelling activation of KCC is normal in SS RBCs but KCC-mediated RVD produces higher MCHC in SS than AA reticulocytes. Acid activation of KCC is exaggerated in SS RBCs and causes dehydration in SS reticulocytes. KCC response to acid stimulation was mitigated by DTT, suggesting that it arises from sulfhydryl oxidation.  相似文献   

12.
Franco  RS; Palascak  M; Thompson  H; Rucknagel  DL; Joiner  CH 《Blood》1996,88(11):4359-4365
The K+ efflux that mediates sickle-cell dehydration may occur through several pathways, including two with a high capacity for mediating rapid K+ loss, KCl cotransport and the Ca(2+)-dependent K+ channel [K(Ca2+)]. The rate and pathway of red blood cell (RBC) dehydration most likely depends on cell age and hemoglobin (Hb) composition, with the presence of HbF playing an important role. Oxygenated sickle RBCs have relatively stable cell volume during incubation in vitro, whereas deoxygenated cells become dehydrated, and therefore more dense, due to activation of one or more K+ efflux pathways. In this investigation, sickle RBCs were deoxygenated either continuously or in 15-minute cycles for 4 hours, and the density increases of very young, transferrin receptor-positive (TfR+) cells and the remaining TfR- cells were determined. The contribution of KCl cotransport was estimated by replacing Cl- with NO3-. K(Ca2+) was inhibited by removal of Ca2+ or addition of charybdotoxin (ChTX). For both continuous and cyclic deoxygenation, TfR+ cells had a greater density increase when compared with TfR- cells. The lower percentage of HbF found in the TfR+ population may contribute to this difference. With continuous deoxygenation, the density shift was decreased by inhibition of K(Ca2+), but not by inhibition of KCl cotransport. With cyclic deoxygenation, the density shift was decreased in an independent, additive manner by inhibition of both pathways. Thus, cyclic deoxygenation of sickle cells under these conditions appears to activate both K(Ca2+) and the KCl cotransporter.  相似文献   

13.
Clinical and haematological features in 41 patients with sickle cell-beta0 thalassaemia (Sbeta0 thalassemia) and in 123 age--sex matched controls with homozygous sickle cell (SS) disease were compared. Persistence of splenomegaly was more common and fetal loss less common in Sbeta0 thalassemia but other clinical features were similar in the two genotypes. Total haemoglobin, Hb A2, PCV, CCV, and red cell count were significantly higher and MCV, MCH, MCHC, and ISC counts significantly lower in Sbeta0 thalassaemia. Proportional reticulocyte counts were significantly lower in Sbeta0 thalassaemia but there was no difference in absolute reticulocyte counts. Persistence of splenomegaly and low ISC counts are compatible with decreased intravascular sickling which may result from the lower mean cell haemoglobin S concentration in Sbeta0 thalassaemia. If beneficial effects of a low MCHC can be confirmed then a carefully monitored trial of iron deficiency in SS disease may be a logical experimental procedure.  相似文献   

14.
To test the hypothesis that HbOARAB induces an increase in red cell mean corpuscular haemoglobin concentration (MCHC), we studied members of four Tunisian families who were either homo- or heterozygous for HbOARAB or were double heterozygotes for HbS and HbOARAB. The alpha-gene status was also tested. The findings included: (1) Distinctive variation in red cell density (MCHC) as determined by separation of red cells on isopycnic gradients: (a) All red cells from patients homozygous for HbOARAB were denser than normal red cells, as is observed for homozygous HbC patients. (b) In patients heterozygous for HbOARAB, red cell density was strongly influenced by the presence of alpha-thalassaemia. The coexistence of -alpha/alphaalpha resulted in an average red cell density slightly greater than normal (AA) red cells. Patients heterozygous for HbOARAB with a normal complement of four alpha genes had denser red cells similar to sickle cell disease with some cells of normal density but with most cells very dense. (c) Finally, the double heterozygotes for HbS and HbOARAB had significant haemolytic anaemia and red cells denser than normal with some as dense as the densest cells found in sickle cell anaemia. (2) Reticulocytes in patients homozygous for HbOARAB were found in the densest density fraction of whole blood. (3) Cation transport in patients homozygous for HbOARAB was abnormal, with K:Cl cotransport activity similar to that of HbS-Oman and only somewhat lower than in sickle cell anaemia red cells. The activity of the Gardos channel was indistinguishable from that found in HbS, HbC and HbS-Oman cells. We conclude that the erythrocytic pathogenesis of HbOARAB involves the dehydration of red cells due, at least in part, to the K:Cl cotransport system. The similarity of the charge and consequences of the presence of both HbC and HbOARAB, which are the products of mutations at opposite ends of the beta-chain, raises the possibility that this pathology is the result of a charge-dependent interaction of these haemoglobins with the red cell membrane and/or its cytoskeleton and that this abnormality is present early in red cell development.  相似文献   

15.
When present in the homozygous form, hemoglobin C (HbC, CC disease) increases red cell density, a feature that is the major factor underlying the pathology in patients with SC disease (Fabry et al., JCI 70, 1315, 1982). The basis for the increased red cell density has not yet been fully defined. We have generated a HbC mouse in which the most successful founder expresses 56% human alpha and 34% human beta(C). We introduced knockouts (KO) of mouse alpha- and beta-globins in various combinations. In contrast to many KO mice, all partial KOs have normal MCH. Full KOs that express exclusively HbC and no mouse globins have minimally reduced MCH (13. 7 +/- 0.3 pg/cell vs 14.5 +/- 1.0 for C57BL/6) and a ratio of beta- to alpha-globin chains of 0.88 determined by chain synthesis; hence, these mice are not thalassemic. Mice with beta(C) > 30% have increased MCHC, dense reticulocytes, and increased K:Cl cotransport. Red cell morphology studied by SEM is strikingly similar to that of human CC cells with bizarre folded cells. We conclude that red cells of these mice have many properties that closely parallel the pathology of human disease in which HbC is the major determinant of pathogenesis. These studies also establish the existence of the interactions with other gene products that are necessary for pleiotropic effects (red cell dehydration, elevated K:Cl cotransport, morphological changes) that are also present in these transgenic mice, validating their usefulness in the analysis of pathophysiological events induced by HbC in red cells.  相似文献   

16.
A subset of sickle cells have an increased density at the reticulocyte stage of development, indicating that they are either abnormally dense upon release from the bone marrow or become dense quickly in the circulation. These cells are of interest because they most likely have severely disrupted cation regulation and a short lifespan. Based on the distribution of fetal hemoglobin (HbF) in the density fractions of sickle red blood cells (RBCs) and in vitro studies of cellular K+ loss, it seems likely that HbF content is an important in vivo determinant of dense cell formation. In this study, we tested the hypothesis that young, dense cells have low HbF content. Sickle RBCs were first separated into light and dense fractions. Reticulocytes were isolated from unfractionated cells and from each density fraction with an immunomagnetic technique directed against transferrin receptors (TfR) and assayed for the percentage of HbF and K+/Hb ratio. TfR+ reticulocytes isolated from unfractionated cells had a much lower HbF content when compared with all the unfractionated RBCs. This is most likely caused by enrichment of F cells because of a longer circulation life span. Heavy TfR+ reticulocytes had a K+/Hb ratio similar to that measured in the entire dense population and contained very low levels of HbF, averaging 2.5% of the level in all RBCs, 11.7% of the level in all TfR+ reticulocytes, and 4.0% of the level in all dense RBCs. These findings suggest that TfR+ dense cells derive predominantly from non-F cells. Furthermore, the amount of HbF in the circulating dense cells suggests that many of these cells do not derive from the TfR+ dense cells.  相似文献   

17.
Rivera A  Ferreira A  Bertoni D  Romero JR  Brugnara C 《Blood》2005,105(1):382-386
Erythrocyte magnesium (Mg2+) deficiency has been demonstrated in sickle cell disease to contribute to erythrocyte dehydration, K loss, and thus sickling. No studies have assessed the functional properties of the Na/Mg exchanger in sickle cell disease. Using Mg(2+)-loaded erythrocytes, we measured Mg2+ efflux induced by extracellular Na+. We estimated that the Na/Mg exchanger had higher maximal velocity, higher affinity for Na+, and lower cooperativity for Mg2+ in sickle than in normal erythrocytes. The activity of the exchanger was markedly decreased by hypotonic and hypertonic conditions in normal erythrocytes but not in sickle erythrocytes. Studies of density-separated erythrocytes showed that the activity of the exchanger decreased as the mean cellular hemoglobin concentration increased in normal but not in sickle erythrocytes. Inhibition of protein kinase C (PKC) activity by calphostin C and chelerythrine increased the activity of the exchanger in normal but not in sickle erythrocytes. Inhibition of serine/threonine phosphatases did not affect the activity of the exchanger in either normal or sickle erythrocytes. Altogether, these data indicate that the Na/Mg exchanger is abnormally regulated in sickle erythrocytes. Therefore, Mg2+ depletion in sickle erythrocytes might be mediated by an up-regulated Na/Mg exchanger, possibly by dephosphorylation of the transporter or a closely associated regulator.  相似文献   

18.
Calabro A  Oken MM  Hascall VC  Masellis AM 《Blood》2002,99(7):2578-2585
Interaction of hemoglobin S polymers with the red blood cell (RBC) membrane induces a reversible increase in permeability ("P(sickle)") to (at least) Na(+), K(+), Ca(2+), and Mg(2+). Resulting changes in [Ca(2+)] and [H(+)] in susceptible cells activate 2 transporters involved in sickle cell dehydration, the Ca(2+)-sensitive K(+) ("Gardos") channel (K(Ca)) and the acid- and volume-sensitive K:Cl cotransport. We investigated the distribution of P(sickle) expression among deoxygenated sickle cell anemia (SS) RBCs using new experimental designs in which the RBC Ca(2+) pumps were partially inhibited by vanadate, and the cells' dehydration rates were detected as progressive changes in the profiles of osmotic fragility curves and correlated with flow cytometric measurements. The results exposed marked variations in (sickling plus Ca(2+))-induced dehydration rates within populations of deoxygenated SS cells, with complex distributions, reflecting a broad heterogeneity of their P(sickle) values. P(sickle)-mediated dehydration was inhibited by clotrimazole, verifying the role of K(Ca), and also by elevated [Ca(2+)](o), above 2 mM. Very high P(sickle) values occurred with some SS discocytes, which had a wide initial density (osmotic resistance) distribution. Together with its previously shown stochastic nature, the irregular distribution of P(sickle) documented here in discocytes is consistent with a mechanism involving low-probability, reversible interactions between sickle polymers and membrane or cytoskeletal components, affecting only a fraction of the RBCs during each deoxygenation event and a small number of activated pathways per RBC. A higher participation of SS reticulocytes in P(sickle)-triggered dehydration suggests that they form these pathways more efficiently than discocytes despite their lower cell hemoglobin concentrations.  相似文献   

19.
Dexfenfluramine (DEX) and sibutramine (SIB) are effective antiobesity agents. Their effects on weight control and hormone profile have not been previously studied in diet-switched diet-induced obese (DIO) mice, in which treatment is initiated upon cessation of a low-fat diet and resumption of a high-fat diet. Furthermore, their effects on circulating ghrelin in obese humans or in animal models of obesity have not yet been reported. Male C57BI/6J DIO mice after 16 wk on a high-fat diet (HF, 60 kcal% fat) were switched to a low-fat diet (LF, 10 kcal% fat) for 50 d. HF diet resumed concurrently with treatment for 28 d with DEX 3 and 10 mg/kg, twice a day (BID); SIB 5 mg/kg BID; or vehicle. Rapid weight regain ensued in vehicle-treated DIO mice. DEX or SIB treatment significantly blunted the body weight gain. Caloric intake was decreased acutely by DEX or SIB vs vehicle during the first 2 d treatment, but returned to control after 5 d. At the end of study, epididymal fat weight and whole body fat mass determined by DEXA scan were decreased by DEX 10 mg/kg, and whole body lean mass decreased with DEX 3 mg/kg treatment. Circulating ghrelin on d 28 was increased with either DEX 3 or 10 mg/kg treatment, while growth hormone and insulin were decreased. Leptin was also decreased in the DEX 10 mg/kg group. SIB did not significantly affect fat mass, ghrelin, growth hormone, insulin, or leptin. Mice chronically fed LF diet maintained a lower caloric intake, gained less weight and fat mass than diet-switched mice, and had higher ghrelin and lower insulin and leptin. In summary, weight regain in diet-switched DIO mice is delayed with either DEX or SIB treatment. DEX treatment of diet-switched DIO mice decreased growth hormone, insulin, leptin, fat mass, lean mass, and increased ghrelin, while SIB only decreased body weight.  相似文献   

20.
The effects of oestrogen on blood pressure and erythrocyte Na+ influx were measured in oophorectomized rats treated with oestradiol benzoate (100ug/kg/week i.m.) or vehicle for eight weeks. A significant increase in mean blood pressure was observed in the oestradiol-treated compared to the vehicle-treated group, together with a significant increase in red cell [Na+]. Oestradiol administration produced no significant changes in total Na+ influx, cotransport, countertransport or Na+ diffusion and did not alter plasma [Na+], red cell [K+], mean corpuscular haemoglobin concentration (MCHC) or blood volume per 100g body weight. However, significant decreases in body weight, haematocrit and plasma [K+] were observed in the oestradiol-treated group. These results support previous observations that oestradiol increases blood pressure and suggest that chronic administration of oestrogen increases red cell [Na+], probably by a mechanism other than alteration in erythrocyte passive Na+ transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号