首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrical stimulation of the cat cervical sympathetic trunk caused submandibular salivary secretion and vasoconstriction simultaneously with a contraction of the nictitating membrane. Following α- and β-adrenoceptor blockade by phentolamine or phenoxybenzamine combined with propranolol, the salivary response and the nictitating membrane contraction upon sympathetic stimulation were almost abolished. A considerable vasoconstrictor response (up to 40% of control) however still remained in the submandibular gland. This yasoconstriction, which persisted after α-adrenoceptor blockade, was rather slow in onset and had a long duration without any poststimulatory hyperemia. Local intra-arterial infusions of noradrenaline caused submandibular vasoconstriction, salivary secretion and nictitating membrane contraction. The blood flow response to exogenous noradrenaline did, however, not mimic the effects of sympathetic nerve stimulation with regard to vascular escape. Whereas the vascular escape after nerve stimulation was followed by a prolonged vasoconstriction with a gradual decline, the escape after noradrenaline infusions was accompanied by a normalization of blood flow. Local intra-arterial infusions of pancreatic polypeptide (PP)-related peptides caused a slowly developing vasoconstriction with a long duration in the submandibular gland, but no salivary secretion or contraction of the nictitating membrane. The relative molar potencies as vasoconstrictory agents were about PYY: 1, neuropeptide Y (NPY): 5, avian and bovine pancreatic polypeptid 100. The vasoconstrictor effects of PP-related peptides were resistant to α-adrenoceptor blockade and present also in sympathectomized animals, suggesting a direct action on vascular smooth muscle. Combined local infusions of noradrenaline and NPY caused a vascular response in the submandibular salivary gland which was similar to that seen upon sympathetic nerve stimulation. PYY and NPY caused increase in systemic arterial blood pressure upon systemic administration which indicates general vasoconstrictor actions. This effect was accompanied by a transient bradycardia which was due to inhibition of sympathetic tone, since it was absent in animals treated with propranolol. In conclusion, the present findings illustrate the differential sensitivity to α-adrenoceptor antagonists of the submandibular vasoconstriction and salivation as well as smooth muscle contraction of the nictitating membrane induced by sympathetic nerve stimulation. This remaining vasoconstriction may be explained by release of a nonadrenergic, PP-related transmitter such as NPY which may be present together with noradrenaline in the vascular nerves. Release of an additional vasoconstrictory factor may also account for the finding that infusions of noradrenaline do not mimic the vascular effects of sympathetic nerve stimulation in vivo.  相似文献   

2.
Experiments were performed in anesthetized dogs to determine whether previously reported in vitro inhibition of sympathetic neurotransmitter release by acetylcholine could be demonstrated in the renal vasculature of the intact animal. Vasoconstrictor responses to renal sympathetic nerve stimulation at varying frequencies were compared to intra-arterial injections of norepinephrine before and during intra-arterial infusions of acetylcholine, 2.5--80 micrograms/min. The vasoconstrictor responses to nerve stimulation were inhibited to a greater extent than were responses to norepinephrine during infusions of acetylcholine. The inhibitory effects of acetylcholine on nerve stimulation were dose and frequency dependent. The inhibition was blocked by atropine but not altered by physostigmine. Changes in renal blood flow per se did not contribute to the inhibitory effect of acetylcholine, since another vasodilator agent, sodium acetate, did not affect the nerve stimulation-norepinephrine vasocontriction relationship. Thus, acetylcholine produced inhibition of in vivo renal sympathetic vasoconstrictor responses, and the receptor involved appears to be muscarinic.  相似文献   

3.
The effects of intra-arterial injections and infusions of epinephrine, norepinephrine, and isoproterenol on gastric blood flow were studied in anesthetized baboons. Blood flow was measured electromagnetically before and after adrenergic blockade. The results for injected epinephrine and norepinephrine indicate these agents to be pure vasoconstrictors in the primate gastric circulation, and this response is attenuated by alpha-adrenergic blockade with phenoxybenzamine. Isoproterenol is a pure vasodilator, and its response is attenuated following beta-adrenergic blockade with propranolol. Intra-arterial infusions of epinephrine and norepinephrine (.05 mug kg-1 min-1) resulted in sustained vasoconstriction with no evidence of autoregulatory escape and no postinfusion "over-shoot." This study suggests that epinephrine and norepinephrine might provide alternatives to vasopressin as a vasoconstrictor for the control of upper gastrointestinal bleeding.  相似文献   

4.
We have investigated the effects of ischaemia on neuropeptide Y (NPY) mechanisms involved in sympathetic vascular control of the pig kidney in vivo. Reperfusion after 2 h of renal ischaemia was associated with local overflow of noradrenaline (NA) but not of NPY-like immunoreactivity (-LI). Renal sympathetic nerve stimulation 10 min into reperfusion evoked markedly reduced vasoconstrictor effects and significantly less overflow of NA (reduced by 70% from the pre-ischaemic conditions), whereas NPY-LI overflow was unaltered. Renal vasoconstrictor responses to exogenous peptide YY (PYY), phenylephrine and angiotensin II were strongly attenuated after this ischaemic period, while vasoconstriction to α,β-methylene ATP was maintained to a larger extent. The renal vascular responses and NA overflow had become partially normalized within a 2 h recovery period. In contrast, the renal vasoconstrictor response and the overflow of NPY-LI upon sympathetic nerve stimulation were enhanced after 15 min of renal ischaemia. In parallel, the PYY-evoked renal vasoconstriction was selectively and markedly prolonged after the 15 min of ischaemia. In the presence of the NPY Y1 receptor antagonist BIBP 3226, the augmented vascular response to nerve stimulation was significantly attenuated. We conclude that reperfusion after 2 h of renal ischaemia is associated with local overflow of NA, whereas the sympathetic nerve-evoked release of NA and the reactivity of the renal vasculature to vasoconstrictor stimuli are reversibly reduced. Furthermore, possibly due to an impaired local degradation, the role of neurogenically released NPY in renal sympathetic vasoconstriction is enhanced after short-term (15 min) ischaemia compared with control conditions.  相似文献   

5.
Sympathetic nerve stimulation (2 min, 2 and 10 Hz) increased perfusion pressure in the blood perfused canine gracilis muscle in situ after pretreatment with atropine, desipramine and beta-adrenoceptor antagonists. This vasoconstriction was accompanied by clear-cut increases in the overflow of endogenous noradrenaline (NA) at both frequencies and, at 10 Hz but not at 2 Hz, also of neuropeptide Y-like immunoreactivity (NPY-LI). The irreversible alpha-adrenoceptor antagonist phenoxybenzamine enhanced the nerve stimulation induced overflows of NA and NPY-LI five- to eightfold and threefold, respectively. The fractional overflows of NA and NPY-LI per nerve impulse were similar in response to the high-frequency stimulation, indicating equimolar release in relation to the tissue contents of the respective neurotransmitter. The maximal vasoconstrictor response elicited by 10 Hz was reduced by about 50% following a dose of phenoxybenzamine which abolished the effect of exogenous NA and the remaining response was more long-lasting. Local i.a. infusion of NPY evoked long-lasting vasoconstriction in the presence of phenoxybenzamine, while the stable adenosine 5(1)-triphosphate (ATP) analogue alpha-beta-methylene ATP was without vascular effects. Locally infused NPY reduced the nerve stimulation evoked NA overflow by 31% (P less than 0.01) at 1 microM in arterial plasma, suggesting prejunctional inhibition of NA release. In conclusion, NPY-LI is released from the canine gracilis muscle upon sympathetic nerve stimulation at high frequencies. There is nerve stimulation evoked vasoconstriction, which is resistant to alpha-adrenoceptor blockade. This may in part be mediated by NPY released together with NA from the sympathetic vascular nerves.  相似文献   

6.
We examined the neurohumoral mechanisms underlying the hindlimb vasodilator response produced by electrical stimulation of the anteroventral region of the third ventricle (AV3V). Hindlimb blood flow velocity was recorded using a pulsed Doppler flow probe. The vasodilator response to AV3V stimulation was greater than that obtained after inhibition of neurogenic vasoconstrictor tone with sympathectomy and was, therefore, in part an active process. The hindlimb vasodilator response was not affected by cholinergic or histaminergic receptor blockade but was reduced by bilateral adrenalectomy (ADX) or adrenal demedullation (ADM) and was further reduced by beta-adrenergic receptor blockade with propranolol in ADX rats. In ADX or ADM rats the vasodilator response was attenuated by repeated AV3V stimulations and restored by epinephrine infusion. Moreover, restoration of the response after epinephrine infusion was completely blocked by the neuronal uptake blocker desmethylimipramine. As was observed with vasodilation, constrictor responses to AV3V stimulation in the renal and mesenteric vascular beds were also attenuated by adrenal demedullation and were restored by epinephrine infusion. These data suggest that circulating epinephrine, originating in the adrenal medulla, is taken up by sympathetic nerve terminals innervating blood vessels. The catecholamine is then released from these nerves and acts like a classical neurotransmitter, producing vasodilation in skeletal muscle and vasoconstriction in splanchnic and renal vascular beds.  相似文献   

7.
The present experiments were undertaken to study the balance between vascular alpha- and beta-adrenoceptors in canine subcutaneous adipose tissue during sympathetic nerve stimulation and noradrenaline injections. Propranolol potentiated and prolonged the vasoconstrictor response to close i.a. injections of noradrenaline. The vasoconstriction induced by brief nerve stimulation (0.5 to 8 Hz) was, however, unaltered by the beta-adrenoceptor blockade. During prolonged nerve stimulation the vasoconstrictor response was well maintained at 1.5 Hz but at 4 Hz there was a gradual escape. The escape phenomenon at 4 Hz was diminished by propranolol. The beta1-selective antagonist practolol, like propranolol, potentiated and prolonged the vasoconstriction induced by noradrenaline injections and reduced the vasoconstrictor escape during prolonged nerve stimulation at 4 Hz. Furthermore, the vasodilatation induced by noradrenaline injection or nerve stimulation during alpha-adrenoceptor blockade was diminished by practolol. Practolol also blocked the lipolytic response to noradrenaline and nerve stimulation. The beta2-selective antagonist H35/25 blocked the effects of the beta2-selective agonist salbutamol but failed to alter noradrenaline as well as nerve stimulation induced vascular and lipolytic beta-adrenoceptor responses. The present results provide further support for the hypothesis that vascular beta-adrenoceptors in adipose tissue are humoral (noninnervated), preferentially activated by circulating noradrenaline. Moreover, both vascular and lipolytic beta-adrenoceptors activated by noradrenaline in adipose tissue are best classified as beta1-adrenoceptors.  相似文献   

8.
The possible involvement of neuropeptide Y (NPY) in sympathetic control of renal blood flow was investigated in the pig in vivo. Exogenous NPY caused renal vasoconstriction with a threshold effect at an arterial plasma concentration of 164 pmol 6(-1). Stimulation of the renal nerves (0.59, 2 and 10 Hz) in control animals evoked rapid and frequency-dependent reduction in renal blood flow and overflow of NPY-like immunoreactivity (NPY-LI) and noradrenaline (NA) from the kidney, suggesting co-release from sympathetic nerves. Following the administration of the alpha- and beta-adrenoceptor antagonists phenoxybenzamine and propranolol, the vasoconstrictor response to exogenous NA was reduced by 98%, whereas that of NPY was unaltered. The response to nerve stimulation with 0.59 Hz was abolished, whereas relatively slowly developing reductions in renal blood flow by 7 and 28% were obtained upon stimulation with 2 and 10 Hz respectively. The nerve stimulation-evoked overflow of NA at 0.59 and 2 Hz, but not at 10 Hz and not that of NPY-LI, was enhanced after adrenoceptor blockade. Twenty-four hours after reserpine treatment (1 mg kg-1 i.v.) the contents of NPY-LI and NA in the renal cortex were reduced by 80 and 98% respectively. Sectioning of the renal nerves largely prevented the reserpine-induced depletion of NPY-LI, but not that of NA. Nerve stimulation of the denervated kidney with 2 and 10 Hz 24 h after reserpine treatment evoked slowly developing and long-lasting reductions in renal blood flow by 6 and 52% respectively. These responses were associated with overflow of NPY-LI, which was similar to and threefold higher than that observed in controls at 2 and 10 Hz respectively, while no detectable overflow of NA occurred. Repeated stimulation with 10 Hz resulted in a progressive fatigue of the vasoconstrictor response and the associated overflow of NPY-LI, giving a high correlation (r = 0.86, P less than 0.001) between the two parameters. It is concluded that NPY is a potent constrictor of the renal vascular bed. Furthermore, although NA is the likely transmitter mediating most of the responses to low to moderate nerve activation under control conditions, the data suggest that NPY may mediate the non-adrenergic reductions in renal blood flow evoked by high-frequency sympathetic nerve stimulation after reserpine treatment.  相似文献   

9.
The present experiments were undertaken to study the balance between vascular α- and β-adrenoceptors in canine subcutaneous adipose tissue during sympathetic nerve stimulation and noradrenaline injections. Propranolol potentiated and prolonged the vasoconstrictor response to close i.a. injections of noradrenaline. The vasoconstriction induced by brief nerve stimulation (0.5 to 8 Hz) was, however, unaltered by the β-adrenoceptor blockade. During prolonged nerve stimulation the vasoconstrictor response was well maintained at 1.5 Hz but at 4 Hz there was a gradual escape. The escape phenomenon at 4 Hz was diminished by propranolol. The β1-selective antagonist practolol, like propranolol, potentiated and prolonged the vasoconstriction induced by noradrenaline injections and reduced the vasoconstrictor escape during prolonged nerve stimulation at 4 Hz. Furthermore, the vasodilatation induced by noradrenaline injection or nerve stimulation during α-adrenoceptor blockade was diminished by practolol. Practolol also blocked the lipolytic response to noradrenaiine and nerve stimulation. The β2-selective antagonist H35/25 blocked the effects of the β2-selective agonist salbutamol but failed to alter noradrenaline as well as nerve stimulation induced vascular and lipolytic β-adrenoceptor responses. The present results provide further support for the hypothesis that vascular β-adrenoceptors in adipose tissue are humoral (noninnervated), preferentially activated by circulating noradrenaline. Moreover, both vascular and lipolytic β-adrenoceptors activated by noradrenaline in adipose tissue are best classified as β1-adrenoceptors.  相似文献   

10.
Cerebral blood flow (CBF) was measured in 20 baboons by the intra-arterial xenon-133 injection method. The CBF responses to intra-arterial infusions of noradrenaline (NA) were determined. These responses were normally found to be vasodilator and mediated by beta adrenoreceptors. After infusion of substances blocking extraneuronal uptake of NA or opening of the blood-brain barrier, this vasodilation was either abolished or converted to an alpha-receptor mediated vasoconstriction. This suggests that normally the cerebral circulation is protected against noradrenergic vasoconstriction by mechanisms reducing the concentration of NA in the tunica media to below threshold for alpha-adrenoreceptor stimulation.  相似文献   

11.
The relative maturity of renal circulatory responses to efferent renal nerve stimulation, and to exogenous norepinephrine and isoproterenol, was tested in 62 piglets (1--16 days old) under pentobarbital anesthesia (10--25 mg/kg). Aortic pressure, heart rate, and renal and femoral arterial flows (measured by electromagnetic flow transducers) were recorded simultaneously. Renal vascular resistance was calculated as mean aortic pressure/mean flow. Transection of the renal nerve resulted in decreased renal resistance in all animals. Efferent renal nerve stimulation at increasing frequencies (2--12.5 Hz, at 1.2 ms pulse duration and 1.0 mA current) showed age-dependent differences in the threshold and also in the magnitude of increase in renal resistance. Norepinephrine (0.05--1.0 microgram/kg) caused age-dependent increases in renal resistance. Restoration of renal flow toward control level occurred during the peak pressor effect of norepinephrine only in older piglets. Isoproterenol (0.05--1.0 microgram/kg) did not alter renal resistance consistently in piglets younger than 1 wk. Phentolamine (0.25 mg/kg) attenuated or blocked resistance increases to 0.5 microgram norepinephrine/kg or to renal nerve stimulation at 12.5 Hz in all animals. Propranolol (0.1 mg/kg) attenuated or blocked resistance decreases to 0.1 microgram isoproterenol/kg, which occurred only in older piglets. These results indicate the presence of an active alpha-adrenergic vasoconstrictor mechanism and absence of the beta-adrenergic vasodilator mechanism in the renal circulation of swine at birth.  相似文献   

12.
Continuous electrical stimulation of the cut synpathetic innervation to perfused gracilis muscles restored vasoconstrictor tone and active dilatation resulted when stimulation was terminated. This dilatation was unaffected by cholinergic blockade but was blocked by the antihistamine tripelennamine. Prior vasoconstriction was not required to produce active dilatation since sympathetic stimulation applied during infusion of xylocholine (betaTM10) produced no vasoconstrictor response yet an antihistamine-sensitive vasodilatation appeared when stimulation ceased. This dilatation was also blocked by the alpha-adrenergic receptor blocker phentolamine even though adrenergic vasoconstrictor tone was absent. These results suggest that the release of histamine from its storage site is mediated by an alpha-receptor mechanism. Since betaTM10 abolished adrenergic vasoconstriction but preserved histamine-mediated vasodilatation that could be prevented by alpha-adrenergic blockade, it is proposed that histamine release may be under the control of separate adrenergic fibers without a vasoconstrictor function. This mechanism may underlie the process of active reflex vasodilatation since upon reflex withdrawal of tonic sympathetic activity an antihistamine-sensitive vasodilatation occurs.  相似文献   

13.
1. The responses to sympathetic nerve stimulation and to the adrenal medullary hormones have been studied in the hind limb vascular beds of the anaesthetized rabbit.2. Simultaneous measurements of femoral arterial blood pressure and of femoral venous blood flow indicate that stimulation of the sympathetic nerves decreases the calculated vascular conductance in both the intact and skinned hind limbs. Evidence is presented to show that these changes are due to vasoconstriction.3. The vasoconstriction in both skin and muscle vascular beds reaches a maximum at frequencies of stimulation around 15 Hz. No vasodilatation is obtained at any frequency of stimulation.4. The rabbit adrenal gland secretes only adrenaline during splanchnic nerve stimulation at frequencies between 3 and 60 Hz. The amounts liberated from both glands over this frequency range are 25-500 ng.kg body wt.(-1) min(-1).5. Intravenous infusions of adrenaline in concentrations similar to those liberated by the adrenal glands during splanchnic nerve stimulation, and of noradrenaline, cause only vasoconstrictor responses in skin and muscle.6. Simultaneous stimulation of the sympathetic nerves to the hind limb and infusion of adrenaline in quantities that could be liberated by splanchnic nerve stimulation at equivalent frequencies shows that the vasoconstrictor effects exerted by the individual components are additive, though the effects produced by the direct sympathetic nerve supply overshadow those produced by the catecholamine.7. The results are discussed in the context of the possible vascular role of the adrenal medullary hormones in the rabbit.  相似文献   

14.
A method is described for continuous measurement of renal blood flow in the anesthetized rat without dissection of the renal artery. Blood flow and arterial pressure were measured in an extracorporeal flow circuit between the carotid artery and an aortic pouch from which the left renal artery was the only outlet. Injection into the flow circuit allowed delivery of drugs directly into the arterial blood supply of the kidney. Electrical stimulation of undamaged periarterial renal kidney. Electrical stimulation of undamaged periarterial renal nerves was possible since the renal artery remained undisturbed. Extracorporeal autoperfusion of the rat kidney produced renal flow and resistance measurements that did not differ from those obtained with a flow probe placed directly on the renal artery. Renal nerve stimulation was found to cause renal vasoconstriction due to activation of alpha-adrenergic receptors by norepinephrine released from postganglionic sympathetic neurons. Renal vascular responses to a variety of intra-arterial vasoactive agents were also determined. The method described here allows the evaluation of renal vascular control in the variety of disease states for which suitable rat models have been developed.  相似文献   

15.
Renal vascular resistance is elevated in spontaneously hypertensive rats (SHR) when compared to normotensive control Wistar-Kyoto rats (WKY). The present study examined possible determinants of this raised vascular resistance in in situ autoperfused kidneys of pentobarbital-anesthetized, 12- to 16-wk-old SHR and WKY. Over a wide range of arterial pressures (30--100 mmHg) renal blood flow was consistently higher in WKY than in SHR. This relative flow difference was unchanged by acute renal denervation, with renal vascular resistance decreasing approximately 20% in both strains. Changes in renal vascular resistance to renal nerve stimulation and the administration of intra-arterial vasoactive hormones also were assessed. Vascular responses to renal nerve stimulation, tyramine, angiotensin II, and acetylcholine were similar in kidneys of the two strains, but reactivity to norepinephrine was significantly less in kidneys of SHR. It was concluded that elevated renal vascular resistance in the SHR does not result from an excessive neurogenic influence on the renal vasculature or from vascular hyperreactivity to norepinephrine or angiotensin II.  相似文献   

16.
The hepatic arterial vascular bed of the chloaralose-urethan-anesthetized dog was perfused with blood from a cannulated femoral artery. Hepatic arterial blood flow and perfusion pressure were measured. The hepatic periarterial postganglionic sympathetic nerves were stimulated supramaximally at 0.1, 0.5, 1, 2, 5, 10, and 20 Hz; this caused frequency-dependent rises in the calculated hepatic arterial vascular resistance at all frequencies above the threshold of 0.1 or 0.5 Hz. Glucagon was infused intra-arterially in dosese from 0.25 to 10 microgram/min; glucagon antagonized both the vasoconstrictor effects of hepatic nerve stimulation and of intra-arterial injections of norepinephrine. The degree of antagonism of these responses was significantly correlated with the calculated hepatic arterial glucagon concentration. It is possible that glucagon released physiologically in stress and hypoglycemia may protect the hepatic arterial vasculature from the effects of increased sympathetic discharge.  相似文献   

17.
The roles of different mediators in the sympathetic regulation of the pig and dog spleens were investigated using a preparation with intact vascular perfusion in vivo. Sympathetic nerve stimulation caused overflow of neuropeptide Y-like immunoreactivity (NPY-LI) and noradrenaline (NA), arterial vasoconstriction, increase in venous blood flow and haematocrit. The dog spleen responded to single impulse stimulation, whereas more prolonged stimulation was required to elicit vascular responses in the pig spleen. Furthermore, the maximal splenic capacitance response was about 10 times larger in the dog than in the pig. After depletion of neuronal NA content by reserpine combined with preganglionic denervation, about 70% of the splenic arterial vasoconstrictor responses in the dog and pig still remained at 5 Hz stimulation. Fifty per cent of the capacitance response evoked by nerve stimulation still remained in the pig while in the dog spleen the capacitance response was virtually abolished after reserpine. The stimulation-evoked overflow of NPY-LI in pig spleen was increased several fold after reserpine treatment as compared to controls reaching levels in the venous effluent where exogenous NPY evokes vasoconstriction. In the dog spleen, overflow of NPY-LI was only observed after reserpine. Administration of NA caused arterial vasoconstriction with an initial increase in venous blood flow while NPY mainly reduced arterial blood flow. It is concluded that NA is involved in both the splenic arterial vasoconstriction and the capacitance responses while a non-adrenergic splenic vasoconstriction at least in the pig may be mediated by NPY.  相似文献   

18.
Adenosine appears to regulate resting blood flow in canine subcutaneous adipose tissue. Sympathetic nerve stimulation has been shown to enhance the adenosine production in this tissue. This study therefore tested the possibility that adenosine may influence the vascular responses to sympathetic nerve stimulation. Intraarterial infusion of adenosine (5–20 μM in arterial blood) increased the resting vascular conductance (from 0.048 ± 0.007 to 0.095 ± 0.013 ml ± min-1100 g-1± mmHg-1) and the percental reduction in vascular conductance due to sympathetic nerve stimulation (4 Hz) by 34 per cent (p<0.05) and to i. a.noradrenaline by 27 per cent (p<0.05). The vasodilator response due to nerve stimulation after α-blockade was reduced by adenosine. Dipyridamole (0.5–1.5 μM) + EHNA (3–10 μM), which increases plasma adenosine levels, had similar effects to adenosine, while theophylline (30–80 μM) decreased the vasoconstrictor response. The vasoconstrictor escape was enhanced by EHNA alone and in combination with dipyridamole, but was reduced by theophylline. On the other hand, the poststimulatory hyperemia was unaffected by adenosine, dipyridamole and EHNA, and theophylline. The results show that adenosine does not reduce the magnitude of the initial vasoconstrictor response in proportion to the increase in resting blood flow. The autoregulatory escape in adipose tissue during nerve stimulation appears to be mediated both by adenosine and by noradrenaline acting on β-adrenoceptors. Poststimulatory hyperemia does not seem to be greatly influenced by exogenous or endogenous adenosine  相似文献   

19.
1. In anaesthetized cats and dogs, local intra-arterial injection of noradrenaline and alpha, beta-methylene adenosine 5'-triphosphate (mATP) reduced both nasal arterial blood flow and nasal mucosal volume (a measure of capacitance vessel function). The responses to mATP were not modified by pretreatment with the adrenoceptor antagonists phentolamine and propranolol or the purinoceptor antagonist suramin. The vascular effects of noradrenaline were not altered by suramin, but were virtually abolished by adrenoceptor antagonists. 2. After adrenoceptor blockade, frequency-dependent reductions in nasal arterial blood flow with sympathetic nerve stimulation were reduced by 25 and 39% in cats and dogs, respectively; whereas the volume response was reduced by 56% in cats and 54% in dogs. The remaining non-adrenergic sympathetic nerve-evoked vascular responses were not influenced by suramin. 3. During desensitization to mATP induced by local intra-arterial infusion for 5 min, the remaining non-adrenergic nasal blood flow and volume responses to sympathetic nerve stimulation were reduced in the dog but not in the cat. 4. It is suggested that both adrenergic and non-adrenergic mechanisms are involved in the sympathetic control of the nasal mucosa vascular bed of both species. Since desensitization to mATP markedly reduces the remaining non-adrenergic nasal vasoconstriction evoked by sympathetic nerve stimulation in the dog, ATP is a possible sympathetic mediator in the nasal vascular bed in this species.  相似文献   

20.
The study was performed in order to determine the effect of venous pressure elevation induced by unilateral partial renal venous ligation upon total renal blood flow and filtration fraction in the dog kidney. An anaesthesia with no known inhibitory effect on sympathetically mediated vasoconstriction was used. During control conditions instantaneous increase in renal venous pressure to 60 mmHg induced a decrease in renal blood flow (66 +/- 4%) corresponding to an ipsilateral vasoconstriction which was completely abolished following (1) surgical denervation of the kidney, (2) local alpha-receptor blockade of the kidney, and (3) application of lidocaine on the kidney surface. The most striking feature during step increase in renal venous pressure to 40 mmHg was an increase in renal vascular conductance. Renal venous pressure elevation of more than 40 mmHg induced a vasoconstriction, but the vasoconstrictor response was less pronounced as compared with that observed during instantaneous increase in renal venous pressure to the same level. The results strongly suggest that venous stasis of more than 40 mmHg activates an adrenergic sympathetic vasoconstrictor reflex comprising the spinal cord. The reflex is probably elicited from stretch receptors located in the renal capsule. Changes in filtration fraction at venous stasis during the experimental conditions indicate that renal venous pressure elevation activates mechanisms other than neural ones accounting for the reduction in the filtration fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号