首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vanilloid receptor 1 (TRPV1) antagonists are known to attenuate the neuropathic pain symptoms in peripheral nerve injury models, but the mechanism(s) of their effect remains unclear. At the same time, the role of spinal TRPV1 in pain transduction system has not been fully understood. In this study, the role of spinal TRPV1 in mechanical allodynia in rat chronic constriction injury (CCI) model was investigated. Intrathecal administration of a selective TRPV1 antagonist, N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropryazine-1(2H)-carbox-amide (BCTC) significantly attenuated mechanical allodynia in CCI rats at 100 and 300 nmol. In vitro, BCTC inhibited capsaicin (300 nM)-induced releases of calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) and substance P-like immunoreactivity (SP-LI) from the rat spinal cord slice preparations with IC(50)s of 37.0 and 36.0 nM, respectively, confirming that BCTC potently inhibits TRPV1 function in the rat spinal cord. TRPV1 expression levels in the spinal cord following CCI were quantified in by Western blot analysis. TRPV1 protein levels were significantly increased in the ipsilateral side of the lumbar spinal cord at 7 and 14 days following CCI surgery, but not in the contralateral side. Furthermore, capsaicin (300 nM)-evoked release of CGRP-LI was significantly higher in the ipsilateral spinal cord of CCI rats (14 days after surgery) than that of sham-operated rats. These findings suggest that an increased sensitization of the spinal TRPV1 through its up-regulation is involved in the development and/or maintenance of mechanical allodynia in rat CCI model.  相似文献   

3.
Pain due to peripheral nerve injury or disease is a dynamic process, such that the mechanism that underlies it alters over time. Tramadol has been reported to be analgesic in clinical neuropathic pain, with varying levels of efficacy due to a patient population that has had neuropathic pain for a wide range of time. In order to address and examine the issue, the antinociceptive efficacy of tramadol over time was tested in rats with a chronic constriction injury (CCI) of the left sciatic nerve. Rats developed a robust hind paw hypersensitivity to innocuous mechanical stimulation ipsilateral to CCI surgery. Subcutaneous injection of tramadol in rats two weeks after CCI surgery dose-dependently attenuated mechanical hypersensitivity, which was abolished with the mu-opioid receptor antagonist naloxone but not the alpha(2)-adrenoceptor antagonist yohimbine. Systemic tramadol also attenuated mechanical hypersensitivity four weeks after CCI surgery, but the efficacy significantly diminished at this time point. In addition, the effect of tramadol at this later time point could be reduced with yohimbine as well as naloxone. These data demonstrate that the efficacy of tramadol depends in part on the duration of nerve injury-evoked nociception, and that its antinociceptive mechanism changes over time. Alteration in antinociceptive mechanism over time may explain the inconsistency in efficacy of this and other analgesic drugs in chronic pain patients.  相似文献   

4.
Background and PurposeThe cytokine activin C is mainly expressed in small‐diameter dorsal root ganglion (DRG) neurons and suppresses inflammatory pain. However, the effects of activin C in neuropathic pain remain elusive.Experimental ApproachMale rats and wild‐type and TRPV1 knockout mice with peripheral nerve injury ‐ sciatic nerve axotomy and spinal nerve ligation in rats; chronic constriction injury (CCI) in mice – provided models of chronic neuropathic pain. Ipsilateral lumbar (L)4–5 DRGs were assayed for activin C expression. Chronic neuropathic pain animals were treated with intrathecal or locally pre‐administered activin C or the vehicle. Nociceptive behaviours and pain‐related markers in L4–5 DRGs and spinal cord were evaluated. TRPV1 channel modulation by activin C was measured.Key ResultsFollowing peripheral nerve injury, expression of activin βC subunit mRNA and activin C protein was markedly up‐regulated in L4–5 DRGs of animals with axotomy, SNL or CCI. [Correction added on 26 November 2020, after first online publication: The preceding sentence has been corrected in this current version.] Intrathecal activin C dose‐dependently inhibited neuropathic pain in spinal nerve ligated rats. Local pre‐administration of activin C decreased neuropathic pain, macrophage infiltration into ipsilateral L4–5 DRGs and microglial reaction in L4–5 spinal cords of mice with CCI. In rat DRG neurons, activin C enhanced capsaicin‐induced TRPV1 currents. Pre‐treatment with activin C reduced capsaicin‐evoked acute hyperalgesia and normalized capsaicin‐evoked persistent hypothermia in mice. Finally, the analgesic effect of activin C was abolished in TRPV1 knockout mice with CCI.Conclusion and ImplicationsActivin C inhibits neuropathic pain by modulating TRPV1 channels, revealing potential analgesic applications in chronic neuropathic pain therapy.  相似文献   

5.

Background and purpose:

Substance P (SP), a representative member of the tachykinin family, is involved in nociception under physiological and pathological conditions. Recently, hemokinin-1 (HK-1) was identified as a new member of this family. Although HK-1 acts on NK1 tachykinin receptors that are thought to be innate for SP, the roles of HK-1 in neuropathic pain are still unknown.

Experimental approach:

Using rats that had been subjected to chronic constrictive injury (CCI) of the sciatic nerve as a neuropathic pain model, we examined the changes in expression of SP- and HK-1-encoding genes (TAC1 and TAC4, respectively) in the L4/L5 spinal cord and L4/L5 dorsal root ganglia (DRGs) in association with changes in pain-related behaviours in this neuropathic pain state.

Key results:

The TAC4 mRNA level was increased on the ipsilateral side of the dorsal spinal cord, but not in DRGs, at day 3 after CCI. In contrast, the TAC1 mRNA level was significantly increased in the DRGs at day 3 after CCI without any changes in the dorsal spinal cord. Analysis of a cultured microglial cell line revealed the presence of TAC4 mRNA in microglial cells. Minocycline, an inhibitor of microglial activation, blocked the increased expression of TAC4 mRNA after CCI and inhibited the associated pain-related behaviours and microglial activation in the spinal cord.

Conclusions and implications:

The present results suggest that HK-1 expression is increased at least partly in activated microglial cells after nerve injury and is clearly involved in the early phase of neuropathic pain.  相似文献   

6.
In the present study, we aimed to evaluate the effect of the spirocyclopiperazinium salt compound LXM-15 on chronic inflammatory pain and chronic neuropathic pain induced by complete Freund’s adjuvant (CFA) or chronic constriction injury (CCI) in mice and rats. The results showed that administration with LXM-15 significantly reduced paw edema and ankle swelling and increased the mechanical withdrawal threshold and paw withdrawal latency after CFA injection in mice. LXM-15 significantly alleviated the mechanical allodynia and thermal hyperalgesia in CCI rats. The effect was abolished by pretreatment with hexamethonium (a peripheral nAChR antagonist) or methyllycaconitine citrate (an α7 nAChR antagonist). Furthermore, LXM-15 significantly inhibited the phosphorylation of JAK2 and STAT3, and suppressed the expressions of TNF-α and c-fos in dorsal root ganglia of CCI rats. Collectively, we reported that LXM-15 relieved chronic inflammatory pain in CFA mice and chronic neuropathic pain in CCI rats. The underlying mechanism might be related to the activation of peripheral α7 nicotinic receptor, further inhibiting JAK2/STAT3 signaling pathway, and eventually suppressing the expressions of TNF-α and c-fos.  相似文献   

7.
We studied the contribution of peripheral opioid receptors to the morphine-induced antinociception in rats with a spinal nerve ligation-induced neuropathy. Intraplantar (i.pl.) injection of morphine produced a stronger suppression of nociceptive reflex responses of the neuropathic limb following ipsilateral, than contralateral, administration, whereas the morphine-induced effect on the control limb was independent of the injection side. Antinociception induced by systemically administered morphine was significantly attenuated by i.pl. injection of a peripherally acting opioid receptor antagonist in neuropathic but not in sham-operated rats. Following chemical sympathectomy with 6-hydroxydopamine, antinociception was achieved at a lower dose ipsilaterally, than contralaterally, following i.pl. administration of morphine, and the morphine-induced antinociception was attenuated by a peripherally acting opioid receptor antagonist. These results indicate that peripheral opioid receptors may contribute to the morphine-induced antinociception in the spinal nerve ligation-induced model of neuropathy. Sympathectomy of the neuropathic limb may underlie, at least partly, the increased peripheral efficacy of morphine in neuropathy.  相似文献   

8.
Peripheral nerve damage often results in the development of chronic pain states, resistant to classical analgesics. Since vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are up-regulated in dorsal root ganglion cells following peripheral nerve injury, we investigated the expression and influence of VPAC1, VPAC2 and PAC1 receptors in rat spinal dorsal horn following a chronic constriction injury (CCI). Electrophysiological studies revealed that selective antagonists of VPAC1, VPAC2 and PAC1 receptors inhibit mustard oil-, but not brush-induced activity of dorsal horn neurones in CCI animals, while cold-induced neuronal activity was attenuated by VPAC1 and PAC1, but not VPAC2 receptor antagonists. Ionophoresis of selective agonists for the receptor subtypes revealed that the VPAC2 receptor agonist excited twice as many cells in CCI compared to normal animals, while the number of cells excited by the VPAC1 receptor agonist decreased and responses to PACAP-38 remained unchanged. In situ hybridisation histochemistry (ISHH) confirmed an increase in the expression of VPAC2 receptor mRNA within the ipsilateral dorsal horn following neuropathy, while VPAC1 receptor mRNA was seen to decrease and that for PAC1 receptors remained unchanged. These data indicate that VIP/PACAP receptors may be important regulatory factors in neuropathic pain states.  相似文献   

9.

BACKGROUND AND PURPOSE

The locus coeruleus (LC) is a major source of noradrenergic projections to the dorsal spinal cord, and thereby plays an important role in the modulation of nociceptive information. The LC receives inputs from substance P (SP)-containing fibres from other regions, and expresses the NK1 tachykinin receptor, a functional receptor for SP. In the present study, we investigated the roles of SP in the LC in neuropathic pain.

EXPERIMENTAL APPROACH

Chronic constriction injury (CCI) of the left sciatic nerve was performed in rats to induce neuropathic pain. After development of neuropathic pain, SP was injected into the LC and the nocifensive behaviours were assessed. The involvement of noradrenergic descending inhibition in SP-induced analgesia was examined by i.t. administration of yohimbine, an α2-adrenoceptor antagonist. NK1 receptor expression in the LC was examined by immunohistochemistry.

KEY RESULTS

In CCI rats, mechanical allodynia was alleviated by SP injection into the LC. These effects were abolished by prior injection of WIN 51708, an NK1 receptor antagonist, into the LC or i.t. treatment with yohimbine. NK1 receptor-like immunoreactivity was observed in noradrenergic neurons throughout the LC in intact rats, and remained unchanged after CCI.

CONCLUSION AND IMPLICATIONS

SP in the LC exerted analgesic effects on neuropathic pain through NK1 receptor activation and resulted in facilitation of spinal noradrenergic transmission. Accordingly, manipulation of the SP/NK1 receptor signalling pathway in the LC may be a promising strategy for effective treatment of neuropathic pain.  相似文献   

10.
This study was designed to determine (1) whether chronic amitriptyline administration was effective in alleviating symptoms of neuropathic pain in a rat model of spinal nerve injury, and (2) whether the effect of amitriptyline involved manipulation of endogenous adenosine, by determining the effect of caffeine, a non-selective adenosine A1 and A2 receptor antagonist, on its actions. Nerve injury was produced by unilateral spinal nerve ligation of the fifth and sixth lumbar nerves distal to the dorsal root ganglion, and this resulted in stimulus-evoked thermal hyperalgesia and static tactile mechanical allodynia. Animals received pre- and post-surgical intraperitoneal doses of amitriptyline (10 mg/kg) and caffeine (7.5 mg/kg), alone or in combination, and following surgery, were administered amitriptyline (15–18 mg/kg/day) and caffeine (6–8 mg/kg/day), alone or in combination, in the drinking water. Rats were tested for thermal reaction latencies and static tactile thresholds at 7, 14 and 21 days following surgery. In the paw ipsilateral to the nerve ligation, chronic amitriptyline administration consistently decreased the thermal hyperalgesia produced by spinal nerve ligation over a 3-week period, and this effect was blocked by concomitant caffeine administration at all time intervals. In the contralateral paw, thermal withdrawal latencies were more variable, with the most reproducible finding being a reduction in thermal thresholds in the amitriptyline–caffeine combination group. There was no effect by either drug or the drug combination on the static tactile allodynia produced by spinal nerve ligation in the ipsilateral paw. However, chronic amitriptyline administration induced a tactile hyperaesthesia in the contralateral paw at all time intervals, and this effect was exacerbated by concomitant chronic caffeine administration. The results of this study indicate that chronic administration of amitriptyline is effective in alleviating thermal hyperalgesia, but not static tactile allodynia, in the hindpaw ipsilateral to nerve injury, and the block of this effect by caffeine suggests that this effect is partially achieved through manipulation of endogenous adenosine systems. Additionally, chronic amitriptyline administration induces contralateral hyperaesthetic responses that are augmented by caffeine. Both the symptom-specific effect, and adenosine involvement in amitriptyline action may be important considerations governing its use in neuropathic pain.  相似文献   

11.
Trigeminal neuralgia is a disorder of paroxysmal and severely disabling facial pain and continues to be a real therapeutic challenge. At present there are few effective drugs. Here we have evaluated the effects of the synthetic cannabinoid WIN 55,212-2 on mechanical allodynia and thermal hyperalgesia in a rat model of trigeminal neuropathic pain produced by a chronic constriction injury (CCI) of the infraorbital branch of the trigeminal nerve (ION). Relative to sham operation controls, rats with the CCI-ION consistently displayed hyperresponsiveness to von Frey filament and heat stimulation of the vibrissal pad. Both mechanical allodynia and thermal hyperalgesia are seen both ipsilateral and contralateral to the side of nerve injury, but is significantly more severe ipsilaterally. Administration of WIN 55,212-2 (0.3-5 mg/kg i.p.) dose-dependently increased the mechanical and heat withdrawal thresholds. WIN 55,212-2 (0.3-3 mg/kg i.p.) produced no significant motor deficits in animals using the rotarod test. The effect of WIN 55,212-2 was mimicked by cannabinoid CB1 receptor agonist HU 210 and was antagonized by CB1 receptor antagonist AM 251, but not by CB2 receptor antagonist AM 630 or vanilloid receptor 1 antagonist capsazepine, suggesting the involvement of CB1 receptors. CCI-ION also induced a time-dependent upregulation of CB1 receptors primarily within the ipsilateral superficial laminae of the trigeminal caudal nucleus revealed by both Western blot and immunohistochemistry. Taken together, these results suggest that cannabinoids may be a useful therapeutic approach for the clinical management of trigeminal neuropathic pain disorders.  相似文献   

12.
Aim: To investigate whether activation and translocation of extracellular signalregulated kinase (ERK) is involved in the induction and maintenance of neuropathic pain, and effects of activation and translocation of ERK on expression of pCREB and Fos in the chronic neuropathic pain. Methods: Lumbar intrathecal catheters were chronically implanted in male Sprague-Dawley rats. The left sciatic nerve was loosely ligated proximal to the sciatica‘s trifurcation at approximately 1.0 mm intervals with 4-0 silk sutures. The mitogen-activated protein kinase kinase (MEK) inhibitor U0126 or phosphorothioate-modified antisense oligonucleotides (ODN) were intrathecally administered every 12 h, 1 d pre-chronic constriction injury (CCI) and 3 d post-CCI. Thermal and mechanical nociceptive thresholds were assessed with the paw withdrawal latency (PWL) to radiant heat and von Frey filaments. The expression of pERK, pCREB, and Fos were assessed by both Western blotting and immunohistochemical analysis. Results: Intrathecal injection of U0126 or ERK antisense ODN significantly attenuated CCI-induced mechanical allodynia and thermal hyperalgesia. CCI significantly increased the expression of p-ERK-IR neurons in the ipsilateral spinal dorsal horn to injury, not in the contralateral spinal dorsal horn. The time courses of pERK expression showed that the levels of both cytosol and nuclear pERK, but not total ERK, were increased at all points after CCI and reached a peak level on postoperative d 5. CCI also significantly increased the expression of pCREB and Fos. Phospho-CREB-positive neurons were distributed in all laminae of the bilateral spinal cord and Fos was expressed in laminae I and II of the ipsilateral spinal dorsal horn. Intrathecal injection of U0126 or ERK antisense ODN markedly suppressed the increase of CCI-induced pERK, pCREB and c-Fos expression in the spinal cord. Conclusion:The activation of ERK pathways contributes to neuropathic pain in CCI rats, and the function of pERK may partly be accomplished via the cAMP response element binding protein (CREB)-dependent gene expression.  相似文献   

13.
Spinal administration of an adenosine kinase inhibitor, alone or in combination with an adenosine deaminase inhibitor, produces antinociception in inflammatory pain tests. In the present study, we examined the antinociceptive and anti-inflammatory effects produced by the peripheral (intraplantar) administration of 5'-amino-5'-deoxyadenosine (an adenosine kinase inhibitor), 2'-deoxycoformycin (an adenosine deaminase inhibitor), and combinations of both agents in the carrageenan-induced thermal hyperalgesia and paw oedema model in the rat. When injected in the ipsilateral paw immediately prior to carrageenan injection, both agents produced antinociception only at the highest dose (1 micromol), whereas a reduction in paw swelling was evident at a lower dose (300 nmol). Significant augmentation in both the antinociceptive and anti-inflammatory effects was seen when 5'-amino-5'-deoxyadenosine and 2'-deoxycoformycin were co-administered in equimolar doses at all dose levels. Both effects were mediated via activation of adenosine receptors, as indicated by blockade by an adenosine receptor antagonist. When administered into the contralateral paw, 1 micromol 5'-amino-5'-deoxyadenosine+1 micromol 2'-deoxycoformycin produced prominent antinociception, indicating a systemic drug activity. There was only a modest reduction in paw oedema in the carrageenan-injected (ipsilateral) paw, suggesting that much of this activity was locally mediated. Reversal of systemic effects on thermal thresholds by an intrathecal adenosine receptor antagonist implicates a spinal site of action in this instance. An ipsilateral administration of 1 micromol 5'-amino-5'-deoxyadenosine, but not 1 micromol 2'-deoxycoformycin, reduced carrageenan-induced c-Fos expression in the spinal dorsal horn, and this was further reduced by the peripheral co-injection of the two agents. These results provide evidence for a predominantly spinal antinociceptive effect and a predominantly peripheral anti-inflammatory effect produced by inhibitors of adenosine kinase and adenosine deaminase.  相似文献   

14.
This study assessed the role of systemic and spinal 5-HT7 receptors on rats submitted to spinal nerve injury. In addition, the 5-HT7 receptors level in dorsal root ganglion and spinal cord was also determined. Tactile allodynia was induced by L5/L6 spinal nerve ligation. Systemic (0.01-10 mg/kg) or spinal (0.3-30 μg) administration of the selective 5-HT7 receptor antagonist SB-269970 but not vehicle reduced in a dose-dependent manner established tactile allodynia. This effect was maintained for about 6 h. SB-269970 was more potent and effective by the spinal administration route than through systemic injection. Spinal nerve ligation reduced expression of 5-HT7 receptors in the ipsilateral but not contralateral dorsal root ganglia. Moreover, 5-HT7 receptor levels were lower in the ipsilateral dorsal spinal cord of neuropathic rats compared to naïve and sham rats. No changes in the receptor levels were observed in the contralateral dorsal spinal cord and in both regions of the ventral spinal cord. Data suggest that spinal 5-HT7 receptors play a pronociceptive role in neuropathic rats. Results also indicate that spinal nerve injury leads to a reduced 5-HT7 receptors level in pain processing-related areas which may result from its nociceptive role in this model. Data suggest that selective 5-HT7 receptor antagonists may function as analgesics in nerve injury pain states.  相似文献   

15.
Increasing evidence has indicated that activated glial cells releasing nociceptive factors, such as interleukins and chemokines, are of key importance for neuropathic pain. Significant changes in the production of nociceptive factors are associated with the low effectiveness of opioids in neuropathic pain. Recently, it has been suggested that CCL2/CCR2 signaling is important for nociception. Here, we studied the time course changes in the mRNA/protein level of CD40/Iba-1, CCL2 and CCR2 in the spinal cord/dorsal root ganglia (DRG) in rats following chronic constriction injury (CCI) of the sciatic nerve. Moreover, we examined the influence of intrathecal preemptive and repeated (daily for 7 days) administration of RS504393, CCR2 antagonist, on pain-related behavior and the associated biochemical changes of some nociceptive factors as well as its influence on opioid effectiveness. We observed simultaneous upregulation of Iba-1, CCL2, CCR2 in the spinal cord on 7th day after CCI. Additionally, we demonstrated that repeated administration of RS504393 not only attenuated tactile/thermal hypersensitivity but also enhanced the analgesic properties of morphine and buprenorphine under neuropathy. Our results proof that repeated administration of RS504393 reduced the mRNA and/or protein levels of pronociceptive factors, such as IL-1beta, IL-18, IL-6 and inducible nitric oxide synthase (iNOS), and some of their receptors in the spinal cord and/or DRG. Furthermore, RS504393 elevated the spinal protein level of antinociceptive IL-1alpha and IL-18 binding protein. Our data provide new evidence that CCR2 is a promising target for diminishing neuropathic pain and enhancing the opioid analgesic effects.  相似文献   

16.
Antinociception achieved after peripheral administration of opioids has opened a new approach to the treatment of severe and chronic pain. Additionally, opioid analgesics with restricted access to the central nervous system could improve safety of opioid drugs used in clinical practice. In the present study, peripheral components of antinociceptive actions of 6-amino acid-substituted derivatives of 14-O-methyloxymorphone were investigated after local intraplantar (i.pl.) administration in rat models of inflammatory and neuropathic pain. Their antinociceptive activities were compared with those of morphine, the classical mu-opioid receptor agonist. Intraplantar administration of morphine and the 6-amino acid derivatives produced dose-dependent reduction of formalin-induced flinching of the inflamed paw, without significant effect on the paw edema. Local i.pl. administration of the new derivatives in rats with neuropathic pain induced by sciatic nerve ligation produced antiallodynic and antihyperalgesic effects; however, the antinociceptive activity was lower than that observed in inflammatory pain. In both models, the 6-amino acid derivatives and morphine at doses that produced analgesia after i.pl. administration were systemically (s.c.) much less active indicating that the antinociceptive action is due to a local effect. Moreover, the local opioid antinociceptive effects were significantly attenuated by naloxone methiodide, a peripherally acting opioid receptor antagonist, demonstrating that the effect was mediated by peripheral opioid receptors. The present data indicate that the peripherally restricted 6-amino acid conjugates of 14-O-methyloxymorphone elicit antinociception after local administration, being more potent in inflammatory than in neuropathic pain. Opioid drugs with peripheral site of action can be an important target for the treatment of long lasting pain.  相似文献   

17.
Previous rat neuropathic pain models have utilized peripheral nerve injuries that damage a significant proportion of large nerves such as the sciatic nerve or its divisions. Injuries that lead to neuropathic pain in humans may involve the peripheral extremities. The current study evaluated the behavioral effects of injury to the plantar nerves in the rat (distal nerve injury-DNI). A delayed onset of hypersensitivity to an innocuous mechanical stimulus was observed following cutting of the left plantar nerves, whereas mechanical hypersensitivity developed more rapidly in rats with either an injury near the sciatic nerve trunk (chronic constriction injury (CCI), spared nerve injury (SNI)) or a spinal nerve root (spinal nerve ligation (SNL). Similar to other nerve injury pain models, rats with injured plantar nerves also developed an early onset and persistent sensitivity to a cooling stimulus. The effects of morphine, gabapentin and imipramine on mechanical and cold hypersensitivity were evaluated in rats with a DNI, CCI and SNI. In all three models, morphine dose-dependently suppressed mechanical and cold hypersensitivity, whereas gabapentin only suppressed mechanical hypersensitivity. Imipramine had no effect on either cold or mechanical hypersensitivity in any of the nerve-injured rats. The pharmacological data suggest that the underlying basis of neuropathic pain may be similar irrespective of the site of nerve injury.  相似文献   

18.
The role of medullary and spinal 5-HT(1A) receptors in endogenous regulation of neuropathic hypersensitivity was studied. When administered in the rostroventromedial medulla or subcutaneously, WAY-100635, a 5-HT(1A) receptor antagonist, attenuated mechanical hypersensitivity in rats with a spinal nerve injury. Thermal or mechanical nociception outside of the injured area was not influenced by medial medullary or subcutaneous administration of WAY-100635. Intrathecal administration of WAY-100635 had no significant effect on pain-related behavior. Suppression of mechanical hypersensitivity induced by medial medullary administration of WAY-100635 was reversed by intrathecal administration of WAY-100635 or atipamezole, an alpha2-adrenoceptor antagonist, but not by naloxone, an opioid receptor antagonist. The results indicate that endogenous release of 5-HT, via action on medial medullary 5-HT(1A) receptors, tonically suppresses descending inhibition in neuropathic animals. Following medial medullary administration of a 5-HT(1A) receptor antagonist, descending pain regulatory pathways are disinhibited. This leads to selective attenuation of neuropathic hypersensitivity, due to action on spinal 5-HT(1A) receptors and alpha2-adrenoceptors.  相似文献   

19.
Recent studies have emphasized the contribution of neuroinflammation and oxido-nitrosative stress to neuropathic pain. Both, heme oxygenase (HO)-1 and carbon monoxide (CO) play an important role in regulating free radical generation and inflammation. Herein, we investigated the role of HO-1/CO pathway, by using hemin, a selective HO activator, and CO-releasing molecule (CORM)-2, a CO-releasing agent, in rat sciatic nerve chronic constriction injury (CCI)-induced neuropathic pain. CCI rats exhibited full development of behavioral hypersensitivity symptoms, including cold allodynia, mechanical and thermal hyperalgesia and also exhibit of a significant increase in spinal cord pro-inflammatory cytokines (TNF-α and IL-1β) and oxido-nitrosative stress markers, both in spinal cord and ipsilateral sciatic nerve homogenate. Spinal (10 and 30 μg/rat, intrathecal (i.t.)), but not systemic (5 and 10 mg/kg, subcutaneous (s.c.)), administration of hemin for 14 days significantly prevented the development of behavioral hypersensitivity. Further, simultaneous administration of hemin via spinal (10 μg/rat, i.t.) and systemic (5 mg/kg, s.c.) routes led to a more pronounced inhibition of the development of behavioral hypersensitivity. Further, administration of CORM-2 (1 and 5 mg/kg, s.c.), dose-dependently and most effectively, prevented the development of behavioral hypersensitivity. Both hemin and CORM-2 produced ameliorative beneficial effects that paralleled with the extent of reduction of oxido-nitrosative stress and pro-inflammatory cytokines. Also, hemin and CORM-2 significantly improved the levels of HO-1 and activity of anti-oxidant enzymes such as superoxide dismutase and catalase. Thus, it may be concluded that chronic pharmacological activation of HO-1/CO pathway may prevent the development of behavioral symptoms of neuropathic pain, through an activation of anti-inflammatory and anti-oxidant mechanisms.  相似文献   

20.
Described here is a comparison of five peripheral sciatic nerve injury models in rats which all result in various degrees of neuropathic pain symptoms. They are the chronic constriction injury (CCI), the spinal nerve ligation (SNL), the partial sciatic ligation (PSL), the tibial and sural transection (TST), and the complete sciatic transection (CST) model. Behavioral testing was performed on these models over a 56-day period under strict experimental conditions to minimise variability between the surgical models and to allow for an accurate evaluation of the sensory deficits produced by each model. Overall, all five models of neuropathic pain produced signs of allodynia and hyperalgesia to various stimuli. However, the duration and magnitude of the evoked responses varied considerably between the different models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号