首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rapid and sensitive reversed phase high performance liquid chromatography (RP-HPLC) and ultra performance liquid chromatography (RP-UPLC) method with UV detection has been developed and validated for quantification of parathyroid hormone (PTH) in presence of meta-cresol as a stabilizer in a pharmaceutical formulation. Chromatography was performed with mobile phase containing 0.1% Trifluoroacetic acid (TFA) in MilliQ water and 0.1% TFA in acetonitrile with gradient program and flow rate at 0.3 mL/min for HPLC and 0.4 mL/min for UPLC. Quantification was accomplished with internal reference standard (qualified against innovator product and National Institute for Biological Standards and Control (NIBSC) standard). The methods were validated for linearity (correlation coefficient=0.99), range, accuracy, precision and robustness. Robustness was confirmed by considering three factors; mobile phase composition, column temperature and flow rate/age of mobile phase.Intermediate precision was confirmed on different equipments, different columns and on different days. The relative standard deviation (RSD) (<2% for RP-HPLC and <1% for UPLC, n=30) indicated a good precision. Retention time was found about 17 min and 2 min by HPLC and UPLC methods, respectively. Both methods are simple, highly sensitive, precise and accurate and have the potential of being useful for routine quality control.  相似文献   

2.
Lamivudine has been widely used in the treatment of HIV disease. A reliable, sensitive reversed phase high performance liquid chromatography (RP-HPLC) method was developed and validated for lamivudine in rabbit plasma. The method was developed on Hypersil BDS C-18 column (250 mm×4.6 mm, 5 μm) using a mobile phase of 0.25% Triethylamine buffer (pH 3.0): acetonitrile (70:30, v/v). The efficient was monitored by UV detector at 256 nm. The total run time was 15 min with a flow rate of 1.0 mL/min. Calibration curve was linear over the concentration range of 25–2000 ng/mL. The retention times of lamivudine and internal standard (Nelfinavir) were 8.78 min and 10.86 min, respectively. The developed RP-HPLC method can be successfully applied for the quantitative pharmacokinetic parameters determination of lamivudine in rabbit model.  相似文献   

3.
Oleanolic acid (OA) and ursolic acid (UA) are isomeric triterpenic acids and only one methyl's position is different between them. OA and UA always exist in the same plant, so it is difficult to separate them when determining contents by RP-HPLC. In this study, a very simple mobile phase for HPLC was developed to simultaneously determine UA and OA, and the factors affecting separation were also discussed. The mobile phase is methanol: water (95:5) with flow rate 0.4 mL/min. The retention time for OA and UA was 20.58 and 21.57 min, respectively, the resolution was 1.61. The average contents of OA and UA of three Loquat leaves sets were 1.4 mg/g and 5.6 mg/g, respectively. Regarding the HPLC, we found that changing mobile phase, adjusting the pH value or adding ion-pairing agent could not affect the separation between UA and OA greatly. While adjustment of the flow rate and column temperature could improve the resolution greatly.  相似文献   

4.
Nateglinide has been widely used in the treatment of type-2 diabetics as an insulin secretogoga. A reliable, rapid, simple and sensitive reversed-phase high performance liquid chromatography (RP-HPLC) method was developed and validated for determination of nateglinide in rabbit plasma. The method was developed on Hypersil BDSC-18 column (250 mm×4.6 mm, 5 mm) using a mobile phase of 10 mM phosphate buffer (pH 2.5) and acetonitrile (35:65, v/v). The elute was monitored with the UV–vis detector at 210 nm with a flow rate of 1 mL/min. Calibration curve was linear over the concentration range of 25–2000 ng/mL. The retention times of nateglinide and internal standard (gliclazide) were 9.608 min and 11.821 min respectively. The developed RP-HPLC method can be successfully applied to the quantitative pharmacokinetic parameters determination of nateglinide in rabbit model.  相似文献   

5.
A simple, precise, accurate stability-indicating gradient reversed-phase high-performance liquid chromatographic (RP–HPLC) method was developed for the quantitative determination of zotepine (ZTP) in bulk and pharmaceutical dosage forms in the presence of its degradation products (DPs). The method was developed using Phenomenex C18 column (250 mm×4.6 mm i.d., 5 µm) with a mobile phase containing a gradient mixture of solvents, A (0.05% trifluoroacetic acid (TFA), pH=3.0) and B (acetonitrile). The eluted compounds were monitored at 254 nm; the run time was within 20.0 min, in which ZTP and its DPs were well separated, with a resolution of >1.5. The stress testing of ZTP was carried out under acidic, alkaline, neutral hydrolysis, oxidative, photolytic and thermal stress conditions. ZTP was found to degrade significantly in acidic, photolytic, thermal and oxidative stress conditions and remain stable in basic and neutral conditions. The developed method was validated with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness as per ICH guidelines. This method was also suitable for the assay determination of ZTP in pharmaceutical dosage forms. The DPs were characterized by LC–MS/MS and their fragmentation pathways were proposed.  相似文献   

6.
A rapid and simple high performance liquid chromatography (HPLC) method with a UV detection (241 nm) was developed and validated for estimation of eplerenone from spiked human plasma. The analyte and the internal standard (valdecoxib) were extracted with a mixture of dichloromethane and diethyl ether. The chromatographic separation was performed on a HiQSil C-18HS column (250 mm×4.6 mm, 5 μm) with a mobile phase consisting of acetonitrile:water (50:50, v/v) at flow rate of 1 mL/min. The calibration curve was linear in the range 100–3200 ng/mL and the heteroscedasticity was minimized by using weighted least squares regression with weighting factor 1/X.  相似文献   

7.
A simple, precise, accurate, and stability-indicating method is developed and validated for analysis of tetrahydrozoline hydrochloride in eye drop formulations. Separation was achieved on a reversed-phase C8 column (125 mm×4.6 mm i.d., 5 μm) using a mobile phase consisting of acetonitrile/phosphate buffer of pH 3.0 (20:80, v/v) at a flow rate of 1.0 mL/min and UV detection at 240 nm. This method is validated according to United States Pharmacopeia requirements for new methods, which include accuracy, precision, selectivity, robustness, and linearity and range. This method shows enough selectivity, accuracy, precision, and linearity and range to satisfy Federal Drug Administration/International Conference on Harmonization regulatory requirements. The current method demonstrates good linearity over the range of 0.025–0.075 mg/mL of tetrahydrozoline with r2 0.999. The average recovery of the method is 100.8% with a relative standard deviation of 0.47%. The degree of reproducibility of the results obtained as a result of small deliberate variations in the method parameters and by changing analytical operators has proven that the method is robust and rugged.  相似文献   

8.
The purpose of this work was to develop a rapid, sensitive and validated HPLC method for the separation and analysis of a Bromazepam, Medazepam and Midazolam mixture. The three benzodiazepine compounds were separated on a reversed-phase C18 column at 50 °C using a mobile phase containing 25% acetonitrile, 45% methanol and 30% ammonium acetate (0.05 M). The pH was adjusted to pH=9 by the addition of ammonia solution (35%, w/w). The samples were detected using a UV detector at 240 nm. The validation study of the method included the effect of temperature, flow rate, ratio of the components of the mobile phase and the pH of the mobile phase on the efficiency of separation. The linear range of Bromazepam and Midazolam was between 0.12 and 0.18 mg/mL, while that of Medazepam was between 0.08 and 0.12 mg/mL. The relative standard deviation for precision was less than 2%. The linearity, selectivity, accuracy and robustness of the developed method showed acceptable values. The method was applied to the analysis of the samples of raw material of the three compounds under study, and the percentage of recoveries was 99.89%±1.06. It was also applied to the analysis of samples of pharmaceutical preparations of those compounds and spiked serum samples. Recoveries from serum samples ranged between 91.5% and 99.0%. The developed method is suitable for quality control of Bromazepam, Medazepam and Midazolam in their mixtures and in pharmaceutical preparations (tablets, capsules, ampoules). It can also be used to determine their concentrations in serum.  相似文献   

9.
Objective: To develop the representative fingerprint for the quality control of placenta polypeptide injection.MethodsThe chromatographic separation was performed using a Phenomenex Gemini C18 column (250 mm×4.6 mm, 5 μm) maintained at 30 °C. 0.1% aqueous trifluoroacetic acid (Solvent A) and acetonitrile contained 0.1% TFA (Solvent B) were used as mobile phase with a gradient elution. Detection wavelength was 280 nm with the sample injection volume of 50 μL; the flow rate was 1.0 mL/min. The fingerprints of different samples were investigated by similarity analysis.ResultsNine peaks were identified as the characteristic common peaks. The similarities of the fingerprints of the 10 batches of samples were above 0.992.ConclusionThis method showed high precision and good repeatability, and provided the basis for the improvement of the quality control of placenta polypeptide injection.  相似文献   

10.
A fast, simple and sensitive high performance liquid chromatographic (HPLC) method has been developed for determination of 10α-methoxy-6-methyl ergoline-8β-methanol (MDL, a main metabolite of nicergoline) in human plasma. One-step liquid–liquid extraction (LLE) with diethyl ether was employed as the sample preparation method. Tizanidine hydrochloride was selected as the internal standard (IS). Analysis was carried out on a Diamonsil ODS column (150 mm×4.6 mm, 5 μm) using acetonitrile–ammonium acetate (0.1 mol/L) (15/85, v/v) as mobile phase at detection wavelength of 224 nm. The calibration curves were linear over the range of 2.288–73.2 ng/mL with a lower limit of quantitation (LLOQ) of 2.288 ng/mL. The intra- and inter-day precision values were below 13% and the recoveries were from 74.47% to 83.20% at three quality control levels. The method herein described was successfully applied in a randomized crossover bioequivalence study of two different nicergoline preparations after administration of 30 mg in 20 healthy volunteers.  相似文献   

11.
An isocratic RP-HPLC method was developed for the determination of Cefditoren pivoxil in pharmaceutical formulations using a C-18 column with water–acetonitrile (50:50, v/v) as mobile phase and flow rate 1.2 mL/min (UV detection at 218 nm). Linearity was observed in the concentration range 1.0–250 μg/mL (R2=0.999) with regression equation y=24194x+10749. The forced degradation studies were performed by using HCl, NaOH, and H2O2, and thermal and UV radiation. Cefditoren pivoxil is more sensitive towards oxidation and alkaline conditions and resistant towards acidic and photolytic degradations. The method was validated as per ICH guidelines.  相似文献   

12.
A simple, precise, and rapid high-performance liquid chromatographic method was developed and validated for the simultaneous determination of vitexin-2″-O-glucoside, vitexin-2″-O-rhamnoside, rutin, vitexin, and hyperoside. The HPLC separation was performed using a Shim-pack VP-ODS C18 column (250 mm×4.6 mm i.d., 5 μm) with the isocratic mobile phase consisting of tetrahydrofuran/ acetonitrile/0.05% phosphoric acid solution (20:3:77, v/v/v), and the flow rate was set at 1.0 mL/min. UV detection was carried out at a wavelength of 360 nm and the whole analysis took 25 min. The method was linear in the range of 4.12–206.00 μg/mL for vitexin-2″-O-glucoside, 4.05–202.50 μg/mL for vitexin-2″-O-rhamnoside, 1.64–82.00 μg/mL for rutin, 1.74–87.00 μg/mL for vitexin, and 1.41–70.60 μg/mL for hyperoside with the correlation coefficient for each analyte more than 0.998. The limit of detection (LOD) and limit of quantitation (LOQ) were 0.6 and 2 ng for vitexin-2″-O-glucoside, 0.6 and 2 ng for vitexin-2″-O-rhamnoside, 0.3 and 1 ng for rutin, 1 and 3 ng for vitexin, and 0.5 and 2 ng for hyperoside, respectively. Intra- and inter-day precision and accuracy (RSD) were less than 3%. The developed HPLC method was successfully applied to the analysis of five flavonoids in hawthorn leaves, hawthorn fruits, and the preparations containing hawthorn leaves or fruits.  相似文献   

13.
An isocratic stability indicating RP-HPLC–UV method is presented for the determination of metaxalone (MET) in the presence of its degradation products. The method uses Dr. Maisch C18 column (250 mm×4.6 mm, 5 μm) with mobile phase consisting of acetonitrile–potassium dihydrogen orthophosphate buffer with 4 mL of 0.4% triethyl amine (pH 3.0; 10 mM) (58:42, v/v) at a flow rate of 1.0 mL/min. pH of the buffer was adjusted with o-phosphoric acid. UV detection was performed at 225 nm. The method was validated for specificity, linearity, precision, accuracy, limit of detection, limit of quantification and robustness. The calibration plot was linear over the concentration range of 1–100 μg/mL having a correlation coefficient (r2) of 0.999. Limits of detection and quantification were 0.3 and 1 μg/mL, respectively. Intra-day and inter-day precision (% RSD) was 0.65 and 0.79 respectively. The proposed method was used to investigate the degradation kinetics of MET under different stress conditions employed. Degradation of MET followed a pseudo-first-order kinetics, and rate constant (K), time left for 50% potency (t1/2), and time left for 90% potency (t90) were calculated.  相似文献   

14.
A novel method for the simultaneous high-performance liquid chromatographic determination of nortriptyline hydrochloride and fluphenazine hydrochloride was developed and validated. Fluvastatin sodium was used as internal standard. The determination was performed on a Hypersil Gold C8 column (250 mm × 4.6 mm i.d., 5 μm particle size) at 25 °C; the mobile phase, consisting of a mixture of formic acid (0.1 M, pH 2.16)-methanol (33:67, v/v), was delivered at a flow rate of 1.1 mL/min and detector wavelength at 251 nm. The retention time of nortriptyline, fluphenazine and fluvastatin was found to be 5.11, 8.05 and 11.38 min, respectively. Linearity ranges were 5.0–1350.0 and 10.0–1350.0 μg/mL with limit of detection values of 0.72 and 0.31 μg/mL, for nortriptyline and fluphenazine, respectively. Results of assay and recovery studies were statistically evaluated for its accuracy and precision. Correlation coefficients (r2) of the regression equations were greater than 0.999 in all cases. According to the validation results, the proposed method was found to be specific, accurate, precise and could be applied to the simultaneous quantitative analysis of nortriptyline and fluphenazine.  相似文献   

15.
A simple and rapid liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay method has been developed and fully validated for simultaneous quantification of pioglitazone and candesartan in human plasma. Irbesartan was used as an internal standard. The analytes were extracted from human plasma samples by solid-phase extraction technique using a Strata-X 33 μm polymeric sorbent. The reconstituted samples were chromatographed on a C18 column by using a 80:20 (v/v) mixture of acetonitrile and 0.1% formic acid as the mobile phase at a flow rate of 0.8 mL/min. The calibration curves obtained were linear (r≥0.99) over the concentration range of 15–3000 ng/mL for pioglitazone and 5–608 ng/mL for candesartan. The results of the intra- and inter-day precision and accuracy studies were well within the acceptable limits. A run time of 2.7 min for each sample made it possible to analyze more than 300 plasma samples per day. The proposed method was found to be applicable to clinical studies.  相似文献   

16.
Two highly sensitive methods for the determination of genotoxic alkyl methane sulfonates (AMSs) and alkyl paratoluene sulfonates (APTSs) in lamivudine using hyphenated techniques have been presented. AMSs were determined by GC–MS method using GSBP-INOWAX (30 m×0.25 mm×0.25 μm) column. Temperature program was set by maintaining at 100 °C initially for 3 min, then rised to 220 °C at the rate of 15 °C/min and maintained at 220 °C for 16 min. N,N-dimethyl formamide was used as diluent. APTSs were determined by LC-MS using Zorbax, Rx C8, 250 mm×4.6 mm, 5 μm column as stationary phase. 0.01 M ammonium acetate is used as buffer. The mixture of buffer and methanol in 75:25 (v/v) ratio was used as mobile phase A and mixture of buffer and methanol in 5:95 (v/v) ratio was used as mobile phase B. The gradient program (T/%B) was set as 0/28, 16/50, 17/100, 23/100, 27/28 and 40/28. Both the methods were validated as per International Conference on Harmonization guidelines. Limit of quantitation was found 1.5 μg/mL for AMSs and was in the range of 1.0–1.5 μg/mL for APTSs.  相似文献   

17.
A simple, sensitive and high throughput ultra performance liquid chromatography tandem mass spectrometry method has been developed for the determination of mycophenolic acid in human plasma. The method involved simple protein precipitation of MPA along with its deuterated analog as an internal standard (IS) from 50 µL of human plasma. The chromatographic analysis was done on Acquity UPLC C18 (100 mm×2.1 mm, 1.7 µm) column under isocratic conditions using acetonitrile and 10 mM ammonium formate, pH 3.00 (75:25, v/v) as the mobile phase. A triple quadrupole mass spectrometer operating in the positive ionization mode was used for quantitation. In-source conversion of mycophenolic glucuronide metabolite to the parent drug was selectively controlled by suitable optimization of cone voltage, cone gas flow and desolvation temperature. The method was validated over a wide concentration range of 15–15000 ng/mL. The mean extraction recovery for the analyte and IS was >95%. Matrix effect expressed as matrix factors ranged from 0.97 to 1.02. The method was successfully applied to support a bioequivalence study of 500 mg mycophenolate mofetil tablet in 72 healthy subjects.  相似文献   

18.
Polypill is a fixed-dose combination that contains three or more active ingredients used as a single daily pill to achieve a large effect in preventing cardiovascular disease with minimal adverse effects. A novel and accurate liquid chromatography tandem mass spectrometry method using electrospray ionization mode has been developed and validated for the simultaneous determination of amlodipine (AMD), valsartan (VAL) using losartan (LOS) as an internal standard (IS), and hydrochlorothiazide (HCT) using furosemide (FSD) as an IS. The separation was carried on Aquasil C18 (50 mm×2.1 mm, 5 µm) reversed phase column using acetonitrile and water containing 0.1% formic acid (50:50, v/v) as the mobile phase. The method was validated in terms of linearity, accuracy and precision over the concentration range of 1–1000 ng/mL. The intra and inter-day precision and accuracy, stability and extraction recoveries of all the analytes were in the acceptable range. This method can be successfully applied to the pharmacokinetic study of AMD, VAL and HCT when given as a polypill.  相似文献   

19.
Didanosine is an effective antiviral drug in untreated and antiretroviral therapy-experienced patients with Human Immunodeficiency Virus (HIV). An automated system using on-line solid extraction and High Performance Liquid Chromatography (HPLC) with ultraviolet (UV) detection was developed and validated for pharmacokinetic analysis of didanosine in dog plasma. Modifications were introduced on a previous methodology for simultaneous analysis of antiretroviral drugs in human plasma. Extraction was carried out on C18 cartridges, with high extraction yield as stationary phase, whereas mobile phase consisted of a mixture of 0.02 M potassium phosphate buffer, acetonitrile (KH2PO4: acetonitrile: 96:4, v/v) and 0.5% (w/v) of heptane sulphonic acid. The pH was adjusted to 6.5 with triethylamine. All samples and standard solutions were chromatographed at 28 °C. For an isocratic run, the flux was 1.0 mL/min, detection was at 250 nm and injected volume was 20 μL. The method was selective and linear for concentrations between 50 and 5000 ng/mL. Drug stability data ranged from 96% to 98%, and limit of quantification was 25 ng/mL. Extraction yield was up to 95%. Drug stability in dog plasma was kept frozen at ?20 °C for one month after three freeze–thaw cycles, and for 24 h after processing in the auto sampler. Assay was successfully applied to measure didanosine concentrations in plasma dogs.  相似文献   

20.
A simple, specific, precise, sensitive and rapid reverse phase-HPLC method was developed for determination of ketorolac enantiomers, a potent nonnarcotic analgesic in pharmaceutical formulations. The method was developed on a chiral AGP column. Mobile phase was 0.1 M sodium phosphate buffer (pH 4.5): Isopropanol (98:2, v/v), at a flow rate of 1 mL/min with run time of 15 min. Ultraviolet detection was made at 322 nm. The linearity range was 0.02–10 μg/mL for each of the enantiomers. The mobile phase composition was systematically studied to find the optimum chromatographic conditions. Validation of the method under the conditions selected showed that it was selective and precise and that the detector response was linear function of ketorolac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号