首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis C virus (HCV) nonstructural protein 3-4A (NS3-4A) is a complex composed of NS3 and its cofactor NS4A. It harbours serine protease as well as NTPase/RNA helicase activities and is essential for viral polyprotein processing, RNA replication and virion formation. Specific inhibitors of the NS3-4A protease significantly improve sustained virological response rates in patients with chronic hepatitis C when combined with pegylated interferon-α and ribavirin. The NS3-4A protease can also target selected cellular proteins, thereby blocking innate immune pathways and modulating growth factor signalling. Hence, NS3-4A is not only an essential component of the viral replication complex and prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. This review provides a concise update on the biochemical and structural aspects of NS3-4A, its role in the pathogenesis of chronic hepatitis C and the clinical development of NS3-4A protease inhibitors.  相似文献   

2.
Infection with the hepatitis C virus (HCV) is the major cause of non-A, non-B hepatitis worldwide. The viral genome, a positive-sense, single-stranded, 9.6-kb long RNA molecule, is translated into a single polyprotein of about 3,000 amino acids. The viral polyprotein is proteoytically processed to yield all the mature viral gene products. The genomic order of HCV has been determined to be C-->E1-->E2-->p7-->NS2-->NS3-->NS4A-->NS4B-->NS5A++ +-->NS5B. C, E1, and E2 are the virion structural proteins. Whereas the function of p7 is currently unknown, NS2 to NS5B are thought to be the nonstructural proteins. Generation of the mature nonstructural proteins relies on the activity of viral proteinases. Cleavage at the NS2-NS3 junction is accomplished by a metal-dependent autocatalytic proteinase encoded within NS2 and the N-terminus of NS3. The remaining downstream cleavages are effected by a serine proteinase contained also within the N-terminal region of NS3. NS3, in addition, contains an RNA helicase domain at its C-terminus. NS3 forms a heterodimeric complex with NS4A. The latter is a membrane protein that acts as a cofactor of the proteinase. Although no function has yet been attributed to NS4B, NS5A has been recently suggested to be involved in mediating the resistance of the HCV to the action of interferon. Finally, the NS5B protein has been shown to be the viral RNA-dependent RNA polymerase. This article reviews the current understanding of the structure and the function of the various HCV nonstructural proteins with particular emphasis on their potential as targets for the development of novel antiviral agents and vaccines.  相似文献   

3.
The non-structural 5A protein of hepatitis C virus   总被引:9,自引:0,他引:9  
  相似文献   

4.
Replication of hepatitis C virus(HCV)depends on the interaction of viral proteins with various host cellular proteins and signalling pathways.Similar to cellular proteins,post-translational modifications(PTMs)of HCV proteins are essential for proper protein function and regulation,thus,directly affecting viral life cycle and the generation of infectious virus particles.Cleavage of the HCV polyprotein by cellular and viral proteases into more than 10 proteins represents an early protein modification step after translation of the HCV positivestranded RNA genome.The key modifications include the regulated intramembranous proteolytic cleavage of core protein,disulfide bond formation of core,glycosylation of HCV envelope proteins E1 and E2,methylation of nonstructural protein 3(NS3),biotinylation of NS4A,ubiquitination of NS5B and phosphorylation of core and NS5B.Other modifications like ubiquitination of core and palmitoylation of core and NS4B proteins have been reported as well.For some modifications such as phosphorylation of NS3 and NS5A and acetylation of NS3,we have limited understanding of their effects on HCV replication and pathogenesis while the impact of other modifications is far from clear.In this review,we summarize the available information on PTMs of HCV proteins and discuss their relevance to HCV replication and pathogenesis.  相似文献   

5.
Infection with the hepatitis C virus (HCV) is the major cause of nonA-nonB hepatitis worldwide. Although this virus cannot be cultivated in vitro, several of its key features have been elucidated in the past few years. The viral genome is a positive-sense, single-stranded, 9.6 kb long RNA molecule. The viral genome is translated into a single polyprotein of about 3000 amino acids. The viral polyprotein is proteolytically processed by the combination of cellular and viral proteinases in order to yield all the mature viral gene products. The genomic order of HCV has been shown to be C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B. C, E1 and E2 are the virion.structural proteins. The function of p7 is currently unknown. These proteins have been shown to arise from the viral polyprotein via proteolytic processing by the host signal peptidases. Generation of the mature nonstructural proteins, NS2 to NS5B, relies on the activity of viral proteinases. Cleavage at the NS2/NS3 junction is accomplished by a metal-dependent autocatalytic proteinase encoded within NS2 and the N-terminus of NS3. The remaining cleavages downstream from this site are effected by a serine proteinase also contained within the N-terminal region of NS3. NS3 also contains an RNA helicase domain at its C-terminus. NS3 forms a heterodimeric complex with NS4A. The latter is a membrane protein that has been shown to act as a cofactor of the proteinase. While no function has yet been attributed to NS4B, it has recently been suggested that NS5A is involved in mediating the resistance of the hepatitis C virus to the action of interferon. Finally, the NS5B protein has been shown to be the viral RNA-dependent RNA polymerase.  相似文献   

6.
Chronic hepatitis C is a major cause of liver cirrhosis leading to chronic liver failure and hepatocellular carcinoma. Different hepatitis C virus (HCV) proteins have been associated with resistance to interferon-alpha-based therapy. However, the exact mechanisms of virus-mediated interferon resistance are not completely understood. The importance of amino acid (aa) variations within the HCV nonstructural (NS)4B protein for replication efficiency and viral decline during the therapy is unknown. We investigated pretreatment sera from 42 patients with known outcome to interferon-based therapy. The complete NS4B gene was amplified and sequenced. Mutational analyses of predicted conformational, functional, structural and phylogenetic properties of the deduced aa sequences were performed. The complete NS4B protein was highly conserved with a median frequency of 0.015 +/- 0.009 aa exchanges (median +/- SD, 4.00 +/- 2.31). Especially within the predicted transmembranous domains of the NS4B protein, the mean number of aa variations was low (median frequency, 0.013 +/- 0.013). Neither the number of aa variations nor specific aa exchanges were correlated with HCV RNA serum concentration at baseline. A rapid initial HCV RNA decline of >/=1.5 log(10) IU/mL at week 2 of interferon-based therapy was associated with a higher frequency of nonconservative aa exchanges within the complete NS4B protein in comparison with patients with a nonrapid HCV RNA decline (median frequency, 0.011 +/- 0.005 vs 0.004 +/- 0.003, P = 0.006). Overall, the aa sequence of the NS4B protein was highly conserved, indicating an important role for replication in vivo. Amino acid variations with relevant changes of physicochemical properties may influence replication efficiency, associated with a rapid early virological response.  相似文献   

7.
Dvory-Sobol H  Pang PS  Glenn JS 《Viruses》2010,2(11):2481-2492
Chronic hepatitis C virus (HCV) infection is a major worldwide cause of liver disease, including cirrhosis and hepatocellular carcinoma. It is estimated that more than 170 million individuals are infected with HCV, with three to four million new cases each year. The current standard of care, combination treatment with interferon and ribavirin, eradicates the virus in only about 50% of chronically infected patients. Notably, neither of these drugs directly target HCV. Many new antiviral therapies that specifically target hepatitis C (e.g. NS3 protease or NS5B polymerase inhibitors) are therefore in development, with a significant number having advanced into clinical trials. The nonstructural 4B (NS4B) protein, is among the least characterized of the HCV structural and nonstructural proteins and has been subjected to few pharmacological studies. NS4B is an integral membrane protein with at least four predicted transmembrane (TM) domains. A variety of functions have been postulated for NS4B, such as the ability to induce the membranous web replication platform, RNA binding and NTPase activity. This review summarizes potential targets within the nonstructural protein NS4B, with a focus on novel classes of NS4B inhibitors.  相似文献   

8.
9.
Hepatitis C virus (HCV) is a human pathogen affecting nearly 3% of the world's population. Chronic infections can lead to cirrhosis and liver cancer. The RNA replication machine of HCV is a multi-subunit membrane-associated complex. The nonstructural protein NS5A is an active component of HCV replicase, as well as a pivotal regulator of replication and a modulator of cellular processes ranging from innate immunity to dysregulated cell growth. NS5A is a large phosphoprotein (56-58 kd) with an amphipathic -helix at its amino terminus that promotes membrane association. After this helix region, NS5A is organized into 3 domains. The N-terminal domain (domain I) coordinates a single zinc atom per protein molecule. Mutations disrupting either the membrane anchor or zinc binding of NS5A are lethal for RNA replication. However, probing the role of NS5A in replication has been hampered by a lack of structural information about this multifunctional protein. Here we report the structure of NS5A domain I at 2.5-A resolution, which contains a novel fold, a new zinc-coordination motif, and a disulfide bond. We use molecular surface analysis to suggest the location of protein-, RNA-, and membrane-interaction sites.  相似文献   

10.
Summary. The RNA genome of hepatitis C virus (HCV) contains multiple conserved structural RNA domains that play key roles in essential viral processes. A conserved structural component within the 3′ end of the region coding for viral RNA‐dependent RNA polymerase (NS5B) has been characterized as a functional cis‐acting replication element (CRE). This study reports the ability of two RNA aptamers, P‐58 and P‐78, to interfere with HCV replication by targeting the essential 5BSL3.2 domain within this CRE. Structure‐probing assays showed the binding of the aptamers to the CRE results in a structural reorganization of the apical portion of the 5BSL3.2 stem‐loop domain. This interfered with the binding of the NS5B protein to the CRE and induced a significant reduction in HCV replication (≈50%) in an autonomous subgenomic HCV replication system. These results highlight the potential of this CRE as a target for the development of anti‐HCV therapies and underscore the potential of antiviral agents based on RNA aptamer molecules.  相似文献   

11.
Summary. Hepatitis C virus (HCV) nonstructural protein 5B (NS5B) is an RNA‐dependent RNA polymerase (RdRp) that is involved in genome replication and virus assembly. NS5B contains a distinct loop (loop Λ2) at the beginning of the nucleoside triphosphate tunnel with a highly conserved lysine (K151). In this study, reverse genetic analysis revealed that substitution of Jc1 NS5B K151 for alanine (K151A) and aspartic acid (K151D) affected genome replication and infectious virus production. However, genome replication and virus production by Jc1 containing NS5B K151R remained unaltered. A major deletion in loop Λ2 abolished RNA replication, suggesting a role for this structural domain in NS5B polymerase activity. In conclusion, this study demonstrated that the conserved K151 modulates infectious virus production; and loop Λ2 is essential for the polymerase activity of NS5B.  相似文献   

12.
An estimated 2–3% of the world''s population is infected with hepatitis C virus (HCV), making it a major global health problem. Consequently, over the past 15 years, there has been a concerted effort to understand the pathophysiology of HCV infection and the molecular virology of replication, and to utilize this knowledge for the development of more effective treatments. The virally encoded non-structural serine protease (NS3) is required to process the HCV polyprotein and release the individual proteins that form the viral RNA replication machinery. Given its critical role in the replication of HCV, the NS3 protease has been recognized as a potential drug target for the development of selective HCV therapies. In this review, we describe the key scientific discoveries that led to the approval of boceprevir, a first-generation, selective, small molecule inhibitor of the NS3 protease. We highlight the early studies that reported the crystal structure of the NS3 protease, its role in the processing of the HCV polyprotein, and the structural requirements critical for substrate cleavage. We also consider the novel attributes of the NS3 protease-binding pocket that challenged development of small molecule inhibitors, and the studies that ultimately yielded milligram quantities of this enzyme in a soluble, tractable form suitable for inhibitor screening programs. Finally, we describe the discovery of boceprevir, from the early chemistry studies, through the development of high-throughput assays, to the phase III clinical development program that ultimately provided the basis for approval of this drug. This latest phase in the development of boceprevir represents the culmination of a major global effort to understand the pathophysiology of HCV and develop small molecule inhibitors for the NS3 protease.  相似文献   

13.
The p7 protein of hepatitis C virus (HCV) is a small, integral membrane protein that plays a critical role in virus replication. Recently, we reported two intergenotypic JFH1 chimeric viruses encoding the partial or full‐length p7 protein of the HCV‐A strain of genotype 1b (GT1b; Virology; 2007; 360:134). In this study, we determined the consensus sequences of the entire polyprotein coding regions of the wild‐type JFH1 and the revertant chimeric viruses and identified predominant amino acid substitutions in core (K74M), NS2 (T23N, H99P) and NS5A (D251G). Forward genetic analysis demonstrated that all single mutations restored the infectivity of the defective chimeric genomes suggesting that the infectious virus production involves the association of p7 with specific regions in core, NS2 and NS5A. In addition, it was demonstrated that the NS2 T23N facilitated the generation of infectious intergenotypic chimeric virus encoding p7 from GT6 of HCV.  相似文献   

14.
Hepatitis C virus (HCV) infection is a global health burden with over 170 million people infected worldwide. In a significant portion of patients chronic hepatitis C infection leads to serious liver diseases, including fibrosis, cirrhosis, and hepatocellular carcinoma. The HCV NS3 protein is essential for viral polyprotein processing and RNA replication and hence viral replication. It is composed of an N-terminal serine protease domain and a C-terminal helicase/NTPase domain. For full activity, the protease requires the NS4A protein as a cofactor. HCV NS3/4A protease is a prime target for developing direct-acting antiviral agents. First-generation NS3/4A protease inhibitors have recently been introduced into clinical practice, markedly changing HCV treatment options. To date, crystal structures of HCV NS3/4A protease inhibitors have only been reported in complex with the protease domain alone. Here, we present a unique structure of an inhibitor bound to the full-length, bifunctional protease-helicase NS3/4A and show that parts of the P4 capping and P2 moieties of the inhibitor interact with both protease and helicase residues. The structure sheds light on inhibitor binding to the more physiologically relevant form of the enzyme and supports exploring inhibitor-helicase interactions in the design of the next generation of HCV NS3/4A protease inhibitors. In addition, small angle X-ray scattering confirmed the observed protease-helicase domain assembly in solution.  相似文献   

15.
Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane α-helix that may be involved in intramembrane protein–protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix α0, formed by NS3 residues 12–23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design.  相似文献   

16.
Diseases caused by flaviviruses such as dengue virus (DENV) and West Nile Virus (WNV), are a serious threat to public health. The flavivirus single-stranded RNA genome is translated into a polyprotein which is cleaved into three structural proteins and seven non-structural proteins by the viral and cellular proteases. Non-structural (NS) protein 3 is a multifunctional protein that has N-terminal protease and C-terminal helicase domains. The NS3 protease requires co-factor NS2B for enzymatic activity and folding. Due to its essential role in viral replication, NS2B-NS3 protease is an attractive target for antiviral drugs. Despite the availability of crystal structures, dynamic interactions of the N- and C-termini of NS2B co-factor have been elusive due to their flexible fold. In this study, we employ integrative structural approaches combined with biochemical assays to elucidate the dynamic interactions of the flexible DENV4 NS2B and NS3 N- and C-termini. We captured the crystal structure of self-cleaved DENV4 NS2B47NS3 protease in post cleavage state. The intermediate conformation adopted in the reported structure can be targeted by allosteric inhibitors. Comparison of our new findings from DENV4 against previously studied ZIKV NS2B-NS3 proteins reveals differences in NS2B-NS3 function between the two viruses. No inhibition of protease activity was observed for unlinked DENV NS2B-NS3 in presence of the cleavage site while ZIKV NS2B-NS3 cleavage inhibits protease activity. Another difference is that binding of the NS2B C-terminus to DENV4 eNS2B47NS3Pro active site is mediated via interactions with P4-P6 residues while for ZIKV, the binding of NS2B C-terminus to active site is mediated by P1-P3 residues. The mapping of NS2B N- and C-termini with NS3 indicates that these intermolecular interactions occur mainly on the beta-barrel 2 of the NS3 protease domain. Our integrative approach enables a comprehensive understanding of the folding and dynamic interactions of DENV NS3 protease and its cofactor NS2B.  相似文献   

17.
Hepatitis C virus (HCV) is an important cause of chronic liver disease and is complicated by hepatocellular carcinoma (HCC). Mechanisms whereby the virus promotes cellular transformation are poorly understood. We hypothesized that the guanosine triphosphatase activity encoded in the HCV NS4B protein's nucleotide binding motif (NBM) might play a role in the transformation process. Here we report that NS4B can transform NIH-3T3 cells, leading to tumor formation in vivo. This transformation was independent of co-transfection with activated Ha-ras. Detailed analyses of NS4B mutants revealed that this transforming activity could be progressively inhibited and completely abrogated by increasing genetic impairment of the NS4B nucleotide binding motif. CONCLUSION: NS4B has in vitro and in vivo tumorigenic potential, and the NS4B transforming activity is indeed mediated by its NBM. Moreover, our results suggest that pharmacological inhibition of the latter might inhibit not only HCV replication but also the associated HCC.  相似文献   

18.
The hepatitis C virus (HCV) non-structural (NS) 5A protein appears to play an important regulatory role on viral replication and could also be involved in viral pathogenesis. HCV resistance to interferon is a complex mechanism involving multiple causes, among which certain NS5A functions could play a role.  相似文献   

19.
The hepatitis C virus (HCV) non-structural (NS) 5A protein appears to play an important regulatory role on viral replication and could also be involved in viral pathogenesis. HCV resistance to interferon is a complex mechanism involving multiple causes, among which certain NS5A functions could play a role.  相似文献   

20.
Autophagy is a highly-regulated, conserved cellular process for the degradation of intracellular components in lysosomes to maintain the energetic balance of the cell. It is a pro-survival mechanism that plays an important role during development, differentiation, apoptosis, ageing and innate and adaptive immune response. Besides, autophagy has been described to be involved in the development of various human diseases, e.g., chronic liver diseases and the development of hepatocellular carcinoma. The hepatitis C virus (HCV) is a major cause of chronic liver diseases. It has recently been described that HCV, like other RNA viruses, hijacks the autophagic machinery to improve its replication. However, the mechanisms underlying its activation are conflicting. HCV replication and assembly occurs at the so-called membranous web that consists of lipid droplets and rearranged endoplasmic reticulum-derived membranes including single-, double- and multi-membrane vesicles. The double-membrane vesicles have been identified to contain NS3, NS5A, viral RNA and the autophagosomal marker microtubule-associated protein 1 light chain 3, corroborating the involvement of the autophagic pathway in the HCV life-cycle. In this review, we will highlight the crosstalk of the autophagosomal compartment with different steps of the HCV life-cycle and address its implications on favoring the survival of infected hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号