首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine PAH accumulation and bulky DNA adduct formation in the digestive gland of zebra mussels exposed in their habitat or in controlled laboratory conditions to complex mixture of PAH. DNA adducts were measured using a 32P-postlabelling protocol with nuclease P1 enrichment adapted from Reddy and Randerath [Reddy, M.V., Randerath, K., 1986. Nuclease P1-mediated enhancement of sensitivity of 32P-postlabelling test for structurally diverse DNA adducts. Carcinogenesis 7, 1543-1551]. Specimens collected in the upper part of the Seine estuary were shown to accumulate higher levels of PAH (up to 1.6 microg g(-1) dry weight) in comparison to individuals from the reference site (0.053 microg g(-1) dry weight). The former exhibited elevated levels of DNA adducts (up to 4.0/10(8) nucleotides) and higher diversity of individual adducts with five distinct spots being specifically detected in individuals originating from the Seine estuary. Zebra mussels exposed for 5 days to 0.01% (v/v) of organic extract of sediment from the Seine estuary were shown to accumulate high amounts of PAH (up to 138 microg g(-1) dry weight) but exhibited relatively low levels of DNA adducts. Exposure to benzo[a]pyrene led to a dose-dependent accumulation of B[a]P (up to 7063 microg g(-1) dry weight) and a clear induction of DNA adduct formation in the digestive gland of mussels (up to 1.13/10(8) nucleotides). Comparisons with other bivalves exposed to the same model PAH, revealed similar levels of adducts and comparable adduct profiles with a main adduct spot and a second faint one. This study clearly demonstrated that zebra mussels are able to biotransform B[a]P and probably other PAH into reactive metabolites with DNA-binding activity. This work also demonstrated the applicability of the nuclease P1 enhanced 32P-postlabelling method for bulky adduct detection in the digestive gland of zebra mussels. DNA adduct measurement in zebra mussels could be a suitable biomarker to monitor PAH-exposure and evaluate genotoxicity in fresh water ecosystems.  相似文献   

2.
The aim of this study was to improve the knowledge on the metabolic pathways involved in benzo[a]pyrene (B[a]P) activation and on the relationship between adduct levels and enzymatic biomarker activities. With this purpose, a model to assess pollutant exposure via food supply has been developed for the sentinel organism, Mytilus galloprovincialis. Mussels were fed for 4 weeks with B[a]P-contaminated feed (50 mg/kg dry weight mussel). Bioaccumulation was studied by determination of B[a]P concentration in whole mussel by GC/MS analysis. Different biomarkers of pollutant exposure were measured to assess the metabolic state of the exposed organisms. CYP1A-like immunopositive protein titration and B[a]P hydroxylase (BPH) activity were assessed as indicators of phase I biotransformation. Glutathione-S-transferase (GST) activity was measured as an indicator of the conjugation activities. Catalase (CAT) and DT-diaphorase (DTD) activities were assessed as potential biomarkers of oxidative stress, whereas acetylthiocholine esterase (AChE) activity was measured as an indication of possible neurotoxicity of B[a]P exposure. DNA adduct levels were determined in digestive gland DNA by applying the 32P-postlabeling technique with nuclease P1 enhancement. For the developed conditions of exposure, B[a]P concentration reached in whole mussel tissues was very high (>500 mg/kg d.w. mussel) and significant B[a]P-induced changes were recorded for each enzymatic biomarkers. BPH and CAT activities were significantly increased by B[a]P exposure, whereas GST in the gills, DTD and AChE were significantly depressed. On the other hand, no change in CYP1A-like immunopositive protein content was observed. Induction and increase with time of bulky B[a]P-related DNA adducts were demonstrated in the digestive gland, although at low levels (0.269+/-0.082 adduct/10e8 dNps at maximum) by the 32P-postlabeling assay. DNA adduct level was significantly correlated with whole mussel tissue B[a]P concentration, so were all the enzymatic biomarkers measured except to GST activity in both gill and digestive gland tissues. BPH, DTD, CAT and AChE displayed a strong correlation with adduct levels. These results demonstrate the neurotoxicity and the genotoxicity of B[a]P exposure in the mussel. The induction of bulky DNA adducts in mussels demonstrates the existence of activation pathways already identified in vertebrates. It validates also the suitability of this model for further studies on B[a]P metabolism in mussels. Our results support the proposal of BPH, AChE, DTD and CAT activities as suitable biomarkers of PAH exposure for these sentinel species.  相似文献   

3.
A complex mixture of polycyclic aromatic hydrocarbons (PAH) extracted from coal tar, standard reference material (SRM) 1597, has been shown to initiate tumor formation in mouse initiation-promotion assays in our laboratory [(2001) Carcinogenesis 22 (7), 1077-1086]. To determine the effects of SRM 1597 on PAH activation in human cells, we investigated the PAH-DNA adduct formation in the human mammary carcinoma-derived cell line MCF-7. We examined the effects of SRM 1597 on the metabolic activation to DNA binding derivatives of two carcinogenic PAHs, the bay region containing benzo[a]pyrene (B[a]P) and the more carcinogenic fjord region containing dibenzo[a,l]pyrene (DB[a,l]P). PAH-DNA adduct analysis by 33P-postlabeling and reversed phase high-performance liquid chromatography revealed a significant decrease in the levels of both B[a]P and DB[a,l]P DNA adduct formation on cotreatment with SRM 1597 in comparison to cells exposed to B[a]P or DB[a,l]P alone. However, the inhibition of PAH-DNA adduct formation only occurred within the first 48 h of exposure in cells cotreated with SRM 1597 and B[a]P. In contrast, SRM 1597 significantly inhibited the level of DB[a,l]P DNA adducts throughout the 120 h of exposure. Induction of human cytochrome P450 (P450) enzymes 1A1 and P4501B1 on treatment with SRM 1597 was observed by immunoblots. These results suggest that the important factors in determining the carcinogenic activity of PAH within a complex mixture would depend on the ability of other components of the mixture to promote or inhibit the activation of carcinogenic PAH by the induction of P450 enzymes followed by the formation of DNA adducts.  相似文献   

4.
Cytochrome P4501A (CYP1A) induction and DNA adduct formation were evaluated in the rat hepatoma cell line Fao, as biomarkers of exposure to organic compounds. Cells were exposed to environmentally relevant concentrations of benzo[a]pyrene (B[a]P) or 3,3',4,4'-tetrachlorobiphenyl (TCB), and to combinations of B[a]P and TCB. Both B[a]P and TCB induced CYP1A proteins in a concentration-dependent relationship, up to concentrations of 10 and 1 μM, respectively, detected by Western blotting. DNA adducts, analyzed by (32)P-postlabeling, were found at the highest concentrations of B[a]P (1 and 10 μM). No adducts were found in cells exposed to 0.1 μM TCB alone. The cotreatment of TCB and B[a]P indicated an increase in DNA adduct formation, compared with B[a]P, but no further induction of CYP1A protein compared with TCB alone. This study suggests that Western blotting and (32)P-postlabeling might be suitable methods for detecting CYP1A protein induction and DNA adducts, respectively, after exposure to environmentally relevant concentrations of organic compounds.  相似文献   

5.
The formation of DNA adducts, using the 32P-postlabelling assay, and induction of 7-ethoxyresorufin O-deethylase (EROD) were investigated in a primary culture of rainbow trout hepatocytes exposed to benzo[a]pyrene (B[a]P). Concentrations of 0.1 and 1 μ -B[a]P were shown to induce EROD whereas 10 μ was an inhibitory concentration. DNA adducts were detected for 12 hr to 72 hr after exposure to 1 μ -B[a]P whereas EROD activity was increased 36 hr after treatment. The pattern of adducts was shown to be identical to that obtained after B[a]P treatment of rainbow trout in vivo, as demonstrated by co-chromatography of the adducts. Pre-exposure of hepatocytes for 48 hr to β-naphthoflavone (βNF) and subsequent 24-hr exposure to 1 μ -B[a]P did not lead to increased DNA adduct formation although βNF treatment led to a 3.4-fold induction of EROD activity at the time of B[a]P addition. This study suggests that primary culture of rainbow trout hepatocytes provides a suitable method for studying DNA adduct formation and its modulating factors in vitro.  相似文献   

6.
The formation and persistence of benzo[a]pyrene (B[a]P)-DNA adducts were investigated in blood, liver and two hematopoietic tissues (anterior kidney and spleen) of the mummichog (Fundulus heteroclitus). Fish were injected with a single, sublethal dose of B[a]P (12 mg/kg body weight) and sampled from 8 to 96 days post-injection. 32P-Postlabeling analysis and storage phosphor imaging were used to resolve and quantify hydrophobic DNA adducts. One major DNA adduct was present in each of the examined tissues at all sampling times. This adduct had similar chromatographic characteristics to those of the adduct standard, 7R,8S,9S-trihydroxy-10S-(N(2)-deoxyguanosyl-3'-phosphate)-7,8,9,10-tetrahydro-benzo[a]pyrene (B[a]PDE-dG). Minor DNA adduct spots, representing less than 2% of the total DNA adducts, were observed in some liver, anterior kidney and spleen samples for up to 32 days post-injection. The B[a]P-DNA adducts reached maximal levels at 32 days post-injection and persisted for at least 96 days in all examined tissues. B[a]P-DNA adduct levels were significantly higher in the liver and anterior kidney than in the spleen from 16 to 96 days (P<0.001), although liver and anterior kidney DNA adduct levels were not significantly different at any time. This is the first controlled study to demonstrate the formation and persistence of B[a]P-DNA adducts in hematopoietic tissues and blood of fishes exposed to the prototypical polycyclic aromatic hydrocarbon, B[a]P. Although persistent DNA adducts are generally recognized as potential initiators of carcinogenic processes, adducts in these vital tissues may also lead to disruption of physiological functions such defense mechanisms and hematopoiesis.  相似文献   

7.
Chemical-DNA adducts provide an integrated measure of exposure, absorption, bioactivation, detoxification, and DNA repair following exposure to a genotoxic agent. Benzo[a]pyrene (BaP), a prototypical polycyclic aromatic hydrocarbon (PAH), can be bioactivated by cytochrome P-450s (CYPs) and epoxide hydrolase to genotoxic metabolites which form covalent adducts with DNA. In this study, we utilized precision-cut rat liver and lung slices exposed to BaP to investigate tissue-specific differences in chemical absorption and formation of DNA adducts. To investigate the contribution of bioactivating CYPs (such as CYP1A1 and CYP1B1) on the formation of BaP-DNA adducts, animals were also pretreated in vivo with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) prior to in vitro incubation of tissue slices with BaP. Furthermore, the tissue distribution of BaP and BaP-DNA adduct levels from in vivo studies were compared with those from the in vitro tissue slice experiments. The results indicate a time- and concentration-dependent increase in tissue-associated BaP following exposure of rat liver and lung tissue slices to BaP in vitro, with generally higher levels of BaP retained in lung tissue. Furthermore, rat liver and lung slices metabolized BaP to reactive intermediates that formed covalent adducts with DNA. Total BaP-DNA adducts increased with concentration and incubation time. Adduct levels (fmol adduct/microg DNA) in lung slices were greater than liver at all doses. Liver slices contained one major and two minor adducts, while lung slices contained two major and 3 minor adducts. The tissue-specific qualitative profile of these adducts in tissue slices was similar to that observed from in vivo studies, further validating the use of this model. Pretreatment of animals with TCDD prior to in vitro incubation with BaP potentiated the levels of DNA adduct formation. TCDD pretreatment altered the adduct distribution in lung but not in liver slices. Together, the results suggest that tissue-specific qualitative and quantitative differences in BaP-DNA adducts could contribute to the lung being a target tissue for BaP carcinogenesis. Furthermore, the results validate the use of precision-cut tissue slices incubated in dynamic organ culture as a useful model for the study of chemical-DNA adduct formation.  相似文献   

8.
Carcinogenic polycyclic aromatic hydrocarbons (PAH), such as benzo[a]pyrene (B[a]P), 7,12-dimethylbenz[a]anthracene (DMBA), and dibenzo[a,l]pyrene (DB[a,l]P), are metabolically activated to electrophilically reactive bay or fjord region diol epoxides that bind to the exocyclic amino groups of purine bases in DNA to form stable adducts. In addition, it has been reported that these PAH can be enzymatically oxidized to yield radical cations that form apurinic (AP) sites in DNA via depurinating adducts. The formation of stable adducts and AP sites in DNA of human cells exposed to PAH was examined in cytochrome P450 (P450)-expressing mammary carcinoma MCF-7 cells and in leukemia HL-60 cells, which display a high peroxidase but no P450-mediated activity, after exposure to these PAH. Stable DNA adducts were assessed by (33)P-postlabeling/HPLC analysis, and the induction of AP sites in DNA was analyzed by an aldehyde reactive probe (ARP) and a slot blot method. After exposure for 4 h, the levels of stable DNA adducts were comparable in MCF-7 cells treated with B[a]P and DMBA, but significantly lower than those observed in MCF-7 cells treated with the stronger carcinogen DB[a,l]P. While the levels of stable adducts increased more than 10-fold (B[a]P and DMBA) or 100-fold (DB[a,l]P) after exposure for 24 h, the levels of AP sites remained low after both treatment periods. Thus, the levels of stable adducts were approximately 5-fold higher than the levels of AP sites after treatment with B[a]P or DMBA and more than 100-fold higher in cells exposed to DB[a,l]P for 24 h. None of these carcinogenic PAH formed detectable levels of stable DNA adducts or AP sites in HL-60 cells. The results demonstrate that metabolic activation of B[a]P, DMBA, and DB[a,l]P is catalyzed by P450 enzymes leading to diol epoxides that form predominantly stable DNA adducts but only low levels of AP sites.  相似文献   

9.
Green-lipped mussels (Perna viridis) were collected from a site in Hong Kong which is relatively free from polycyclic aromatic hydrocarbon (PAH) contamination, and maintained in situ at this and three other sites with different degrees of PAH contamination. The transplanted mussels were retrieved after a 30-day field exposure. DNA adducts in the gill tissues were quantified, and tissue concentrations of benzo[a]pyrene as well as total PAHs (with potential carcinogenicity) determined for individual mussels. Results indicate that (1) tissue concentration of PAHs and adduct levels in mussels collected from a single site can be highly variable; and (2) adduct levels were related to tissue concentrations of benzo[a]pyrene as well as total PAHs of individual animals.  相似文献   

10.
The levels of aflatoxin B(1)-DNA and aflatoxin B(1)-albumin adducts were investigated by accelerator mass spectrometry (AMS) in humans and rats following exposure to a known, dietary relevant amount of carbon-14 labeled aflatoxin B(1) ([(14)C]AFB(1)). The aims of the study were to: (a) investigate the dose-dependent formation of DNA and protein adducts at very low doses of AFB(1) (0.16 ng/kg-12.3 microg/kg) in the rat; (b) measure the levels of AFB(1)-albumin and AFB(1)-DNA adducts at known, relevant exposures in humans (c) study rat to human extrapolations of AFB(1)-albumin and DNA adduct levels. The results in the rat showed that both AFB(1)-albumin adduct and AFB(1)-DNA adduct formation were linear over this wide dose range. The order of adduct formation within the tissues studied was liver>kidney>colon>lung=spleen. Consenting volunteers received 1 microg ( approximately 15 ng/kg) of [(14)C]AFB(1) in a capsule approximately approximately 3.5-7 h prior to undergoing colon surgery. The mean level of human AFB(1)-albumin adducts was 38.8+/-19.55 pg [(14)C]AFB(1)/mg albumin/microg AFB(1)/kg body weight (b.w.), which was not statistically different to the equivalent dose in the rat (15 ng/kg) 42.29+/-7.13 pg [(14)C]AFB(1)/mg albumin/microg AFB(1)/kg b.w. There was evidence to suggest the formation of AFB(1)-DNA adducts in the human colon at very low doses. Comparison of the linear regressions of hepatic AFB(1)-DNA adduct and AFB(1)-albumin adduct levels in rat found them to be statistically similar suggesting that the level of AFB(1)-albumin adducts are useful biomarkers for AFB(1) dosimetry and may reflect the DNA adduct levels in the target tissue. [(14)C]AFB(1)-DNA and [(14)C]AFB(1)-albumin adducts were hydrolysed and analysed by HPLC to confirm that the [(14)C] measured by AMS was derived from the expected [(14)C]AFB(1) adducts.  相似文献   

11.
The aim of the present work was to investigate genotoxicant accumulation and biological responses of zebra mussels and blue mussels collected along a pollution gradient in the Seine estuary and in the Seine Bay. The sampling area included three contaminated and one reference sites for each species. The study focused on polyaromatic hydrocarbons (PAH), lindane, polychlorobiphenyls (PCB) and metals known to be potential genotoxicants and/or reactive oxygen species (ROS) inducers. Enzymatic activities related to cellular defence systems including the phase II enzyme glutathione S-transferase (GST) and three antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were measured in gills. DNA adducts and DNA strand breaks (Comet assay) were measured in digestive gland and hemocytes, respectively. Species differences were observed in metal accumulation (As and Pb), GPx activity and DNA adduct formation. A marked upstream-downstream gradient was reported for PAH body burden and to a lesser extent for PCB and metals with the highest values measured just downstream the industrialized area of Rouen. GST and SOD activities in gills of bivalves were positively related to PAH and metals body burden, respectively. Activation of those cellular defences may prevent accumulation of electrophilic metabolites and free radicals and thus may protect DNA and others macromolecules against oxidation and adduction. Although DNA strand breaks and bulky adducts were detected in both species, levels were relatively low and no significant site differences were observed in June 2003. Our results indicate a clear relationship between genotoxicant accumulation and positive activation of detoxification and antioxidant systems but poor consequences in term of DNA damage for wild population of mussels inhabiting the Seine estuary.  相似文献   

12.
Dibenzo[a,l]pyrene (DB[a,l]P) is the most potent carcinogenic polycyclic aromatic hydrocarbon and has been identified in the environment. Comparative tumorigenicity studies in mouse skin and rat mammary gland indicate that DB[a,l]P is slightly more potent than DB[a,l]P-11,12-dihydrodiol and much more potent than (+/-)-syn-DB[a,l]P-11,12-dihydrodiol-13,14-epoxide {(+/-)-syn-DB[a,l]PDE} and (+/-)-anti-DB[a,l]PDE. We report here the identification and quantification of the depurinating adducts formed in mouse skin treated with DB[a,l]P, DB[a,l]P-11,12-dihydrodiol, (+/-)-syn-DB[a,l]PDE, or (+/-)-anti-DB[a,l]PDE and rat mammary gland treated with DB[a,l]P. The biologically formed adducts were compared with standard adducts by their retention times on HPLC and their spectra obtained by fluorescence line-narrowing spectroscopy at low temperature. In mouse skin treated with DB[a,l]P, depurinating adducts comprised 99% of the total adducts. Most of the depurinating adducts were formed by one-electron oxidation, with 63% at Ade and 12% at Gua. The remainder were formed by the diol epoxide, with 18% at Ade and 6% at Gua. When mouse skin was treated with DB[a,l]P-11,12-dihydrodiol, depurinating adducts comprised 80% of the total, and the predominant one was with Ade (69%). Treatment of skin with (+/-)-syn-DB[a,l]PDE resulted in 32% depurinating adducts, primarily at Ade (25%), whereas treatment with (+/-)-anti-DB[a,l]PDE produced 97% stable adducts. The formation of depurinating adducts following treatment of rat mammary gland with DB[a,l]P resulted in approximately 98% depurinating adducts, with the major adducts formed by one-electron oxidation. Only one depurinating diol epoxide adduct was formed. Tumorigenicity, mutations, and DNA adduct data suggest that depurinating Ade adducts play a major role in the initiation of tumors by DB[a,l]P.  相似文献   

13.
Green-lipped mussels (Perna viridis) were exposed to water-borne benzo[a]pyrene (B[a]P) at nominal concentrations of 0, 0.3, 3 and 30 microg l(-1) for up to 12 days, and both the relative levels of DNA strand breaks (assessed using an alkaline comet assay) and the proportion of micronucleus (MN) formation were monitored in mussel haemocytes at days 0, 1, 3, 6 and 12. The results of the comet assay indicated that an increase in the proportion of strand breaks occurred generally with increasing B[a]P concentration, but a significant decrease in the levels of DNA damage was observed after exposure for 12 days at all concentrations tested, suggesting that the patterns of changes in the levels of DNA strand breakage can be explained by the threshold dependent DNA repair theory. Moreover, the relatively slow development and recovery of the DNA damage response in mussel haemocytes in comparison with previous findings utilizing P. viridis hepatopancreas suggests that the response of DNA alteration upon exposure to B[a]P may be tissue-specific in this species. Monitoring the frequency of micronucleus development in mussel haemocytes indicated both dose- and time-response relationships within the exposure period. Furthermore, the levels of DNA strand breakage correlated well with the levels of micronucleus induction, suggesting a possible cause and effect relationship between the two damage types. We suggest that DNA strand breakage and micronucleus formation in mussel haemocytes can potentially be used as convenient biomarkers of exposure to genotoxicants in the marine environment.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) are known to be activated by the cytochrome P450 (P450) 1 family. However, the precise role of individual P4501 family members in PAH bioactivation remains to be fully elucidated. We therefore investigated the formation of PAH-DNA adducts in the epidermis of Cyp1a2(-/-), Cyp1b1(-/-), and Ahr(-/-) knockout mice. A panel of different PAHs was used, ranging in carcinogenic potency. Mice were treated topically on the dorsal skin with the following tritium-labeled PAHs: dibenzo[a,l]pyre-ne (DB[a,l]P), 7,12-dimethylbenz[a]anthracene (DMBA), benzo[a]pyrene (B[a]P), dibenzo[a,h]anthracene (DB[a,h]A), benzo[g]chrysene (B[g]C), and benzo[c]phenanthrene (B[c]P). At 24 h after treatment, mice (two male and two female mice per group) were sacrificed, and epidermal DNA was isolated and hydrolyzed with DNase I; subsequently, DNA adducts were quantitated by liquid scintillation counting. In the DB[a,l]P-treated mice, levels of DNA adducts were significantly lower in Cyp1a2(-/-) and Cyp1b1(-/-) mice by 57 and 46%, respectively, as compared to wild-type (WT) mice (C57BL/6 background). The levels of DB[a,l]P DNA adducts formed in Ahr(-/-) mice were 26% lower, but this was not statistically significant. The levels of DMBA-DNA adducts in Cyp1a2(-/-) mice were not different than the WT mice but were significantly lower in Cyp1b1(-/-) and Ahr(-/-) mice by 64 and 52%, respectively. DMBA-DNA adduct samples were further analyzed by HPLC following further digestion to deoxyribonucleosides. HPLC analysis of individual DMBA-DNA adducts revealed differences in the ratio of syn-DMBA-diol epoxide- to anti-DMBA-diol epoxide-derived adducts in the Ahr(-/-) and Cyp1b1(-/-) mice. The ratio of syn-/anti-derived adducts in WT mice was 0.49. This ratio was 0.23 in the Cyp1b1(-/-) mice and 0.87 in the Ahr(-/-) mice. In contrast to the results with DB[a,l]P and DMBA, the levels of B[a]P-, DB[a,h]A-, B[g]C-, and B[c]P-DNA adducts were significantly lower in Ahr(-/-) mice by 73, 75, 50, and 81%, respectively, as compared to WT mice but were not significantly lower in the Cyp1a2(-/-) or Cyp1b1(-/-) mice. Collectively, these and other results support a role for both P4501A1 and P4501B1 in the bioactivation of DMBA; P4501A2, P4501B1, and possibly P4501A1 in the bioactivation of DB[a,l]P; and P4501A1 in the bioactivation of B[a]P, DB[a,h]A, B[g]C, and B[c]P in mouse epidermis. Furthermore, in the metabolic activation of DMBA in mouse epidermis, P4501B1 shows a preference for the formation of syn-DMBA-diol epoxide adducts, whereas P4501A1 shows a preference for the formation of anti-DMBA-diol epoxide adducts.  相似文献   

15.
There is substantial evidence to suggest that polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P) induce lung cancer through metabolic activation. As part of a program to delineate the routes of PAH activation, we have examined DNA adducts that are formed in human lung cells. A stable isotope dilution liquid chromatography/multiple reaction monitoring mass spectrometry method was used to quantify eight anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydro-B[a]P (B[a]PDE)-derived DNA adducts in four H358 human bronchoalveolar cell lines with different phenotypes. In P450 1A1/P450 1B1-induced H358 cells exposed to (+/-)-B[a]P-7,8-dihydro-7,8-diol (B[a]P-7,8-dihydrodiol), (+)-anti-trans-B[a]PDE-N2-2'-deoxyguanosine [(+)-anti-trans-B[a]PDE-N2-dGuo] was the major DNA adduct, and it formed with no lag phase. In AKR1A1-transfected H358 cells, (+)-anti-trans-B[a]PDE-N2-dGuo was also the major adduct with a 3 h lag phase before significant adduct formation was detected. In AKR1A1-transfected H358 cells with induced P450 1A1/P450 1B1, (+)-anti-trans-B[a]PDE-N2-dGuo was formed with no lag phase in amounts similar to those in the H358 cells with up-regulated P450 1A1/P450 1B1. Surprisingly, the greatest amount of (+)-anti-trans-B[a]PDE-N2-dGuo was formed in the control H358 cells. Furthermore, (+)-anti-trans-B[a]PDE-N2-dGuo formation was 2-fold higher in (-)-B[a]P-7,8-dihydrodiol-exposed H358 cells when compared with (+/-)-B[a]P-7,8-dihydrodiol-exposed cells. The P450 1A1/1B1 inhibitor 2,4,3',5'-tetramethoxystilbene did not attenuate DNA adduct formation in the control H358 cells, suggesting that another P450 was responsible. These data raise the intriguing possibility that P450 1A1/P450 1B1 and AKR1A1 may be protective against (+)-B[a]PDE-mediated DNA damage.  相似文献   

16.
Our laboratory previously reported the identification and quantification of depurinating DNA adducts of dibenzo[a,l]pyrene (DB[a,l]P) in vitro, which comprise about 84% of all the DNA adducts that are formed [Li, K.-M., et al. (1995) Biochemistry 34, 8043-8049]. To determine a complete adduct profile and identify both stable and depurinating DNA adducts, we have developed a relatively simple, nonradioactive method for the identification of stable DNA adducts by combining enzymatic digestion, HPLC, and fluorescence line-narrowing spectroscopy (FLNS) techniques. Calf thymus DNA, bound to either (+/-)-anti- or (+/-)-syn-DB[a,l]PDE or rat liver microsome-activated DB[a,l]P, was first digested to 3'-mononucleotides with micrococcal nuclease and spleen phosphodiesterase. The adducts were then separated by HPLC with an ion-pair column and identified by FLNS by using the spectra of standards for comparison. In reactions with (+/-)-anti-DB[a,l]PDE, three adducts, an anti-cis-DB[a,l]PDE-dGMP, an anti-trans-DB[a, l]PDE-dAMP, and an anti-cis-DB[a,l]PDE-dAMP, were identified by HPLC and FLNS. In reactions with (+/-)-syn-DB[a,l]PDE, a pair of syn-trans-DB[a,l]PDE-dGMP adducts as well as a syn-cis-DB[a, l]PDE-dGMP, a syn-cis-DB[a,l]PDE-dAMP, and a pair of syn-trans-DB[a, l]PDE-dAMP adducts were identified. From the digest of microsome-activated DB[a,l]P-bound DNA, a syn-trans-DB[a,l]PDE-dGMP, an anti-cis-DB[a,l]PDE-dGMP, a syn-trans-DB[a,l]PDE-dAMP, and a syn-cis-DB[a,l]PDE-dAMP adduct were identified. An anti-cis-DB[a, l]PDE-dAMP adduct was identified only by (32)P-postlabeling. A total of five of the stable adducts formed by DB[a,l]P and nine of the stable adducts formed by DB[a,l]PDE in vitro have been identified. These adducts were also correlated to adduct spots in the (32)P-postlabeling method by cochromatography with standards. Approximately 93% of the stable adducts formed in reactions with (+/-)-anti-DB[a,l]PDE, 90% of adducts with (+/-)-syn-DB[a,l]PDE, and 85% of adducts formed with microsome-activated DB[a,l]P have been identified as Gua or Ade adducts. Equal amounts of stable Gua and Ade adducts were observed in the microsome-catalyzed binding of DB[a, l]P to calf thymus DNA, while 1.4 times more Gua adducts than Ade adducts were obtained in reactions with (+/-)-anti- or (+/-)-syn-DB[a,l]PDE.  相似文献   

17.
Metabolic activation, DNA binding, and tumorigenicity of the carcinogenic polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P) catalyzed by murine cytochrome P450 (P450) enzymes were investigated. DNA binding of DB[a,l]P in human mammary carcinoma MCF-7 and human P450-expressing Chinese hamster V79 cell lines was previously shown to occur preferentially with metabolically generated fjord region DB[a,l]P-11,12-dihydrodiol 13,14-epoxides (DB[a,l]PDE). To elucidate different capabilities of murine P450 1A1 and 1B1 for metabolic activation of DB[a,l]P, V79 cell cultures stably expressing P450s 1A1 or 1B1 from mice were exposed to 10 or 100 nM DB[a,l]P. Both cell lines transformed DB[a,l]P to DNA binding intermediates. As with V79 cells expressing the corresponding human P450 enzyme [Luch et al. (1998) Chem. Res. Toxicol. 11, 686-695], murine P450 1B1-catalyzed metabolism and DNA binding proceeded exclusively through generation of fjord region DB[a,l]PDE. In addition, only DB[a,l]PDE-derived DNA adducts were found in V79 cells expressing P450 1A1 from mice. This is in contrast to our recent findings with V79 cells expressing P450 1A1 from humans or rats which catalyzed the formation of both highly polar DNA adducts as well as nonpolar DB[a,l]PDE-DNA adducts. To establish the role of P450 1B1 in DB[a,l]P-induced tumor formation in vivo, we treated P450 1B1-null and wild-type mice intragastrically and monitored survival rates and appearance of neoplasias in various organs. All wild-type mice (n = 17) used in this study developed at least one tumor at one site (tumor rate of 100%). In contrast, 5 of 13 P450 1B1-null mice were observed to be free from any tumor (tumor rate of 62%). The organ sites of tumor formation and the dignity of tumors were different between wild-type and P450 1B1-null mice. Wild-type mice were diagnosed with both benign and malignant tumors of the ovaries, lymphoid tissues, as well as with skin and endometrial hyperplasias, whereas P450 1B1-null mice developed only lung adenomas and endometrial hyperplasias. DNA binding studies using embryonic fibroblasts isolated from these animals provided further evidence that P450 1B1-catalyzed formation of fjord region DB[a,l]PDE-DNA adducts is the critical step in DB[a,l]P-mediated carcinogenesis in mice, and probably also in man.  相似文献   

18.
The stable adducts of dibenzo[a,l]pyrene (DB[a,l]P) formed by rat liver microsomes in vitro were previously quantified, whereas the depurinating adducts were both identified and quantified [Li, et al. (1995) Biochemistry 34, 8043]. In this article, we report the identification and quantification of the stable DNA adducts obtained from DB[a,l]P and DB[a,l]P-11,12-dihydrodiol activated by rat liver microsomes and from reaction of (+/-)-anti-DB[a,l]P-11,12-dihydrodiol-13,14-epoxide (DB[a,l]PDE) and (+/-)-syn-DB[a,l]PDE with DNA in vitro. In addition, the stable DNA adducts were identified and quantified following treatment of mouse skin with DB[a,l]P, DB[a,l]P-11,12-dihydrodiol, (+/-)-anti-DB[a,l]PDE, or (+/-)-syn-DB[a,l]PDE in vivo and treatment of rat mammary gland with DB[a,l]P in vivo. The DNA adducts were analyzed by the (32)P-postlabeling method, and the major adducts were identified by comparison with standards. The six stable adducts of DB[a,l]P formed by rat liver microsomes in vitro were either guanine or adenine adducts of anti-DB[a,l]PDE or syn-DB[a,l]PDE. About 43% of the detected stable adducts from microsomes were with guanine and 44% were with adenine. The pattern of adducts formed from DB[a,l]P-11,12-dihydrodiol with microsomes was very similar to that from DB[a,l]P. Reaction of (+/-)-anti-DB[a,l]PDE with DNA in vitro formed higher levels of stable adducts (55% from guanine and 39% from adenine) than (+/-)-syn-DB[a,l]PDE did (about 44% with guanine and 47% with adenine). In mouse skin treated with DB[a,l]P, 1% of the total adducts detected were stable adducts, comprised of 51% guanine adducts and 46% from adenine; with DB[a,l]P-11,12-dihydrodiol, 54% of the total were stable adducts, with a pattern of adducts similar to those formed from DB[a,l]P. Treatment of mouse skin with (+/-)-syn-DB[a,l]PDE formed 68% stable adducts, mostly at guanine. With (+/-)-anti-DB[a,l]PDE, mouse skin contained almost exclusively (97%) stable adducts: 61% guanine adducts and 33% adenine adducts. In rat mammary gland treated with DB[a,l]P, 2% of the total adducts were stable, with 42% guanine adducts and 55% adenine adducts. Approximately equal to or greater amounts of stable guanine adducts were formed in all systems, except for rat mammary gland. In contrast, the majority of depurinating adducts were adenine adducts. The carcinogenic potencies of these compounds in mouse skin, published earlier, do not qualitatively or quantitatively correlate with stable adducts, but rather with depurinating adducts.  相似文献   

19.
32P-Postlabeling was used to examine DNA adduct formation and removal in Fischer-344 rats exposed to the animal carcinogen 2,4-diaminotoluene (DAT). Adduct formation and persistence were compared between target (liver and mammary gland) and non-target organs (kidney and lung) to determine if possible differences could explain the observed organ specificity of DAT induced carcinogenesis. The effects of different exposure conditions on DNA adduct formation and removal were also examined by varying the concentration and frequency of compound administration. DAT produced three distinct DNA adducts. Among the organs examined, DNA binding was highest in the liver, with levels approximately 10 times greater than that of the mammary gland and up to 50 times greater than of the two nontarget sites. Despite the large differences in the initial extent of adduct formation, the persistence of adducts among sites was not significantly different. In the liver, there were dose-dependent differences in DNA adduct formation, but adduct removal following different dosages did not vary significantly. The effects of multiple administration on DNA adduct formation and removal were examined by treating rats with 5 mg/kg DAT daily for 10 consecutive days. Adduct yields from multiple treatment were greater than from a single 50 mg/kg exposure. The persistence of adducts following multiple treatment was also greater than after an equivalent single exposure. The results demonstrated organ-specific and dose-dependent differences in initial extent of DNA adduct formation, but no differences in adduct persistence. However, the results did suggest that adduct formation and persistence may change with repeated administration of DAT. Received: 13 April 1994 / Accepted: 4 May 1994  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号