首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
This study aimed to investigate whether Cr(VI) induced tight joint and oxidative damage in the small intestine, as mediated by the nuclear factor erythroid 2-related factor 2 (Nrf2)/reactive oxygen species (ROS)/Notch1 axis crosstalk. Thirty-two ICR mice were obtained and subjected to Cr(VI) via intragastric administration daily for 5 days. Western blot (WB) analysis, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC) staining, and immunofluorescence (IF) staining were applied to detect small intestinal damage, Nrf2, Notch1, and respective downstream targets in this research. Results showed that Cr(VI) led to the tight joint and oxidative damage in the small intestine of mice. Nrf2 was stimulated, and Notch1 (Notch intracellular domain, NICD1) was activated to translocate into the nucleus and activate an antioxidant action. These findings were validated by WB analysis and IF staining. ROS levels increased as the Cr(VI) concentration increased. The colocalization analysis of Nrf2 and NICD1 implied that a crosstalk between Nrf2 and Notch1 existed. Therefore, this study indicated that the Nrf2/ROS/Notch1 axis crosstalk could aggravate the tight joint and oxidative damage in the small intestine after Cr(VI) treatment.  相似文献   

5.
6.
The Kelch ECH associating protein 1-nuclear factor-E2-related factor 2-antioxidant response element (Keap 1-Nrf2-ARE) signaling pathway regulates several protective mechanisms including expression of conjugating and antioxidative genes, antiinflammatory responses, the molecular chaperone/stress response system and the ubiquitin/proteasome system. The Nrf2-mediated response alters susceptibility to carcinogenesis, acute chemical toxicity, oxidative stress, asthma, acute inflammation, septic shock and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Studies using natural and synthetic chemical inducers that activate Nrf2 signaling have demonstrated protective efficacy in many animal models of disease. Conversely, studies in Nrf2-disrupted mice indicate they exhibit increased sensitivity to many of these diseases. Thus, activation of Keap1-Nrf2-ARE signaling constitutes a broad protective response, making Nrf2 and its interacting partners important targets for chemoprevention. However, additional studies are needed to characterize Keap1-Nrf2-ARE signaling in humans to further develop exceptionally potent activators of the pathway and further understand the potential consequences of altering this system.  相似文献   

7.
8.
Oxidative stress has been proposed as an important promoter of the progression of fatty liver diseases. The current study investigates the potential functions of the Nrf2-Keap1 signaling pathway, an important hepatic oxidative stress sensor, in a rodent fatty liver model. Mice with no (Nrf2-null), normal (wild type, WT), and enhanced (Keap1 knockdown, K1-kd) expression of Nrf2 were fed a methionine- and choline-deficient (MCD) diet or a control diet for 5 days. Compared to WT mice, the MCD diet-caused hepatosteatosis was more severe in the Nrf2-null mice and less in the K1-kd mice. The Nrf2-null mice had lower hepatic glutathione and exhibited more lipid peroxidation, whereas the K1-kd mice had the highest amount of glutathione in the liver and developed the least lipid peroxidation among the three genotypes fed the MCD diet. The Nrf2 signaling pathway was activated by the MCD diet, and the Nrf2-targeted cytoprotective genes Nqo1 and Gstα1/2 were induced in WT and even more in K1-kd mice. In addition, Nrf2-null mice on both control and MCD diets exhibited altered expression profiles of fatty acid metabolism genes, indicating Nrf2 may influence lipid metabolism in liver. For example, mRNA levels of long chain fatty acid translocase CD36 and the endocrine hormone Fgf21 were higher in livers of Nrf2-null mice and lower in the K1-kd mice than WT mice fed the MCD diet. Taken together, these observations indicate that Nrf2 could decelerate the onset of fatty livers caused by the MCD diet by increasing hepatic antioxidant and detoxification capabilities.  相似文献   

9.
10.
Mechanistic studies of the Nrf2-Keap1 signaling pathway   总被引:2,自引:0,他引:2  
  相似文献   

11.
12.
13.
14.
15.
Genotoxic and hepatotoxic effects of lead (Pb) on a freshwater fish, climbing perch (Anabas testudineus) were studied at an environmentally relevant concentration (43.3 ppm). The genotoxic potential of Pb was confirmed by micronucleus study, with increased frequencies of erythrocytic nuclear alterations like lobed, blebbed, notched, fragmented, and micronuclei were observed in erythrocytes in treated groups as compared to control. Inorganic Pb induces oxidative stress which is a consequence of elevated level of Reactive Oxygen Species. Hepatotoxicity was assessed both by the oxidative stress and cellular responses that emerged due to the toxic assault of Pb in the liver, the most important detoxifying organ. Upregulation of xenobiotic metabolizing enzyme like catalase was evident after 15, 30, and 90 days of exposure, and a profound effect was observed on 30th days. The level of lipid peroxidation and reduced glutathione was increased after Pb exposure. Histoarchitectural damages of liver were distinctly evident in treated fish. Western blot analysis confirmed the expressional alterations of stress-responsive marker proteins like Nrf2, Keap1, Hsp70, and Nqo1. Pb exposure resulted in increased expression of Hsp70, Nrf2, and Nqo1, whereas Keap1 was downregulated, suggesting the involvement of Nrf2-Keap1 regulation as a cytoprotective mechanism against Pb toxicity.  相似文献   

16.
17.
Abstract

Anthropogenic activities have resulted in an increase in the level of fluoride (F), a natural pollutant in water, causing great threat to the aquatic organisms including fishes. Earlier we reported that sodium fluoride (NaF) exposure alters histological ultrastructure in zebrafish (Danio rerio) liver evidenced by hyperplasia, cytoplasmic degeneration, heteropycnosis etc. In this study, zebrafish were exposed to 7.5, 15 and 30?mg NaF l?1 for 30 days as well as to 15?mg NaF l?1 for 90 days. In NaF treated fish, generation of reactive oxygen species (ROS), depletion of glutathione (GSH) and increase in malondialdehyde (MDA) content along with enhanced activities of oxyradical-scavenging enzymes like catalase (CAT) and superoxide dismutase (SOD) were recorded. Activity of GSH-metabolizing enzyme, glutathione-S-transferase (GST) was also enhanced. The mRNA levels of genes for xenobiotic metabolizing enzymes (XMEs) like cytochrome P450 1A (Cyp1A), NADPH Q Oxidase 1 (Nqo1) and Heme Oxygenase 1 (Ho-1) increased along with nuclear factor (erythroid-derived 2)-like 2 (Nrf2) whereas Kelch-like ECH-associated protein 1 (Keap1) decreased in the treated groups in comparison to their controls. The increase in Nrf2 protein levels in NaF treated fish confirmed its key regulatory role in F-induced oxidative stress. Chromatin condensation and nuclear fragmentations were evidenced in NaF-treated groups indicating possible induction of apoptosis. The modulation of these toxicological parameters at genetic and biochemical levels may be used as an early warning for the environmental risk assessment of F? toxicity to aquatic organisms including fishes.  相似文献   

18.
Oxidative stress and lipid accumulation play important roles in alcohol-induced liver injury. Previous reports showed that, in livers of nuclear factor erythroid 2-related factor 2 (Nrf2)-activated mice, genes involved in antioxidant defense are induced, whereas genes involved in lipid biosynthesis are suppressed. To investigate the role of Nrf2 in ethanol-induced hepatic alterations, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation, were treated with ethanol (5 g/kg, po). Blood and liver samples were collected 6 h thereafter. Ethanol increased alanine aminotransferase and lactate dehydrogenase activities as well as thiobarbituric acid reactive substances in serum of Nrf2-null and wild-type mice, but not in Nrf2-enhanced mice. After ethanol administration, mitochondrial glutathione concentrations decreased markedly in Nrf2-null mice but not in Nrf2-enhanced mice. H2DCFDA staining of primary hepatocytes isolated from the four genotypes of mice indicates that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. Ethanol increased serum triglycerides and hepatic free fatty acids in Nrf2-null mice, and these increases were blunted in Nrf2-enhanced mice. In addition, the basal mRNA and nuclear protein levels of sterol regulatory element-binding protein 1(Srebp-1) were decreased with graded Nrf2 activation. Ethanol further induced Srebp-1 mRNA in Nrf2-null mice but not in Nrf2-enhanced mice. In conclusion, Nrf2 activation prevented alcohol-induced oxidative stress and accumulation of free fatty acids in liver by increasing genes involved in antioxidant defense and decreasing genes involved in lipogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号