首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding of the microRNAs (miRNAs) regulatory system has become indispensable for physiological/oncological research. Tissue and organ specificities are key features of miRNAs that should be accounted for in cancer research. Further, cancer‐specific energy metabolism, referred to as the Warburg effect, has been positioned as a key cancer feature. Enhancement of the glycolysis pathway in cancer cells is what primarily characterizes the Warburg effect. Pyruvate kinase M1/2 (PKM1/2) are key molecules of the complex glycolytic system; their distribution is organ‐specific. In fact, PKM2 overexpression has been detected in various cancer cells. PKM isoforms are generated by alternative splicing by heterogeneous nuclear ribonucleoproteins. In addition, polypyrimidine tract‐binding protein 1 (PTBP1) is essential for the production of PKM2 in cancer cells. Recently, several studies focusing on non‐coding RNA elucidated PTBP1 or PKM2 regulatory mechanisms, including control by miRNAs, and their association with cancer. In this review, we discuss the strong relationship between the organ‐specific distribution of miRNAs and the expression of PKM in the context of PTBP1 gene regulation. Moreover, we focus on the impact of PTBP1‐targeting miRNA dysregulation on the Warburg effect.  相似文献   

2.
Recent studies have indicated that increased expression of the M2 isoform of pyruvate kinase (PKM2) is involved in glycolysis and tumor development. However, little is known about the role of PKM2 in gastric cancer (GC). Therefore, we examined the expression and function of PKM2 in human GC. We evaluated PKM1 and PKM2 expression by quantitative RT‐PCR in gastric tissues from 10 patients who underwent gastric endoscopic submucosal dissection, 80 patients who underwent gastrectomy, and seven healthy volunteers, and analyzed the correlation with clinicopathological variables. To assess the function of PKM2, we generated PKM2‐knockdown GC cells, and investigated the phenotypic changes. Furthermore, we examined the induction of PKM2 expression by cytotoxin‐associated gene A (CagA), a pathogenic factor of Helicobacter pylori, using CagA‐inducible GC cells. We found that PKM2 was predominantly expressed not only in GC lesions but also in the normal gastric regions of GC patients and in the gastric mucosa of healthy volunteers. The PKM2 expression was significantly higher in carcinoma compared to non‐cancerous tissue and was associated with venous invasion. Knockdown of PKM2 in GC cells caused significant decreases in cellular proliferation, migration, anchorage‐independent growth, and sphere formation in vitro, and in tumor growth and liver metastasis in vivo. The serine concentration‐dependent cell proliferation was also inhibited by PKM2 silencing. Furthermore, we found that PKM2 expression was upregulated by CagA by way of the Erk pathway. These results suggested that enhanced PKM2 expression plays a pivotal role in the carcinogenesis and development of GC in part by regulating cancer‐specific metabolism.  相似文献   

3.
Tumor aerobic glycolysis, or the Warburg effect, plays important roles in tumor survival, growth, and metastasis. Pyruvate kinase isoenzyme M2 (PKM2) is a key enzyme that regulates aerobic glycolysis in tumor cells. Recent research has shown that PKM2 can be used as a tumor marker for diagnosis and, in particular, as a potential target for cancer therapy. We investigated the effects of combining shRNA targeting PKM2 and docetaxel on human A549 lung carcinoma cells both in vivo and in vitro. We observed that the shRNA can significantly downregulate the expression level of PKM2. The decrease of PKM2 resulted in a decrease in ATP synthesis, which caused intracellular accumulation of docetaxel. Furthermore, the combination of pshRNA‐pkm2 and docetaxel inhibited tumor growth and promoted more cancer cell apoptosis both in vivo and in vitro. Our findings suggest that targeting tumor glycolysis can increase the efficacy of chemotherapy. In particular, the targeting of PKM2 could, to some extent, be a new way of reversing chemotherapy resistance to cancer therapy. (Cancer Sci 2010)  相似文献   

4.
Dysregulation of microRNAs (miRNAs) has been linked to virulence factors of Helicobacter pylori and shown to contribute to the progression of gastric cancer. However, the mechanisms of these processes remain poorly understood. The aim of this study was to investigate the mechanisms by which lipopolysaccharide (LPS), a virulence factor of H. pylori, regulates miR‐375 and miR‐106b expression in gastric epithelial cells. The results show that LPS from H. pylori 26695 downregulated the expression of miR‐375 and miR‐106b in gastric epithelial cells, and low levels of Dicer were also observed. Downregulation of miR‐375 was found to increase expression of MDM2 with SP1 activation. Overexpression of MDM2 inhibited Dicer by repressing p63 to create a positive‐feedback loop involving SP1/MDM2/p63/Dicer that leads to inhibition of miR‐375 and miR‐106b expression. In addition, we demonstrated that JAK1 and STAT3 were downstream target genes of miR‐106b. H. pylori LPS also enhanced the tyrosine phosphorylation of JAK1, JAK2 and STAT3. Together, these results provide insight into the regulatory mechanisms of MDM2 on H. pylori LPS‐induced specific miRNAs, and furthermore, suggest that gastric epithelial cells treated with H. pylori LPS may be susceptible to JAK/STAT3 signal pathway activation via inhibition of miR‐375 and miR‐106b.  相似文献   

5.
Our recent studies of microRNA (miRNA) expression signatures have indicated that the miR‐143/145 cluster is significantly downregulated in several types of cancer and represents a putative tumor‐suppressive miRNA in human cancers. The aim of this study was to investigate the functional significance of the miR‐143/145 cluster in cancer cells and to identify novel molecular targets of the miR‐143/145 cluster in renal cell carcinoma (RCC). The expression levels of miR‐143 and miR‐145 were significantly downregulated in RCC tissues compared with adjacent non‐cancerous tissues. A significant positive correlation was recognized between miR‐143 and miR‐145 expression. Restoration of mature miR‐143 or miR‐145 in 786‐O and A498 RCC cells revealed that both mature miRNAs significantly inhibited cancer cell proliferation and invasion, suggesting that the miR‐143/145 cluster functioned as a tumor suppressor in RCC. Gene expression data and in silico database analysis showed that the hexokinase‐2 (HK2) gene, which encodes a glycolytic enzyme crucial for the Warburg effect in cancer cells, was a candidate target of the miR‐143/145 cluster. Luciferase reporter assays showed that both miR‐143 and miR‐145 directly regulated HK2. In RCC clinical specimens, the expression of HK2 was significantly higher in cancer tissues than in non‐cancerous tissues. Silencing HK2 suppressed RCC cell proliferation and invasion, suggesting that HK2 has oncogenic functions in RCC. Thus, our data showed that loss of the tumor‐suppressive miR‐143/145 cluster enhanced RCC cell proliferation and invasion through targeting HK2.  相似文献   

6.
MicroRNAs (miRNAs) are small noncoding RNAs that function as endogenous silencers of target genes and play critical roles during carcinogenesis. The selective cyclooxygenase‐2 (COX‐2) inhibitor celecoxib has been highlighted as a potential drug for treatment of gastrointestinal tumors. The aim of this study was to investigate the role of miRNAs in gastric carcinogenesis and the feasibility of a new therapeutic approach for gastric cancer. miRNA expression profiles were examined in 53 gastric tumors including gastric adenomas (atypical epithelia), early gastric cancers and advanced gastric cancers and in gastric cancer cells treated with celecoxib. miRNA microarray analysis revealed that miR‐29c was significantly downregulated in gastric cancer tissues relative to nontumor gastric mucosae. miR‐29c was significantly activated by celecoxib in gastric cancer cells. Downregulation of miR‐29c was associated with progression of gastric cancer and was more prominent in advanced gastric cancers than in gastric adenomas and early gastric cancer. In addition, expression of the oncogene Mcl‐1, a target of miR‐29c, was significantly increased in gastric cancer tissues relative to nontumor gastric mucosae. Activation of miR‐29c by celecoxib induced suppression of Mcl‐1 and apoptosis in gastric cancer cells. These results suggest that downregulation of the tumor suppressor miR‐29c plays critical roles in the progression of gastric cancer. Selective COX‐2 inhibitors may have clinical promise for the treatment of gastric cancer via restoration of miR‐29c.  相似文献   

7.
In medulloblastoma, abnormal expression of pluripotency factors such as LIN28 and OCT4 has been correlated with poor patient survival. The miR‐302/367 cluster has also been shown to control self‐renewal and pluripotency in human embryonic stem cells and induced pluripotent stem cells, but there is limited, mostly correlational, information about these pluripotency‐related miRNA in cancer. We evaluated whether aberrant expression of such miRNA could affect tumor cell behavior and stem‐like traits, thereby contributing to the aggressiveness of medulloblastoma cells. Basal expression of primary and mature forms of miR‐367 were detected in four human medulloblastoma cell lines and expression of the latter was found to be upregulated upon enforced expression of OCT4A. Transient overexpression of miR‐367 significantly enhanced tumor features typically correlated with poor prognosis; namely, cell proliferation, 3‐D tumor spheroid cell invasion and the ability to generate neurosphere‐like structures enriched in CD133 expressing cells. A concurrent downregulation of the miR‐367 cancer‐related targets RYR3, ITGAV and RAB23, was also detected in miR‐367‐overexpressing cells. Overall, these findings support the pro‐oncogenic activity of miR‐367 in medulloblastoma and reveal a possible mechanism contributing to tumor aggressiveness, which could be further explored to improve patient stratification and treatment of this important type of pediatric brain cancer.  相似文献   

8.
9.
We have previously demonstrated that enhanced aerobic glycolysis and/or autophagy in the tumor stroma supports epithelial cancer cell growth and aggressive behavior, via the secretion of high-energy metabolites. These nutrients include lactate and ketones, as well as chemical building blocks, such as amino acids (glutamine) and nucleotides. Lactate and ketones serve as fuel for cancer cell oxidative metabolism, and building blocks sustain the anabolic needs of rapidly proliferating cancer cells. We have termed these novel concepts the “Reverse Warburg Effect,” and the “Autophagic Tumor Stroma Model of Cancer Metabolism.” We have also identified a loss of stromal caveolin-1 (Cav-1) as a marker of stromal glycolysis and autophagy. The aim of the current study was to provide genetic evidence that enhanced glycolysis in stromal cells favors tumorigenesis. To this end, normal human fibroblasts were genetically-engineered to express the two isoforms of pyruvate kinase M (PKM1 and PKM2), a key enzyme in the glycolytic pathway. In a xenograft model, fibroblasts expressing PKM1 or PKM2 greatly promoted the growth of co-injected MDA-MB-231 breast cancer cells, without an increase in tumor angiogenesis. Interestingly, PKM1 and PKM2 promoted tumorigenesis by different mechanism(s). Expression of PKM1 enhanced the glycolytic power of stromal cells, with increased output of lactate. Analysis of tumor xenografts demonstrated that PKM1 fibroblasts greatly induced tumor inflammation, as judged by CD45 staining. In contrast, PKM2 did not lead to lactate accumulation, but triggered a “pseudo-starvation” response in stromal cells, with induction of an NFκB-dependent autophagic program, and increased output of the ketone body 3- hydroxy-buryrate. Strikingly, in situ evaluation of Complex IV activity in the tumor xenografts demonstrated that stromal PKM2 expression drives mitochondrial respiration specifically in tumor cells. Finally, immuno-histochemistry analysis of human breast cancer samples lacking stromal Cav-1 revealed PKM1 and PKM2 expression in the tumor stroma. Thus, our data indicate that a subset of human breast cancer patients with a loss of stromal Cav-1 show profound metabolic changes in the tumor microenvironment. As such, this subgroup of patients may benefit therapeutically from potent inhibitors targeting glycolysis, autophagy and/or mitochondrial activity (such as metformin).  相似文献   

10.
Radioresistance is a major challenge during the treatment of breast cancer. A further understanding of the mechanisms of radioresistance could provide strategies to address this challenge. In our study, we compared the expression of miR‐200c in four distinct breast cancer cell lines: two representative basal cancer cells (MDA‐MB‐231 and BT549) vs. two representative luminal cancer cells (MCF‐7 and BT474). The results revealed practically lower expression of miR‐200c in the two basal cancer cell lines and higher expression of miR‐200c in luminal cancer cells compared to the normal breast epithelial cell line MCF‐10A. Ectopic expression of miR‐200c in MDA‐MB‐231 cells inhibited irradiation‐induced autophagy and sensitized the breast cancer cells to irradiation. We also identified UBQLN1 as a direct functional target of miR‐200c involved in irradiation‐induced autophagy and radioresistance. In 35 human breast cancer tissue samples, we detected an inverse correlation between the expression of miR‐200c vs. UBQLN1 and LC3. These results indicate that the identified miR‐200c/UBQLN1‐mediated autophagy pathway may help to elucidate radioresistance in human breast cancer and might represent a therapeutic strategy.  相似文献   

11.
12.
Lung cancer is one of the leading causes of cancer death worldwide. microRNAs have been shown to be a novel class of regulators in lung cancer. Here, we explored the role of miR‐153 in the pathogenesis of lung cancer and its therapeutic potential. miR‐153 was significantly decreased in lung cancer tissues than the adjacent tissues. The protein and mRNA levels of protein kinase B (AKT), which were shown to promote tumor growth, were both increased in lung cancer tissues than adjacent tissues. Overexpression of miR‐153 significantly inhibited AKT protein expression, which were abrogated by co‐transfection of AMO‐153, the specific inhibitor of miR‐153. Luciferase assay showed that transfection of miR‐153 markedly suppressed the fluorescent intensity of chimeric vectors carrying the 3'UTR of AKT1, while produced no effect on the mutant construct, indicating that AKT is regulated by miR‐153. Overexpression of miR‐153 significantly inhibited the proliferation and migration, and promoted apoptosis of cultured lung cancer cells in vitro, and suppressed the growth of xenograft tumors in vivo. Interestingly, lung cancer cells with lower endogenous miR‐153 expression are more sensitive to ectopic overexpressed miR‐153. The IC50 of miR‐153 on lung cancer cells is positive correlated with the endogenous miR‐153 level, while negative correlated with AKT level. Knockdown of AKT expression suppressed lung cancer cell proliferation. In summary, miR‐153 exerted anti‐tumor activity in lung cancer by targeting on AKT. The sensitivity of lung cancer cells to miR‐153 is determined by its endogenous miR‐153 level.  相似文献   

13.
Epithelial–mesenchymal transition (EMT) is an important mechanism of cancer invasion and metastasis. Although p53 binding protein 1 (53BP1) has been implicated in several biological processes, its function in EMT of human cancers has not yet been reported. Here, we show that 53BP1 negatively regulated EMT by modulating ZEB1 through targeting microRNA (miR)‐200b and miR‐429. Furthermore, 53BP1 promoted ZEB1‐mediated upregulation of E‐cadherin and also inhibited the expressions of mesenchymal markers, leading to increased migration and invasion in MDA‐MB‐231 breast cancer cells. Consistently, in MCF‐7 breast cancer cells, low 53BP1 expression reduced E‐cadherin expression, resulting in increased migration and invasion. These effects were reversed by miR‐200b and miR‐429 inhibition or overexpression. Sections of tumor xenograft model showed increased ZEB1 expression and decreased E‐cadherin expression with the downregulation of 53BP1. In 18 clinical tissue samples, expression of 53BP1 was positively correlated with miR‐200b and mir‐429 and negatively correlated with ZEB1. It was also found that 53BP1 was associated with lymph node metastasis. Taken together, these results suggest that 53BP1 functioned as a tumor suppressor gene by its novel negative control of EMT through regulating the expression of miR‐200b/429 and their target gene ZEB1.  相似文献   

14.
miRNAs have proven to be key regulators of gene expression and are differentially expressed in various diseases, including cancer. Our aim was to identify epigenetically dysregulated genes in prostate cancer. We performed miRNA expression profiling after relieving epigenetic modifications in 6 prostate cancer cell lines and nonmalignant prostate epithelial cells. Thirty‐eight miRNAs showed increased expression in any prostate cancer cell line after 5‐aza‐2′‐deoxycytidine (5azadC) and trichostatin A (TSA) treatments. Six of these also had decreased expression in clinical prostate cancer samples compared to benign prostatic hyperplasia. Among these, miR‐193b was methylated in 22Rv1 cell line at a CpG island ~1 kb upstream of the miRNA locus. Expressing miR‐193b in 22Rv1 cells using pre‐miR‐193b oligonucleotides caused a significant growth reduction (p < 0.001) resulting from a decrease of cells in S‐phase of the cell cycle (p < 0.01). In addition, the anchorage independent growth was partially inhibited in transiently miR‐193b‐expressing 22Rv1 cells (p < 0.01). Altogether, our data suggest that miR‐193b is an epigenetically silenced putative tumor suppressor in prostate cancer.  相似文献   

15.
Our recent studies of microRNA (miRNA) expression signatures demonstrated that microRNA‐1291 (miR‐1291) was significantly downregulated in renal cell carcinoma (RCC) clinical specimens and was a putative tumor‐suppressive miRNA in RCC. The aim of the present study was to investigate the functional significance of miR‐1291 in cancer cells and to identify novel miR‐1291‐mediated cancer pathways and target genes in RCC. Expression of miR‐1291 was significantly downregulated in RCC tissues compared with adjacent non‐cancerous tissues. Restoration of mature miR‐1291 in RCC cell lines (A498 and 786‐O) revealed significant inhibition of cell proliferation, migration and invasion, suggesting that miR‐1291 functioned as a tumor suppressor. To identify miR‐1291‐mediated molecular pathways and targets, we used gene expression analysis (expression of RCC clinical specimens and miR‐1291‐transfected A498 cells) and in silico database analysis. Our data demonstrated that 79 signaling pathways were significantly regulated by tumor‐suppressive miR‐1291 in RCC cells. Moreover, solute career family 2 member 1 (SLC2A1) was a candidate target of miR‐1291 regulation. The SLC2A1 gene provides instructions for producing glucose transporter protein type 1 (GLUT1). Luciferase reporter assays showed that miR‐1291 directly regulated SLC2A1/GLUT1. In RCC clinical specimens, the expression of SLC2A1/GLUT1 mRNA was significantly higher in cancer tissues than in non‐cancerous tissues. A significant inverse correlation was recognized between SLC2A1/GLUT1 and miR‐1291 expression (r = ?0.55, P < 0.0001). Loss of tumor‐suppressive miR‐1291 enhanced RCC cell proliferation, migration and invasion through targeting SLC2A1/GLUT1. The identification of novel tumor‐suppressive miR‐1291‐mediated molecular pathways and targets has provided new insights into RCC oncogenesis and metastasis.  相似文献   

16.
17.
18.
The aim of this study was to evaluate the expression levels of microRNAs (miRNAs) in bladder tumors in order to identify miRNAs involved in bladder carcinogenesis with potential prognostic implications. Expression levels of miRNAs were assessed by quantitative real‐time RT‐PCR in 11 human normal bladder and 166 bladder tumor samples (86 non‐muscle‐invasive bladder cancer (NMIBC) and 80 muscle‐invasive bladder cancer (MIBC)). The expression level of 804 miRNAs was initially measured in a well‐defined series of seven NMIBC, MIBC and normal bladder samples (screening set). The most strongly deregulated miRNAs in tumor samples compared to normal bladder tissue were then selected for RT‐PCR validation in a well‐characterized independent series of 152 bladder tumors (validation set), and in six bladder cancer cell lines. Expression levels of these miRNAs were tested for their association with clinical outcome. A robust group of 15 miRNAs was found to be significantly deregulated in bladder cancer. Except for two miRNAs, miR‐146b and miR‐9, which were specifically upregulated in MIBC, the majority of miRNAs (n = 13) were deregulated in the same way in the two types of bladder tumors, irrespective of pathological stage : three miRNAs were upregulated (miR‐200b, miR‐182 and miR‐138) and the other 10 miRNAs were downregulated (miR‐1, miR‐133a, miR‐133b, miR‐145, miR‐143, miR‐204, miR‐921, miR‐1281, miR‐199a and miR‐199b). A 3‐miRNA signature (miR‐9, miR‐182 and miR‐200b) was found to be related to MIBC tumor aggressiveness and was associated with both recurrence‐free and overall survival in univariate analysis with a trend to significance in the multivariate analysis (p = 0.05). Our results suggested a promising individual prognostic value of these new markers.  相似文献   

19.
MicroRNAs (miRNAs) are frequently deregulated in human tumors, and play important roles in tumor development and progression. The pathological roles of miRNAs in neurofibromatosis type 1 (NF1) tumorigenesis are largely unknown. We demonstrated that miR‐10b was up‐regulated in primary Schwann cells isolated from NF1 neurofibromas and in cell lines and tumor tissues from malignant peripheral nerve sheath tumors (MPNSTs). Intriguingly, a significantly high level of miR‐10b correlated with low neurofibromin expression was found in a neuroectodermal cell line: Ewing’s sarcoma SK‐ES‐1 cells. Antisense inhibiting miR‐10b in NF1 MPNST cells reduced cell proliferation, migration and invasion. Furthermore, we showed that NF1 mRNA was the target for miR‐10b. Overexpression of miR‐10b in 293T cells suppressed neurofibromin expression and activated RAS signaling. Antisense inhibition of miR‐10b restored neurofibromin expression in SK‐ES‐1 cells, and decreased RAS signaling independent of neurofibromin in NF1 MPNST cells. These results suggest that miR‐10b may play an important role in NF1 tumorigenesis through targeting neurofibromin and RAS signaling. (Cancer Sci 2010)  相似文献   

20.
Primary hepatic tumors mainly include hepatocellular carcinoma (HCC), which is one of the most frequent causes of cancer‐related deaths worldwide. Thus far, HCC prognosis has remained extremely poor given the lack of effective treatments. Numerous studies have described the roles played by microRNAs (miRNAs) in cancer progression and the potential of these small noncoding RNAs for diagnostic or therapeutic applications. The current consensus supports the idea that direct repression of a wide range of oncogenes by a single key miRNA could critically affect the malignant properties of cancer cells in a synergistic manner. In this study, we aimed to investigate the oncogenes controlled by miR‐493‐5p, a major tumor suppressor miRNA that inactivates miR‐483‐3p oncomir in hepatic cancer cells. Using global gene expression analysis, we highlighted a set of candidate genes potentially regulated by miR‐493‐5p. In particular, the canonical MYCN protooncogene (MYCN) appeared to be an attractive target of miR‐493‐5p given its significant inhibition through 3′‐UTR targeting in miR‐493‐5p‐rescued HCC cells. We showed that MYCN was overexpressed in liver cancer cell lines and clinical samples from HCC patients. Notably, MYCN expression levels were inversely correlated with miR‐493‐5p in tumor tissues. We confirmed that MYCN knockdown mimicked the anticancer effect of miR‐493‐5p by inhibiting HCC cell growth and invasion, whereas MYCN rescue hindered miR‐493‐5p activity. In summary, miR‐493‐5p is a pivotal miRNA that modulates various oncogenes after its reexpression in liver cancer cells, suggesting that tumor suppressor miRNAs with a large spectrum of action could provide valuable tools for miRNA replacement therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号