首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The effect of hepatitis C virus p7 trans‐regulated protein 3 (P7TP3) in the development of hepatocellular carcinoma (HCC) is still unknown. The present study aimed to investigate the role and mechanism of P7TP3 in HCC. P7TP3 was significantly decreased in HCC tissues when compared with corresponding liver tissues immediately around the tumor (LAT) from seven HCC patients. Fewer and smaller colonies originated from HepG2‐P7TP3 cells when compared to HepG2‐NC cells. Overexpression of P7TP3 in HepG2 cells significantly repressed the growth of HCC xenografts in nude mice. Furthermore, wound‐healing tests, Transwell assays, Matrigel Transwell assays, adhesion assays, CCK‐8 assays, flow cytometry and western blotting analysis showed that P7TP3 protein expression inhibited migration, invasion, adhesion, proliferation and cell cycle progression in HCC cell lines. Moreover, P7TP3 suppressed the activity of the Wnt/β‐catenin signaling pathway, and was restored by Wnt3a, which is an activator of the Wnt/β‐catenin signaling pathway. Consistently, β‐catenin was highly expressed by P7TP3 silencing, and restored by XAV939, an inhibitor of the Wnt/β‐catenin signaling pathway. Finally, microRNA (miR)‐182‐5p suppressed the expression of target gene P7TP3 by directly interacting with the 3′‐UTR region. Taken together, P7TP3, the direct target gene of miR‐182‐5p, inhibited HCC by regulating migration, invasion, adhesion, proliferation and cell cycle progression of liver cancer cell through the Wnt/β‐catenin signaling pathway. These findings provide strong evidence that P7TP3 functions as a new promising tumor suppressor in HCC.  相似文献   

2.
3.
4.
5.
6.
The Wnt/β‐catenin signaling pathway is activated during the malignant transformation of keratinocytes that originate from the human uterine cervix. Dkk1, 2 and 4 have been shown to modulate the Wnt‐induced stabilization of the β‐catenin signaling pathway. However, the function of Dkk3 in this pathway is unknown. Comparison of the Dkk3 gene expression profiles in cervical cancer and normal cervical tissue by cDNA microarray and subsequent real‐time PCR revealed that the Dkk3 gene is frequently downregulated in the cancer. Methylation studies showed that the promoter of Dkk3 was methylated in cervical cancer cell lines and 22 (31.4%) of 70 cervical cancer tissue specimens. This promoter methylation was associated with reduced expression of Dkk3 mRNA in the paired normal and tumor tissue samples. Further, the reintroduction of Dkk3 into HeLa cervical cancer cells resulted in reduced colony formation and retarded cell growth. The forced expression of Dkk3 markedly attenuated β‐catenin‐responsive luciferase activity in a dose‐dependent manner and decreased the β‐catenin levels. By utilizing a yeast two‐hybrid screen, βTrCP, a negative regulator of β‐catenin was identified as a novel Dkk3‐interacting partner. Coexpression with βTrCP synergistically enhanced the inhibitory function of Dkk3 on β‐catenin. The stable expression of Dkk3 blocks the nuclear translocation of β‐catenin, resulting in downregulation of its downstream targets (VEGF and cylcin D), whereas knockdown of Dkk3 abrogates this blocking. We conclude from our finding that Dkk3 is a negative regulator of β‐catenin and its downregulation contribute to an activation of the β‐catenin signaling pathway. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
8.
RUNX3 is a tumor suppressor for a variety of cancers. RUNX3 suppresses the canonical Wnt signaling pathway by binding to the TCF4/β‐catenin complex, resulting in the inhibition of binding of the complex to the Wnt target gene promoter. Here, we confirmed that RUNX3 suppressed Wnt signaling activity in several gastric cancer cell lines; however, we found that RUNX3 increased the Wnt signaling activity in KatoIII and SNU668 gastric cancer cells. Notably, RUNX3 expression increased the ratio of the Wnt signaling‐high population in the KatoIII cells. although the maximum Wnt activation level of individual cells was similar to that in the control. As found previously, RUNX3 also binds to TCF4 and β‐catenin in KatoIII cells, suggesting that these molecules form a ternary complex. Moreover, the ChIP analyses revealed that TCF4, β‐catenin and RUNX3 bind the promoter region of the Wnt target genes, Axin2 and c‐Myc, and the occupancy of TCF4 and β‐catenin in these promoter regions is increased by the RUNX3 expression. These results suggest that RUNX3 stabilizes the TCF4/β‐catenin complex on the Wnt target gene promoter in KatoIII cells, leading to activation of Wnt signaling. Although RUNX3 increased the Wnt signaling activity, its expression resulted in suppression of tumorigenesis of KatoIII cells, indicating that RUNX3 plays a tumor‐suppressing role in KatoIII cells through a Wnt‐independent mechanism. These results indicate that RUNX3 can either suppress or activate the Wnt signaling pathway through its binding to the TCF4/β‐catenin complex by cell context‐dependent mechanisms.  相似文献   

9.
Secreted frizzled‐related proteins (SFRPs) are antagonists of the Wnt signaling pathway whose epigenetic downregulation have been shown to be involved in hepatocarcinogenesis. However, dysregulation of SFRPs induced by hepatitis B virus (HBV) X protein (HBx) has never been studied in HBV‐related hepatocellular carcinoma (HBV‐HCC). In this study, we sought to determine the clinical significance and underlying mechanism of HBx‐induced SFRPs dysregulation in hepatoma cells and HBV‐HCC patients. Our results showed that SFRP1 and SFRP5 expression were dramatically decreased by HBx in hepatoma cells. The repressed expression in hepatoma cells was partially rescued by a DNA methylation inhibitor and synergistically increased by a combination treatment with a histone deacetyltransferases inhibitor. In addition, we identified that SFRP1 and SFRP5 promoters were hypermethylated in both HBx‐expressing hepatoma cells and HBV‐HCC tissues. Downregulation of SFRP1 and SFRP5 in HBV‐HCC tissues was significantly correlated with overexpression of DNA methyltransferase 1 (DNMT1) and poor tumor differentiation. HBx facilitated the binding of DNMT1 and DNMT3A to SFRP1 and SFRP5 promoters, and resulted in epigenetic silencing of SFRP1 and SFRP5. Moreover, overexpression of SFRP1, SFRP5 or RNA interference mediated silencing of DNMT1 inactivated the Wnt signaling pathway and decreased the expression levels of Wnt target genes c‐Myc and CyclinD1, thus impeding HCC growth in vitro and in vivo, and regressing HBx‐induced epithelial–mesenchymal transition (EMT). Our findings strongly suggest that epigenetic silencing of SFRP1 and SFRP5 by HBx allows constitutive activation of Wnt signaling pathway and hence contributes to hepatocarcinogenesis.  相似文献   

10.
11.
12.
β‐Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E‐cadherin in complex with β‐catenin mediates cell–cell adhesion, which suppresses β‐catenin‐dependent Wnt signaling. Recently, a tumor‐suppressive role for E‐cadherin has been reconsidered, as re‐expression of E‐cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E‐cadherin, we established an E‐cadherin‐expressing cell line, EC96, from AGS cells that featured undetectable E‐cadherin expression and a high level of Wnt signaling. In EC96 cells, E‐cadherin re‐expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor‐κB (NF‐κB) activation and consequent c‐myc expression might be involved in E‐cadherin expression‐mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF‐κB activation. Therefore, E‐cadherin re‐expression and subsequent induction of NF‐κB signaling likely enhance energy production and cell proliferation.  相似文献   

13.
Histone acetyltransferase binding to ORC1 (HBO1), a histone acetyltransferase, was recently identified as an oncoprotein; however, its role in bladder cancer remains unknown. In this study, we showed that HBO1 was highly expressed at both the mRNA and the protein levels in bladder cancer. HBO1 expression was associated with the clinical features of human bladder cancer, including tumor size (P = 0.018) and T (P = 0.007) classifications. Patients with higher HBO1 expression had shorter recurrence‐free survival time, whereas patients with lower HBO1 expression had better survival time. Moreover, we found that ectopic overexpression of HBO1 promoted, whereas HBO1 silencing inhibited tumor growth in bladder cancer cells both in vitro and in vivo. We further demonstrated that upregulation of HBO1 activated the Wnt/β‐catenin signaling pathway and led to nuclear localization of β‐catenin and upregulation of downstream targets of of Wnt/β‐catenin signaling. These findings suggest that HBO1 plays a key role in the progression of bladder cancer via the Wnt/β‐catenin pathway, and may serve as a potential therapeutic target for the treatment of bladder cancer.  相似文献   

14.
The wingless/int‐1 (Wnt) signal transduction pathway plays a central role in cell proliferation, survival, differentiation and apoptosis. When β‐catenin: a component of the Wnt pathway, is mutated into an active form, cell growth signaling is hyperactive and drives oncogenesis. As β‐catenin is mutated in a wide variety of tumors, including up to 10% of all sporadic colon carcinomas and 20% of hepatocellular carcinomas, it has been considered a promising target for therapeutic interventions. Therefore, we screened an in‐house natural product library for compounds that exhibited synthetic lethality towards β‐catenin mutations and isolated nonactin, an antibiotic mitochondrial uncoupler, as a hit compound. Nonactin, as well as other mitochondrial uncouplers, induced apoptosis selectively in β‐catenin mutated tumor cells. Significant tumor regression was observed in the β‐catenin mutant HCT 116 xenograft model, but not in the β‐catenin wild type A375 xenograft model, in response to daily administration of nonactin in vivo. Furthermore, we found that expression of an active mutant form of β‐catenin induced a decrease in the glycolysis rate. Taken together, our results demonstrate that tumor cells with mutated β‐catenin depend on mitochondrial oxidative phosphorylation for survival. Therefore, they undergo apoptosis in response to mitochondrial dysfunction following the addition of mitochondrial uncouplers, such as nonactin. These results suggest that targeting mitochondria is a potential chemotherapeutic strategy for tumor cells that harbor β‐catenin mutations.  相似文献   

15.
16.
17.
18.
Retinoid X receptor α (RXRα) plays important roles in the malignancy of several cancers such as human prostate tumor, breast cancer, and thyroid tumor. However, its exact functions and molecular mechanisms in cholangiocarcinoma (CCA), a chemoresistant carcinoma with poor prognosis, remain unclear. In this study we found that RXRα was frequently overexpressed in human CCA tissues and CCA cell lines. Downregulation of RXRα led to decreased expression of mitosis‐promoting factors including cyclin D1and cyclin E, and the proliferating cell nuclear antigen, as well as increased expression of cell cycle inhibitor p21, resulting in inhibition of CCA cell proliferation. Furthermore, RXRα knockdown attenuated the expression of cyclin D1 through suppression of Wnt/β‐catenin signaling. Retinoid X receptor α upregulated proliferating cell nuclear antigen expression through nuclear factor‐κB (NF‐κB) pathways, paralleled with downregulation of p21. Thus, the Wnt/β‐catenin and NF‐κB pathways account for the inhibition of CCA cell growth induced by RXRα downregulation. Retinoid X receptor α plays an important role in proliferation of CCA through simultaneous activation of Wnt/β‐catenin and NF‐κB pathways, indicating that RXRα might serve as a potential molecular target for CCA treatment.  相似文献   

19.
Epidemiological and clinical studies suggest that an increased intake of dietary selenium significantly reduces overall cancer risk, but the anticancer mechanism of selenium is not clear. In this study, we fed intestinal cancer mouse model. Muc2/p21 double mutant mice with a selenium‐enriched (sodium selenite) diet for 12 or 24 weeks, and found that sodium selenite significantly inhibited intestinal tumor formation in these animals (p < 0.01), which was associated with phosphorylation of JNK1 and suppression of β‐catenin and COX2. In vitro studies showed that sodium selenite promoted cell apoptosis and inhibited cell proliferation in human colon cancer cell lines HCT116 and SW620. These effects were dose‐ and time course‐dependent, and were also linked to an increase of JNK1 phosphorylation and suppression of β‐catenin signaling. Reduced JNK1 expression by small RNA interference abrogated sufficient activation of JNK1 by sodium selenite, leading to reduced inhibition of the β‐catenin signaling, resulting in reduced efficacy of inhibiting cell proliferation. Taken together, our data demonstrate that sodium selenite inhibits intestinal carcinogenesis in vivo and in vitro through activating JNK1 and suppressing β‐catenin signaling, a novel anticancer mechanism of selenium.  相似文献   

20.
Recent studies have demonstrated that increased expression of coding region determinant‐binding protein (CRD‐BP) in response to β‐catenin signaling leads to the stabilization of β‐TrCP1, a substrate‐specific component of SCF E3 ubiquitin ligase complex, resulting in an accelerated degradation of IκBα and activation of canonical nuclear factor‐κB (NF‐κB) pathway. Here, we show that the noncanonical NF‐κB1 p105 pathway is constitutively activated in colorectal carcinoma specimens, being particularly associated with β‐catenin‐mediated increased expression of CRD‐BP and β‐TrCP1. In the carcinoma tissues exhibiting high levels of nuclear β‐catenin the phospho‐p105 levels were increased and total p105 amounts were decreased in comparison to that of normal tissue indicating an activation of this NF‐κB pathway. Knockdown of CRD‐BP in colorectal cancer cell line SW620 resulted in significantly higher basal levels of both NF‐κB inhibitory proteins, p105 and IκBα. Furthermore decreased NF‐κB binding activity was observed in CRD‐BP siRNA‐transfected SW620 cells as compared with those transfected with control siRNA. Altogether, our findings suggest that activation of NF‐κB1 p105 signaling in colorectal carcinoma might be attributed to β‐catenin‐mediated induction of CRD‐BP and β‐TrCP1. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号