首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type 1 cannabinoid (CB1) receptors are widely distributed in the brain. Their physiological roles depend on their distribution pattern, which differs remarkably among cell types. Hence, subcellular compartments with little but functionally relevant CB1 receptors can be overlooked, fostering an incomplete mapping. To overcome this, knockin mice with cell‐type–specific rescue of CB1 receptors have emerged as excellent tools for investigating CB1 receptors’ cell‐type–specific localization and sufficient functional role with no bias. However, to know whether these rescue mice maintain endogenous CB1 receptor expression level, detailed anatomical studies are necessary. The subcellular distribution of hippocampal CB1 receptors of rescue mice that express the gene exclusively in dorsal telencephalic glutamatergic neurons (Glu‐CB1‐RS) or GABAergic neurons (GABA‐CB1‐RS) was studied by immunoelectron microscopy. Results were compared with conditional CB1 receptor knockout lines. As expected, CB1 immunoparticles appeared at presynaptic plasmalemma, making asymmetric and symmetric synapses. In the hippocampal CA1 stratum radiatum, the values of the CB1 receptor‐immunopositive excitatory and inhibitory synapses were Glu‐CB1‐RS, 21.89% (glutamatergic terminals); 2.38% (GABAergic terminals); GABA‐CB1‐RS, 1.92% (glutamatergic terminals); 77.92% (GABAergic terminals). The proportion of CB1 receptor‐immunopositive excitatory and inhibitory synapses in the inner one‐third of the dentate molecular layer was Glu‐CB1‐RS, 53.19% (glutamatergic terminals); 2.30% (GABAergic terminals); GABA‐CB1‐RS, 3.19% (glutamatergic terminals); 85.07% (GABAergic terminals). Taken together, Glu‐CB1‐RS and GABA‐CB1‐RS mice show the usual CB1 receptor distribution and expression in hippocampal cell types with specific rescue of the receptor, thus being ideal for in‐depth anatomical and functional investigations of the endocannabinoid system. J. Comp. Neurol. 525:302–318, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
In the spinal cord dorsal horn, presynaptic GABAA receptors (GABAARs) in the terminals of nociceptors as well as postsynaptic receptors in spinal neurons regulate the transmission of nociceptive and somatosensory signals from the periphery. GABAARs are heterogeneous and distinguished functionally and pharmacologically by the type of α subunit variant they contain. This heterogeneity raises the possibility that GABAAR subtypes differentially regulate specific pain modalities. Here, we characterized the subcellular distribution of GABAAR subtypes in nociceptive circuits by using immunohistochemistry with subunit‐specific antibodies combined with markers of primary afferents and dorsal horn neurons. Confocal laser scanning microscopy analysis revealed a distinct, partially overlapping laminar distribution of α1–3 and α5 subunit immunoreactivity in laminae I–V. Likewise, a layer‐specific pattern was evident for their distribution among glutamatergic, γ‐aminobutyric acid (GABA)ergic, and glycinergic neurons (detected in transgenic mice expressing vesicular glutamate transporter 2–enhanced green fluorescent protein [vGluT2–eGFP], glutamic acid decarboxylase [GAD]67–eGFP, and glycine transporter 2 (GlyT2)–eGFP, respectively). Finally, all four subunits could be detected within primary afferent terminals. C‐fibers predominantly contained either α2 or α3 subunit immunoreactivity; terminals from myelinated (Aβ/Aδ) fibers were colabeled in roughly equal proportion with each subunit. The presence of axoaxonic GABAergic synapses was determined by costaining with gephyrin and vesicular inhibitory amino acid transporter to label GABAergic postsynaptic densities and terminals, respectively. Colocalization of the α2 or α3 subunit with these markers was observed in a subset of C‐fiber synapses. Furthermore, gephyrin mRNA and protein expression was detected in dorsal root ganglia. Collectively, these results show that differential GABAAR distribution in primary afferent terminals and dorsal horn neurons allows for multiple, circuit‐specific modes of regulation of nociceptive circuits. J. Comp. Neurol. 520:3895–3911, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
A subpopulation of GABAergic cells in cortical structures expresses CB1 cannabinoid receptors (CB1) on their axon terminals. To understand the function of these interneurons in information processing, it is necessary to uncover how they are embedded into neuronal circuits. Therefore, the proportion of GABAergic terminals expressing CB1 and the morphological and electrophysiological properties of CB1‐immunoreactive interneurons should be revealed. We investigated the ratio and the origin of CB1‐expressing inhibitory boutons in the CA3 region of the hippocampus. Using immunocytochemical techniques, we estimated that ~40% of GABAergic axon terminals in different layers of CA3 also expressed CB1. To identify the inhibitory cell types expressing CB1 in this region, we recorded and intracellularly labeled interneurons in hippocampal slices. CB1‐expressing interneurons showed distinct axonal arborization, and were classified as basket cells, mossy‐fiber‐associated cells, dendritic‐layer‐innervating cells or perforant‐path‐associated cells. In each morphological category, a substantial variability in axonal projection was observed. In contrast to the diverse morphology, the active and passive membrane properties were found to be rather similar. Using paired recordings, we found that pyramidal cells displayed large and fast unitary postsynaptic currents in response to activating basket and mossy‐fiber‐associated cells, while they showed slower and smaller synaptic events in pairs originating from interneurons that innervate the dendritic layer, which may be due to dendritic filtering. In addition, CB1 activation significantly reduced the amplitude of the postsynaptic currents in each cell pair tested. Our data suggest that CB1‐expressing interneurons with different axonal projections have comparable physiological characteristics, contributing to a similar proportion of GABAergic inputs along the somato‐dendritic axis of CA3 pyramidal cells. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Endocannabinoids and their receptors, mainly the CB1 receptor type, function as a retrograde signaling system in many synapses within the CNS, particularly in GABAergic and glutamatergic synapses. They also play a modulatory function on dopamine (DA) transmission, although CB1 receptors do not appear to be located in dopaminergic terminals, at least in the major brain regions receiving dopaminergic innervation, e.g., the caudate‐putamen and the nucleus accumbens/prefrontal cortex. Therefore, the effects of cannabinoids on DA transmission and DA‐related behaviors are generally indirect and exerted through the modulation of GABA and glutamate inputs received by dopaminergic neurons. Recent evidence suggest, however, that certain eicosanoid‐derived cannabinoids may directly activate TRPV1 receptors, which have been found in some dopaminergic pathways, thus allowing a direct regulation of DA function. Through this direct mechanism or through indirect mechanisms involving GABA or glutamate neurons, cannabinoids may interact with DA transmission in the CNS and this has an important influence in various DA‐related neurobiological processes (e.g., control of movement, motivation/reward) and, particularly, on different pathologies affecting these processes like basal ganglia disorders, schizophrenia, and drug addiction. The present review will address the current literature supporting these cannabinoid‐DA interactions, with emphasis in aspects dealing with the neurochemical, physiological, and pharmacological/therapeutic bases of these interactions.  相似文献   

5.
Cannabinoid administration suppresses pain by acting at spinal, supraspinal and peripheral levels. Intrinsic analgesic pathways also exploit endocannabinoids; however, the underlying neurobiological substrates of endocannabinoid‐mediated analgesia have remained largely unknown. Compelling evidence shows that, upon exposure to a painful environmental stressor, an endocannabinoid molecule called 2‐arachidonoylglycerol (2‐AG) is mobilized in the lumbar spinal cord in temporal correlation with stress‐induced antinociception. We therefore characterized the precise molecular architecture of 2‐AG signaling and its involvement in nociception in the rodent spinal cord. Nonradioactive in situ hybridization revealed that dorsal horn neurons widely expressed the mRNA of diacylglycerol lipase‐alpha (DGL‐α), the synthesizing enzyme of 2‐AG. Peroxidase‐based immunocytochemistry demonstrated high levels of DGL‐α protein and CB1 cannabinoid receptor, a receptor for 2‐AG, in the superficial dorsal horn, at the first site of modulation of the ascending pain pathway. High‐resolution electron microscopy uncovered postsynaptic localization of DGL‐α at nociceptive synapses formed by primary afferents, and revealed presynaptic positioning of CB1 on excitatory axon terminals. Furthermore, DGL‐α in postsynaptic elements receiving nociceptive input was colocalized with metabotropic glutamate receptor 5 (mGluR5), whose activation induces 2‐AG biosynthesis. Finally, intrathecal activation of mGluR5 at the lumbar level evoked endocannabinoid‐mediated stress‐induced analgesia through the DGL–2‐AG–CB1 pathway. Taken together, these findings suggest a key role for 2‐AG‐mediated retrograde suppression of nociceptive transmission at the spinal level. The striking positioning of the molecular players of 2‐AG synthesis and action at nociceptive excitatory synapses suggests that pharmacological manipulation of spinal 2‐AG levels may be an efficacious way to regulate pain sensation.  相似文献   

6.
The possible localization of cannabinoid (CB) receptors to glutamatergic and GABAergic synaptic terminals impinging upon GABAergic interneurons in the CA1 region of the rat hippocampus was examined using the electrophysiological measurement of neurotransmitter release in brain slices. Whereas activation of cannabinoid receptors via the application of the cannabinoid agonist WIN55,212-2 significantly and dose-dependently reduced evoked IPSCs recorded from interneurons possessing somata located in the stratum radiatum (S.R.) and stratum oriens (S.O.) lamellae, evoked glutamatergic EPSCs were unaffected in both neuronal populations. However, in agreement with previous reports, WIN55,212-2 significantly reduced EPSCs recorded from CA1 pyramidal neurons. Additional experiments confirmed that the effects of WIN55,212-2 on IPSCs were presynaptic and that they could be blocked by the CB1 receptor antagonist SR141716A. The involvement of endogenous cannabinoids in the presynaptic inhibition of GABA release was also examined in the interneurons and pyramidal cells using a depolarization-induced suppression of inhibition (DSI) paradigm. DSI was observed in CA1 pyramidal neurons under control conditions, and its incidence was greatly increased by the cholinergic agonist carbachol. However, DSI was not observed in the S.R. or S.O. interneuron populations, in either the presence or absence of carbachol. Whereas DSI was not present in these interneurons, the inhibitory inputs to these cells were modulated by the synthetic cannabinoid WIN55,212-2. These data support the hypothesis that cannabinoid receptors are located on inhibitory, but not excitatory, axon terminals impinging upon hippocampal interneurons, and that CA1 pyramidal neurons, and not interneurons, are capable of generating endogenous cannabinoids during prolonged states of depolarization.  相似文献   

7.
Endocannabinoids released by postsynaptic neurons inhibit neurotransmitter release from presynaptic axon terminals. One typical stimulus of endocannabinoid production is an increase of calcium concentration in postsynaptic neurons. The aim of the present study was to clarify whether depolarizing GABAergic synaptic input, by increasing calcium concentration in postsynaptic neurons, can trigger endocannabinoid production. Spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) were recorded in Purkinje cells in mouse cerebellar slices with patch‐clamp pipettes containing 151 mM chloride (a usual recording mode). sIPSCs were depolarizing inward currents under this condition. Combined electrophysiological and fluorometric calcium imaging experiments indicated that sIPSCs frequently triggered calcium spikes. After the calcium spikes, a short‐term suppression of sIPSCs occurred. This suppression was prevented by the CB1 cannabinoid receptor antagonist rimonabant and the diacylglycerol lipase inhibitor orlistat, but not changed by URB597, an inhibitor of anandamide degradation. It is, therefore, likely that CB1 receptors and 2‐arachidonoylglycerol were involved. For testing the physiological significance of the above observation, we carried out experiments on brains of 3‐ to 5‐day‐old mice. The gramicidin‐induced perforated patch‐clamp mode was used for preserving the physiological intracellular chloride concentration of the neurons. Depolarizing GABAergic sIPSCs occurred under this condition, but at a very low rate. Rimonabant did not change the frequency of these sIPSCs, arguing against the persistence of an endocannabinoid tone. The results point to a new kind of trigger of endocannabinoid production: depolarizing GABAergic synaptic input can elicit endocannabinoid production in postsynaptic neurons by activating calcium channels. The produced endocannabinoid suppresses GABA release from presynaptic axon terminals. Synapse 63:643–652, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Tao YX  Li YQ  Zhao ZQ  Johns RA 《Brain research》2000,875(1-2):138-143
Recent pharmacological evidence showed that metabotropic glutamate receptors (mGluRs), particularly mGluRs1/5, had a potential role in spinal nociceptive processing. However, previous morphological studies on mGluRs have been limited mainly to their distribution in the spinal cord. In the present study, electron microscopic immunocytochemistry was employed to identify the synaptic relationship of the neurons containing mGluR5, with nociceptive primary afferent and gamma-aminobutyric acid-ergic (GABAergic) terminals in the superficial dorsal horn of the spinal cord. Nociceptive C- and A(delta)-primary afferent terminals selectively labeled with horseradish peroxidase conjugated to wheat-germ agglutinin were in asymmetric synaptic contacts with or in direct apposition to mGluR5 positive dendritic profiles. The double-labeling studies revealed that mGluR5 immunoreactive dendrites also received symmetric synaptic contacts from axon terminals labeled with immunogold particles indicating GABA. The present demonstration of mGluR5 neurons receiving inputs from both nociceptive primary afferents and GABAergic terminals of presumed interneurons further supports the involvement of mGluR5 in the transmission and modulation of nociceptive information in the spinal cord.  相似文献   

9.
Antisera to glutamic acid decarboxylase (GAD) and gamma-aminobutyric acid (GABA) have been used to characterize the morphology and distribution of presumed GABAergic neurons and axon terminals within the macaque striate cortex. Despite some differences in the relative sensitivity of these antisera for detecting cell bodies and terminals, the overall patterns of labeling appear quite similar. GABAergic axon terminals are particularly prominent in zones known to receive the bulk of the projections from the lateral geniculate nucleus; laminae 4C, 4A, and the cytochrome-rich patches of lamina 3. In lamina 4A, GABAergic terminals are distributed in a honeycomb pattern which appears to match closely the spatial pattern of geniculate terminations in this region. Quantitative analysis of axon terminals that contain flat vesicles and form symmetric synaptic contacts (FS terminals) in lamina 4C beta and in lamina 5 suggest that the prominence of GAD and GABA axon terminal labeling in the geniculate recipient zones is due, at least in part, to the presence of larger GABAergic axon terminals in these regions. GABAergic cell bodies and their initial dendritic segments display morphological features characteristic of nonpyramidal neurons and are found in all layers of striate cortex. The density of GAD and GABA immunoreactive neurons is greatest in laminae 2-3A, 4A, and 4C beta. The distribution of GABAergic neurons within lamina 3 does not appear to be correlated with the patchy distribution of cytochrome oxidase in this region; i.e., there is no significant difference in the density of GAD and GABA immunoreactive neurons in cytochrome-rich and cytochrome-poor regions of lamina 3. Counts of labeled and unlabeled neurons indicate that GABA immunoreactive neurons make up at least 15% of the neurons in striate cortex. Layer 1 is distinct from the other cortical layers by virtue of its high percentage (77-81%) of GABAergic neurons. Among the other layers, the proportion of GABAergic neurons varies from roughly 20% in laminae 2-3A to 12% in laminae 5 and 6. Finally, there are conspicuous laminar differences in the size and dendritic arrangement of GAD and GABA immunoreactive neurons. Lamina 4C alpha and lamina 6 are distinguished from the other layers by the presence of populations of large GABAergic neurons, some of which have horizontally spreading dendritic processes. GABAergic neurons within the superficial layers are significantly smaller and the majority appear to have vertically oriented dendritic processes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
This study analyzes the synaptic interactions between the central terminals of A delta high threshold mechanoreceptors (A delta HTMs) and GABA-immunoreactive profiles. A delta HTM primary afferents from three monkeys and one cat were electrophysiologically identified and intracellularly labeled with HRP, and their terminal arborizations in laminae I and II of the sacrocaudal spinal cord were studied at the ultrastructural level. GABA-immunoreactive profiles in relation to A delta HTM terminals were demonstrated using postembedding colloidal gold techniques. Monkey A delta HTM terminals (n = 131) usually constituted the central element of synaptic glomeruli; they established large asymmetric synaptic contacts with 1-13 dendrites (modal value 2-4) and were surrounded by 0-6 peripheral axon terminals (modal value 2-3). The large majority (around 85%) of the peripheral axon terminals were GABA immunoreactive. They were found presynaptic to the A delta HTM terminal and/or to dendrites postsynaptic to the primary afferent terminal. Furthermore, all peripheral axon terminals found presynaptic to the A delta HTM terminals showed GABA immunoreactivity. Within a single A delta HTM fiber, this synaptic arrangement was found in 20-60% of its boutons. In addition, 28% of the postsynaptic dendritic profiles displayed weak GABA immunoreactivity. Some of them contained vesicles; however, only in a few cases did we observe synapses between a GABA-immunoreactive vesicle-containing dendrite and a dendritic profile postsynaptic to an A delta HTM terminal. Similar synaptology and interactions with GABA-immunoreactive profiles were displayed by the terminals of the single cat A delta HTM fiber studied. Our data support the hypothesis that GABA-containing neurons use both presynaptic and/or postsynaptic mechanisms to exert a powerful control, presumably inhibitory, over the transmission of nociceptive information between A delta HTM afferents and second-order neurons in monkey and cat spinal cord. Our results also imply that GABA may be released within the synaptic glomeruli formed by A delta HTM terminals either by local dendrites or by axon terminals. We discuss the possibility that these GABAergic synapses can be driven by inputs from both primary afferents and/or descending systems to modulate the transmission of nociceptive sensory information.  相似文献   

11.
This study deals with the neurochemical characterization of the rat lateral septal area (LSA) somatospiny neurons and their innervation by hippocamposeptal, catecholaminergic, and GABAergic fibers. Electron microscopic single and double immunostaining methods were used to label catecholaminergic fibers and GABAergic cells and boutons. Axon terminals originating in the hippocampus were labeled by acute anterograde axon degeneration induced by fimbria-fornix transection 36 hours before sacrifice. Three types of experiments were performed. The convergent catecholaminergic and hippocamposeptal innervation of LSA somatospiny neurons was studied by combining immunostaining for tyrosine hydroxylase (TH) with fimbria-fornix transection. GABAergic neurons and their hippocamposeptal afferents were identified and characterized in colchicine pretreated animals immunostained for glutamic acid decarboxylase (GAD) combined with fimbria-fornix transection. The third experiment aimed at simultaneously visualizing the relationships between catecholaminergic boutons, hippocamposeptal excitatory amino acid containing axon terminals and GABAergic profiles by double immunostaining for TH (the PAP technique) and GAD (the immunogold method) combined with fimbria-fornix transection. The results are summarized as follows: 1) The same LSA somatospiny neurons receive synaptic inputs from the hippocampus and TH immunoreactive fibers which form pericellular baskets around these cells. 2) LSA somatospiny neurons are GABAergic and are postsynaptic targets of GABAergic boutons with unknown origin and hippocamposeptal axon terminals. 3) The double immunostaining experiment, finally, provided direct evidence that the same GABAergic somatospiny neurons are postsynaptic targets of both catecholaminergic and hippocamposeptal afferents. The synaptic interconnections described in this study provide anatomical basis for a better understanding of the action of catecholamines, excitatory amino acids, and GABA on the activity of LSA neurons.  相似文献   

12.
Cannabinoids, the bioactive constituents of cannabis, exert a wide array of effects on the brain by engaging Type 1 cannabinoid receptor (CB1R). Accruing evidence supports that cannabinoid action relies on context-dependent factors, such as the biological characteristics of the target cell, suggesting that cell population-intrinsic molecular cues modulate CB1R-dependent signaling. Here, by using a yeast two-hybrid-based high-throughput screening, we identified BiP as a potential CB1R-interacting protein. We next found that CB1R and BiP interact specifically in vitro, and mapped the interaction site within the CB1R C-terminal (intracellular) domain and the BiP C-terminal (substrate-binding) domain-α. BiP selectively shaped agonist-evoked CB1R signaling by blocking an “alternative” Gq/11 protein-dependent signaling module while leaving the “classical” Gi/o protein-dependent inhibition of the cAMP pathway unaffected. In situ proximity ligation assays conducted on brain samples from various genetic mouse models of conditional loss or gain of CB1R expression allowed to map CB1R-BiP complexes selectively on terminals of GABAergic neurons. Behavioral studies using cannabinoid-treated male BiP+/− mice supported that CB1R-BiP complexes modulate cannabinoid-evoked anxiety, one of the most frequent undesired effects of cannabis. Together, by identifying BiP as a CB1R-interacting protein that controls receptor function in a signaling pathway- and neuron population-selective manner, our findings may help to understand the striking context-dependent actions of cannabis in the brain.SIGNIFICANCE STATEMENT Cannabis use is increasing worldwide, so innovative studies aimed to understand its complex mechanism of neurobiological action are warranted. Here, we found that cannabinoid CB1 receptor (CB1R), the primary molecular target of the bioactive constituents of cannabis, interacts specifically with an intracellular protein called BiP. The interaction between CB1R and BiP occurs selectively on terminals of GABAergic (inhibitory) neurons, and induces a remarkable shift in the CB1R-associated signaling profile. Behavioral studies conducted in mice support that CB1R-BiP complexes act as fine-tuners of anxiety, one of the most frequent undesired effects of cannabis use. Our findings open a new conceptual framework to understand the striking context-dependent pharmacological actions of cannabis in the brain.  相似文献   

13.
Recreational and chronic cannabis use has been associated with a range of acute and chronic effects including; anti‐nociceptive actions, anxiety, depression, psychotic symptoms and neurocognitive impairments. The mechanisms underlying cannabinoid‐based drugs effects are not fully known but given the neuro‐modulatory functions of the endocannabinoid system, it seems likely that agonistic activity at the cannabinoid type‐1 receptors (CB1) might modulate the functions of other neurotransmitter systems. The present review has summarized the currently available pre‐clinical and clinical data on the interactions of CB1 and cannabinoid type‐2 receptors (CB2) with the central neurotransmitters; dopamine, serotonin, noradrenaline, GABA, glutamate and opioids. Acute and chronic exposures to cannabinoids exert pharmacological alterations in the mammalian brain that have profound implications for our understanding of the neuropharmacology of cannabinoid‐based drugs and their effects on mental health and the brain. A recent emergence uses of cannabis for medical purpose together with legalization and decriminalization of cannabis and increasing use of highly potent synthetic cannabinoids raise a growing concern over the effects of cannabinoids and their interaction with other neurotransmitters on physical and mental health.  相似文献   

14.
We have previously demonstrated that hyperpolarization-activated and cyclic nucleotide-gated cation channel subunit 2 (HCN2) is expressed by terminals of peptidergic nociceptive primary afferents in laminae I-IIo of the rat spinal dorsal horn. In this study, we investigated the possible neurotransmitters and postsynaptic targets of these HCN2-expressing primary afferent terminals in the superficial spinal dorsal horn by using immunocytochemical methods. We demonstrated that HCN2 widely colocalizes with substance P (SP), and that HCN2-positive terminals that are also immunoreactive for SP form serial close appositions with dendrites and perikarya of neurokinin 1 receptor-immunoreactive neurons. It was also found that HCN2-immunoreactive terminals are frequently apposed to neurons that are immunoreactive for calbindin, micro-opioid receptor and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor subunit GluR2, markers for excitatory interneurons. Investigating HCN2 immunoreactivity in glutamic acid decarboxylase 65-green fluorescent protein transgenic mice, we found that HCN2-positive terminals occasionally also contact cells that contain an isoform of glutamic acid decarboxylase (glutamic acid decarboxylase 65), a marker for GABAergic inhibitory neurons. Application of ZD7288, an antagonist of HCN channels, onto neurons that were recorded in spinal cord slices with whole-cell patch-clamp electrodes reduced the number of monosynaptic excitatory postsynaptic potentials evoked by electrical stimulation of primary afferents at nociceptive intensities. The results suggest that HCN2 may contribute to the modulation of membrane excitability of SP-containing nociceptive primary afferent terminals, may increase the reliability of synaptic transmission from primary afferents to secondary sensory neurons and thus may play a role in the fine-tuning of pain transmission from nociceptive primary afferents to neurons in the spinal dorsal horn.  相似文献   

15.
RET (for “rearranged during transfection”) is a transmembrane tyrosine kinase signaling receptor for members of the glial cell line‐derived neurotrophic factor (GDNF) family of ligands. We used RET immunohistochemistry (IHC), double‐labeling immunofluorescence (IF), and in situ hybridization (ISH) in adult naïve and nerve‐injured rats to study the distribution of RET in the spinal cord. In the dorsal horn, strong RET‐immunoreactive (‐ir) fibers were abundant in lamina II‐inner (IIi), although this labeling was preferentially observed after an antigen‐unmasking procedure. After dorsal rhizotomy, RET‐ir fibers in lamina IIi completely disappeared from the dorsal horn, indicating that they were all primary afferents. After peripheral axotomy, RET‐ir in primary afferents decreased in lamina IIi and appeared to increase slightly in laminae III and IV. RET‐ir was also observed in neurons and dendrites throughout the dorsal horn. Some RET‐ir neurons in lamina I had the morphological appearance of nociceptive projection neurons, which was confirmed by the finding that 53% of RET‐ir neurons in lamina I colocalized with neurokinin‐1. GDNF‐ir terminals were in close proximity to RET‐ir neurons in the superficial dorsal horn. In the ventral horn, RET‐ir was strongly expressed by motoneurons, with the strongest staining in small, presumably γ‐motoneurons. Increased RET expression following peripheral axotomy was most pronounced in α‐motoneurons. The expression and regulation pattern of RET in the spinal cord are in line with its involvement in regenerative processes following nerve injury. The presence of RET in dorsal horn neurons, including nociceptive projection neurons, suggests that RET also has a role in signal transduction at the spinal level. This role may include mediating the effects of GDNF released from nociceptive afferent fibers. J. Comp. Neurol. 500:1136–1153, 2007. © 2006 Wiley‐Liss, Inc.  相似文献   

16.
Motor thalamic nuclei, ventral anterior (VA), ventral lateral (VL) and ventral medial (VM) nuclei, receive massive glutamatergic and GABAergic afferents from the cerebellum and basal ganglia, respectively. In the present study, these afferents were characterized with immunoreactivities for glutamic acid decarboxylase of 67 kDa (GAD67) and vesicular glutamate transporter (VGluT)2, and examined by combining immunocytochemistry with the anterograde axonal labeling and neuronal depletion methods in the rat brain. VGluT2 immunoreactivity was intense in the caudodorsal portion of the VA-VL, whereas GAD67 immunoreactivity was abundant in the VM and rostroventral portion of the VA-VL. The rostroventral VA-VL and VM contained two types of GAD67-immunopositive varicosities (large and small), but the caudodorsal VA-VL comprised small ones alone. VGluT2-immunopositive varicosities were much larger in the caudodorsal VA-VL than those in the rostroventral VA-VL and VM. When anterograde tracers were injected into the basal ganglia output nuclei, the vast majority of labeled axon varicosities were large and distributed in the rostroventral VA-VL and VM, showing immunoreactivity for GAD67, but not for VGluT2. Only the large GAD67-immunopositive varicosities were mostly abolished by kainic acid depletion of substantia nigra neurons. In contrast, large to giant axon varicosities derived from the deep cerebellar nuclei were distributed mostly in the caudodorsal VA-VL, displaying VGluT2 immunoreactivity. The VGluT2-positive varicosities disappeared from the core portion of the caudodorsal VA-VL by depletion of cerebellar nucleus neurons. Thus, complementary distributions of large VGluT2- and GAD67-positive terminals in the motor thalamic nuclei are considered to reflect glutamatergic cerebellar and GABAergic basal ganglia afferents, respectively.  相似文献   

17.
The present study was undertaken to shed light on the synaptic organization of the rat basolateral amygdala (BLA). The BLA contains multiple types of GABAergic interneurons that are differentially connected with extrinsic afferents and other BLA cells. Previously, it was reported that parvalbumin immunoreactive (PV+) interneurons receive strong excitatory inputs from principal BLA cells but very few cortical inputs, implying a prevalent role in feedback inhibition. However, because prior physiological studies indicate that cortical afferents do trigger feedforward inhibition in principal cells, the present study aimed to determine whether a numerically important subtype of interneurons, expressing calbindin (CB+), receives cortical inputs. Rats received injections of the anterograde tracer Phaseolus vulgaris‐leucoagglutinin (PHAL) in the perirhinal cortex or adjacent temporal neocortex. Light and electron microscopic observations of the relations between cortical inputs and BLA neurons were performed in the lateral (LA) and basolateral (BL) nuclei. Irrespective of the injection site (perirhinal or temporal neocortex) and target nucleus (LA or BL), ~90% of cortical axon terminals formed asymmetric synapses with dendritic spines of principal BLA neurons, while 10% contacted the dendritic shafts of presumed interneurons, half of which were CB+. Given the previously reported pattern of CB coexpression among GABAergic interneurons of the BLA, these results suggest that a subset of PV‐immunonegative cells that express CB, most likely the somatostatin‐positive interneurons, are important mediators of cortically evoked feedforward inhibition in the BLA. J. Comp. Neurol. 522:1915–1928, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Activity of the dentate gyrus, which gates information flow to the hippocampus, is under tight inhibitory regulation by interneurons with distinctive axonal projections, intrinsic and synaptic characteristics and neurochemical identities. Total molecular layer cells (TML‐Cs), a class of morphologically distinct GABAergic neurons with axonal projections across the molecular layer, are among the most frequent interneuronal type in the dentate subgranular region. However, little is known about their synaptic and neurochemical properties. We demonstrate that synapses from morphologically identified TML‐Cs to dentate interneurons are characterized by low release probability, facilitating short‐term dynamics and asynchronous release. TML‐Cs consistently show somatic and axonal labeling for the cannabinoid receptor type 1 (CB1R) yet fail to express cholecystokinin (CCK) indicating their distinctive neurochemical identity. In paired recordings, the release probability at synapses between TML‐Cs was increased by the CB1R antagonist AM251, demonstrating baseline endocannabinoid regulation of TML‐C synapses. Apart from defining the synaptic and neurochemical features of TML‐Cs, our findings reveal the morphological identity of a class of dentate CB1R‐positive neurons that do not express CCK. Our findings indicate that TML‐Cs can mediate cannabinoid sensitive feed‐forward and feedback inhibition of dentate perforant path inputs. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

19.
Striatal cholinergic interneurons (ChIs) are involved in reward‐dependent learning and the regulation of attention. The activity of these neurons is modulated by intrinsic and extrinsic γ‐aminobutyric acid (GABA)ergic and glutamatergic afferents, but the source and relative prevalence of these diverse regulatory inputs remain to be characterized. To address this issue, we performed a quantitative ultrastructural analysis of the GABAergic and glutamatergic innervation of ChIs in the postcommissural putamen of rhesus monkeys. Postembedding immunogold localization of GABA combined with peroxidase immunostaining for choline acetyltransferase showed that 60% of all synaptic inputs to ChIs originate from GABAergic terminals, whereas 21% are from putatively glutamatergic terminals that establish asymmetric synapses, and 19% from other (non‐GABAergic) sources of symmetric synapses. Double pre‐embedding immunoelectron microscopy using substance P and Met‐/Leu‐enkephalin antibodies to label GABAergic terminals from collaterals of “direct” and “indirect” striatal projection neurons, respectively, revealed that 47% of the indirect pathway terminals and 36% of the direct pathway terminals target ChIs. Together, substance P‐ and enkephalin‐positive terminals represent 24% of all synapses onto ChIs in the monkey putamen. These findings show that ChIs receive prominent GABAergic inputs from multiple origins, including a significant contingent from axon collaterals of direct and indirect pathway projection neurons. J. Comp. Neurol. 521:2502–2522, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Hyperpolarization-activated cyclic nucleotide-gated cation channel proteins (HCN1-4), which are potentially able to modulate membrane excitability, are abundantly expressed by neurons in spinal dorsal root ganglia (DRG). In the present experiment, we investigated whether HCN2 protein is confined exclusively to the perikarya of DRG neurons or is transported from the somata to the central axons of DRG neurons that terminate in the spinal dorsal horn. Using immunohistochemical methods, we have demonstrated that laminae I-IIo of the superficial spinal dorsal horn of the adult rat spinal cord show a strong punctate immunoreactivity for HCN2. Dorsal rhizotomy resulted in a complete loss of immunostaining in the dorsal horn, suggesting that HCN2 is confined to axon terminals of primary afferents. In double labelling immunohistochemical studies, we have also shown that HCN2 widely co-localizes with calcitonin gene-related peptide, but is almost completely segregated from isolectin-B4 binding, indicating that HCN2 is primarily expressed in peptidergic nociceptive primary afferents. The expression of HCN2 in central terminals of peptidergic primary afferents was also verified with electron microscopy. Utilizing the pre-embedding nanogold method, we found that HCN2 is largely confined to axon terminals with dense-core vesicles. Within these terminals, some of the silver grains marking the accurate location of HCN2 molecules were associated with the cell membrane, and others were scattered in the axoplasm. Within the cell membrane, HCN2 was found almost exclusively in extrasynaptic locations. The results suggest that HCN2 may contribute to the modulation of membrane excitability of nociceptive primary afferent terminals in the spinal dorsal horn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号