首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
Epidermal growth factor (EGF) receptor (EGFR) can induce cell growth and transformation in a ligand-dependent manner. To examine whether the autophosphorylation of EGFR correlates with the capacity of the activated EGFR to induce cell growth and transformation, we truncated the human EGFR just after residue 1011, removing all three major autophosphorylation sites (DEL1011). Further, a point mutation was introduced at another autophosphorylation site, Tyr-992-->Phe (DEL1011+F992). The wild-type and mutant receptors were stably expressed in a NIH 3T3 variant cell line that expresses an extremely low level of endogenous EGFR and does not grow with EGF. As expected, DEL1011 and DEL1011+F992 were found to be severely impaired in EGF-induced autophosphorylation, due to the deletion of the appropriate target tyrosines. However, mutant receptors still could induce EGF-dependent DNA synthesis, morphological transformation, and anchorage-independent growth, although the extent of these was significantly reduced when compared with wild-type EGFR. EGF-induced tyrosine phosphorylation of Ras-GTPase activating protein-associated protein p62 and phospholipase C gamma 1 was dramatically reduced in the cells expressing DEL1011 and DEL1011+F992. On the other hand, tyrosine phosphorylation of Shc, complex formation of Shc-Grb2/Ash, and activation of microtubule-associated protein kinase were still fully induced upon EGF stimulation without binding of Shc or Grb2/Ash to the mutant receptor. Thus, tyrosine phosphorylation of Shc may play a crucial role for activating Ras and generating mitotic signals by the activated EGFR mutant.  相似文献   

2.
Advanced glycation end product receptors (AGERs) play distinct functional roles in both the toxicity and disposal of advanced glycation end products (AGEs), substances that are linked to diabetes and aging. Overexpression of AGER1 in murine mesangial cells (MCs) (MC-R1) inhibited AGE-induced MAPK1,2 phosphorylation and NF-kappaB activity and also increased AGE degradation. The mechanism of the inhibitory effects of AGER1, upstream of MAPK, was explored in MCs and HEK293 AGER1-expressing cells. AGE-induced Ras activation was found to be linked to Shc/Grb2 complex formation and Shc phosphorylation in MCs, responses that were markedly reduced in MC-R1 cells. AGE responses also included EGF receptor (EGFR) phosphorylation in MCs or HEK293 cells, but this link was blocked in both MC-R1 and HEK293-R1 cells. Coexpression of AGER1 and EGFR in HEK293 cells decreased AGE-mediated EGFR and p44/p42 phosphorylation but not EGF-induced p44/p42 activation. AGE, S100/calgranulin, or H(2)O(2) promoted MAPK phosphorylation in EGFR(+) cells in a manner that was inhibitable by an EGFR inhibitor, AG1478. Also, in AGER1 cells, AGE-induced H(2)O(2) formation and AGE- or S100-induced p44/p42 phosphorylation were suppressed, and these effects were restored by R1 siRNA. These data confirm that R1 negatively regulates AGE-mediated oxidant stress-dependent signaling via the EGFR and Shc/Grb2/Ras pathway. AGER1 could serve as a model for developing therapeutic targets against vascular and kidney disorders related to diabetes and aging.  相似文献   

3.
To determine the downstream signaling pathways regulated by betacellulin (BTC) in comparison with epidermal growth factor (EGF), we used Chinese hamster ovary cells overexpressing the human EGF receptor (ErbB1/EGFR). The overall time-dependent activation of EGFR autophosphorylation was identical in cells treated with 1 nm BTC or 1.5 nm EGF. Analysis of site-specific EGFR phosphorylation demonstrated that the BTC and EGF tyrosine phosphorylation of Y1086 was not significantly different. In contrast, the autophosphorylation of Y1173 was markedly reduced in BTC-stimulated cells, compared with EGF stimulation that directly correlated with a reduced BTC stimulation of Shc tyrosine phosphorylation, Ras, and Raf-1 activation. On the other hand, Y1068 phosphorylation was significantly increased after BTC stimulation, compared with EGF in parallel with a greater extent of Erk phosphorylation. Expression of a dominant interfering MEK kinase 1 (MEKK1) and Y1068F EGFR more efficiently blocked the enhanced Erk activation by BTC, compared with EGF. Interestingly BTC had a greater inhibitory effect on apoptosis, compared with EGF, and expression of Y1068F EGFR abolished this enhanced inhibitory effect. Together, these data indicated that although BTC and EGF share overlapping signaling properties, the ability of BTC to enhance Erk activation occurs independent of Ras. The increased BTC activation results from a greater extent of Y1068 EGFR tyrosine phosphorylation and subsequent increased recruitment of the Grb2-MEKK1 complex to the plasma membrane, compared with EGF stimulation. The increased Erk activation by BTC associated with antiapoptotic function.  相似文献   

4.
D. Brent Polk 《Gastroenterology》1995,109(6):1845-1851
Epidermal growth factor (EGF) has been shown to induce intestinal proliferation and maturation; however, little information is available regarding substrates of the intestinal EGF receptor tyrosine kinase. The purpose of this study was to determine if src homologous collagen-like protein (Shc) was an in vivo substrate of the intestinal EGF receptor. Ten-day-old rats were treated with EGF or were breast-fed. In some experiments, IEC-6 cells were treated with EGF. Intestinal tissue and cell fractions were studied by immunodetection to compare the tyrosine phosphorylation state and the subcellular localization of intestinal proteins. The total tyrosine phosphorylation state of intestinal proteins was increased threefold by EGF. Tyrosine phosphorylation of the EGF receptor and Shc were rapidly increased by EGF. The association of Grb2 with Shc increased fourfold and fivefold. Plasma membrane translocation of Shc and associated phosphotyrosyl proteins was increased within 30 seconds of EGF treatment. Shc is a substrate of the intestinal EGF receptor in vivo. EGF-induced association of Shc with the adapter protein Grb2 may have implications for activation of the p21ras signaling pathway in the intestine. The EGF-induced membrane association of Shc with two other phosphotyrosyl proteins suggests involvement of Shc in additional aspects of EGF-receptor signaling in the intestine.  相似文献   

5.
BACKGROUND: Cimetidine, a histamine-2 (H2) receptor antagonist, has been demonstrated to have anticancer effects on colorectal cancer, melanoma and renal cell carcinoma. In the current study, we clarified that cimetidine inhibits both epidermal growth factor (EGF)-induced cell proliferation and migration in hepatocellular carcinoma (HCC) cell lines. METHOD: HCC cell lines (Hep3B, HLF, SK-Hep-1, JHH-2, PLC/PRF/5 and HLE) were used and cell proliferation was assessed by [3H]-thymidine incorporation assay. Cell migration was measured by in vitro cell migration assay. Biological effects of cimetidine were assessed with human EGF receptor (EGFR)-expressing mouse fibroblast cells (NR6-WT). The autophosphorylation of EGFR and the activation of other downstream effectors were analyzed by immunoprecipitation and immunoblotting. The concentration of intracellular cyclic AMP (cAMP) was measured by competitive enzyme immunoassay. RESULTS: Cimetidine inhibited both EGF-induced cell proliferation and migration in Hep3B, HLF, SK-Hep-1 and JHH-2, while cimetidine did not affect EGF-induced cell proliferation and migration in PLC/PRF/5 and HLE. Cimetidine was revealed to disrupt the EGF-induced autophosphorylation of EGFR and its downstream effectors, mitogen activated protein kinases and phospholipase C-gamma. To define the molecular basis of this negative regulation, we identified that cimetidine significantly decreased intracellular cAMP levels and that decrement of cAMP inhibited autophosphorylation of EGFR. The cell permeable cAMP analog, CPT-cAMPS reversed the cimetidine-induced inhibition of EGF-induced cell proliferation and cell migration by restoring autophosphorylation of EGFR. CONCLUSION: Cimetidine inhibited EGF-induced cell proliferation and migration in HCC cell lines by decreasing the concentration of intracellular cAMP levels. Cimetidine may be a candidate chemopreventive agent for HCC.  相似文献   

6.
Balbis A  Parmar A  Wang Y  Baquiran G  Posner BI 《Endocrinology》2007,148(6):2944-2954
In this study, the preparation of detergent-resistant membranes (DRMs) and the immunoisolation of intracellular vesicles enriched in raft markers were used to investigate the effect of physiological doses of epidermal growth factor (EGF) in vivo on the compartmentalization and activation of EGF receptor (EGFR) in rat liver endosomes. Both of these techniques show that after EGF administration, a distinctive population of intracellular EGFR, which was characterized by a high level of tyrosine phosphorylation, accumulated in endosomes. EGFR recruited to early endosomes were more tyrosine phosphorylated than those from late endosomes. However, the level of tyrosine phosphorylation of EGFR in DRMs isolated from early and late endosomes was comparable, suggesting that EGFR in endosomal DRMs are more resistant to tyrosine dephosphorylation. In accordance with the higher level of Tyr phosphorylation, EGF induced an augmented recruitment of Grb2 and Shc to endosomal DRMs compared with whole endosomes. Furthermore, a proteomic analysis identified a selective increase of many alpha-subunits of heterotrimeric G proteins in endosomal DRMs in response to EGF. These observations suggest that a distinctive pool of endocytic EGFR, potentially competent for signaling, is actively trafficking through intracellular compartments with the characteristic of lipid rafts.  相似文献   

7.
BACKGROUND: Ethanol inhibits insulin-like growth factor-I receptor (IGF-IR) activation. However, the potency of ethanol for inhibition of the IGF-IR and other receptor tyrosine kinases varies considerably among different cell types. We investigated the effect of ethanol on IGF-I signaling in several neuronal cell types. METHODS: IGF-I signaling was examined in SH-SY5Y neuroblastoma cells, primary cultured rat cerebellar granule neurons, and rat NG-108 neuroblastoma x glioma hybrids. The tyrosine phosphorylation of IGF-IR, IRS-2, Shc, and p42/p44 MAP kinase (MAPK), and the association of Grb-2 with Shc, were examined by immunoprecipitations and Western blotting. RESULTS: IGF-I-mediated tyrosine phosphorylation of MAPK was inhibited by ethanol in all cell lines. IGF-IR autophosphorylation was markedly inhibited by ethanol in SH-SY5Y cells, was only mildly inhibited in cerebellar granule neurons, and was unaffected in rat NG-108 cells. In vitro tyrosine autophosphorylation of immunopurified IGF-IR obtained from all cell lines was inhibited by ethanol. There was also differential ethanol sensitivity of IRS-2 and Shc phosphorylation, and the association of Shc with IRS-2, among the different cell types. CONCLUSIONS: The findings demonstrate that IGF-I-mediated MAPK activation is a sensitive target of ethanol in diverse neuronal cell types. The data are consistent with ethanol-induced inhibition of IGF-IR activity, although the extent of IGF-IR tyrosine autophosphorylation per se is a poor marker of the inhibitory action of ethanol on this receptor. Furthermore, despite uniform inhibition of MAPK in the different neuronal cell types, tyrosine phosphorylation of proximal mediators of the IGF-IR are differentially inhibited by ethanol.  相似文献   

8.
Numerous studies have demonstrated that the proliferative capacity of cells declines with age. Using rat primary hepatocytes as a model system, we recently demonstrated that this age-related decline in the proliferative response to mitogenic stimulation is associated with decreased activities of both extracellular signal-regulated kinase (ERK) and p70 S6 kinase (p70(S6k)). To unravel the molecular basis for age-related defects in the ERK pathway, we have now characterized the upstream signaling events that occur after epidermal growth factor (EGF) stimulation in young and aged hepatocytes. As previously noted for ERK, the activities of both MEK (the kinase immediately upstream of ERK) and Ras following EGF stimulation were significantly lower in aged hepatocytes. An examination of the EGF receptor (EGFR) revealed a similar amount of EGFR in the two age groups. Likewise, EGFR and Shc, an adaptor protein that plays a crucial role in linking EGFR to Ras activation, underwent tyrosine phosphorylation to a similar degree in both young and aged hepatocytes. However, in aged cells Shc was unable to form stable complexes with EGFR after EGF stimulation. Our results suggest that a decrease in the association between Shc and EGFR in aged cells underlies the age-related declines in the ERK signaling cascade and in proliferative capacity.  相似文献   

9.
BACKGROUND/AIMS: Aging relates to declined proliferative capacity of the liver, but the molecular mechanism is not well understood. We examined whether functional changes of epidermal growth factor (EGF) receptor (EGFR) are involved in age-related decline in EGF-induced DNA synthesis using hepatocytes isolated in periportal and perivenous regions of the liver, which differ in the proliferative capacity. METHODS: Periportal hepatocytes (PPH) and perivenous hepatocytes (PVH) in 7-, 30-, and 90-week-old rats were isolated using the digitonin/collagenase perfusion technique. DNA synthesis was assessed by [methyl-(3)H]thymidine incorporation. EGFR binding affinity to EGF was analyzed by Scatchard analysis using [(125)I]EGF. EGFR dimerization and phosphorylation were determined by Western blot analysis. RESULTS: EGF-induced DNA synthesis was greater in PPH than in PVH from rats of 7 weeks, but the zonal difference disappeared with aging. [(125)I]EGF binding studies indicated that high-affinity EGFR in both subpopulations also disappeared with aging. Furthermore, EGF-induced dimerization in both subpopulations was down-regulated with aging, and the pattern of EGFR phosphorylation was parallel to that of dimerization. CONCLUSIONS: These data suggest that age-related decline in EGF-induced DNA synthesis of PPH and PVH is caused by down-regulation of EGFR dimerization through the decrease of high-affinity EGFR.  相似文献   

10.
Intestinal mucosa serves as an important barrier that may be disrupted by inflammation. A complex system of cellular and humoral factors, including epidermal growth factor (EGF), maintains the integrity of this barrier. We hypothesized that peroxynitrite, generated in inflamed intestinal epithelium, can alter the EGF receptor function by nitrating tyrosine residues and blocking ligand-activated tyrosine autophosphorylation. Caco-2 cells or A431 cell membranes were treated with peroxynitrite or its decomposed form. Cell proliferation was measured by [3H]thymidine uptake. Immunoblot and immunoprecipitation were used to assess the tyrosine phosphorylation and nitration. Binding of epidermal growth factor to its receptor was detected by affinity labeling with 125I-EGF. Peroxynitrite inhibited EGF-induced Caco-2 cell proliferation and binding of EGF to its receptor in a concentration-dependent manner. Peroxynitrite abolished EGF-stimulated receptor autophosphorylation and nitrated EGF receptor tyrosine residues. Peroxynitrite generated during inflammation may disrupt the EGF-induced signaling in intestinal epithelial cells.  相似文献   

11.
To understand the mechanisms by which electrical activity may generate long-term responses in the nervous system, we examined how activation of voltage-sensitive calcium channels (VSCCs) can stimulate the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Calcium influx through L-type VSCCs leads to tyrosine phosphorylation of the adaptor protein Shc and its association with the adaptor protein Grb2, which is bound to the guanine nucleotide exchange factor Sos1. In response to calcium influx, Shc, Grb2, and Sos1 inducibly associate with a 180-kDa tyrosine-phosphorylated protein, which was determined to be the epidermal growth factor receptor (EGFR). Calcium influx induces tyrosine phosphorylation of the EGFR to levels that can activate the MAPK signaling pathway. Thus, ion channel activation stimulates growth factor receptor signal transduction.  相似文献   

12.
Hepatocytes maintained in primary culture for periods of 1 to 24 hours exhibited a rapid decline in epidermal growth factor (EGF)-induced activation of phospholipase C (PLC), as was evident in a loss of EGF-induced inositol 1,4,5-trisphosphate (IP(3)) formation and mobilization of Ca(2+) from intracellular Ca(2+) stores. The loss of PLC activation was not the result of a decrease in EGF receptor or phospholipase C-gamma1 (PLCgamma1) protein levels, nor the result of a loss of tyrosine phosphorylation of these proteins, but was associated with a decrease in EGF-induced translocation of PLCgamma1 to the Triton-insoluble fraction, presumably reflecting binding to the actin cytoskeleton. Disruption of F-actin by treatment of cultured hepatocytes with cytochalasin D recovered the EGF-induced IP(3) formation and Ca(2+) mobilization to the same level and with the same dose-response relationship as was obtained in freshly isolated cells. Analysis of PLCgamma1 colocalization with F-actin by confocal microscopy showed that PLCgamma1 was mostly distributed diffusely in the cytosol, both in freshly plated cells and in cells in culture for 24 hours, despite marked differences in actin structures. EGF stimulation caused a modest redistribution of PLCgamma1 and a detectable increase in colocalization with cortical actin structures in freshly plated cells or in cytochalasin D-treated cells, but in cells that had been maintained and spread in culture only a limited PLCgamma1 relocation was detected to specific actin-structure associated with lamellipodia and membrane ruffles. We conclude that actin cytoskeletal structures can exert negative control over PLCgamma1 activity in hepatocytes and the interaction of the enzyme with specific actin structures dissociates PLCgamma1 tyrosine phosphorylation from activation of its enzymatic activity.  相似文献   

13.
In response to injury, airway epithelia utilize an epidermal growth factor (EGF) receptor (EGFR) signaling program to institute repair and restitution. Protein tyrosine phosphatases (PTPs) counterregulate EGFR autophosphorylation and downstream signaling. PTPμ is highly expressed in lung epithelia and can be localized to intercellular junctions where its ectodomain homophilically interacts with PTPμ ectodomain expressed on neighboring cells. We asked whether PTPμ expression might be altered in response to epithelial injury and whether altered PTPμ expression might influence EGFR signaling. In A549 cells, diverse injurious stimuli dramatically reduced PTPμ protein expression. Under basal conditions, small interfering RNA (siRNA)-induced silencing of PTPμ increased EGFR Y992 and Y1068 phosphorylation. In the presence of EGF, PTPμ knockdown increased EGFR Y845, Y992, Y1045, Y1068, Y1086, and Y1173 but not Y1148 phosphorylation. Reduced PTPμ expression increased EGF-stimulated phosphorylation of Y992, a docking site for phospholipase C (PLC)γ(1), activation of PLCγ(1) itself, and increased cell migration in both wounding and chemotaxis assays. In contrast, overexpression of PTPμ decreased EGF-stimulated EGFR Y992 and Y1068 phosphorylation. Therefore, airway epithelial injury profoundly reduces PTPμ expression, and PTPμ depletion selectively increases phosphorylation of specific EGFR tyrosine residues, PLCγ(1) activation, and cell migration, providing a novel mechanism through which epithelial integrity may be restored.  相似文献   

14.
Huang Y  Chang Y  Wang X  Jiang J  Frank SJ 《Endocrinology》2004,145(7):3297-3306
Epidermal growth factor receptor (EGFR) is a transmembrane protein that binds EGF in its extracellular domain and initiates signaling via intrinsic tyrosine kinase activity in its cytoplasmic domain. EGFR is important in development, cellular proliferation, and cancer. GH is a critical growthpromoting and metabolic regulatory hormone that binds the GH receptor, thereby engaging various signaling pathways, including ERKs. Prior studies suggest cross-talk between the GH receptor and EGFR signaling systems. Using the GH- and EGF-responsive 3T3-F442A preadipocyte, we previously observed that GH, in addition to causing EGFR tyrosine phosphorylation, also induced EGFR phosphorylation that was detected by PTP101, an antibody reactive with ERK consensus phosphorylation sites. This latter phosphorylation was prevented by pretreatment with MAPK kinase (MEK)1 inhibitors, suggesting ERK pathway dependence. Furthermore, GH cotreatment with EGF markedly slowed EGF-induced EGFR degradation and down-regulation, thereby potentiating EGF-induced EGFR signaling. These effects were also MEK1 dependent and suggested ERK pathway-dependent influence of GH on EGF-induced EGFR postendocytic trafficking and signaling. We now explore the impact of GH on cell surface binding of EGF in 3T3-F442A cells. We found that GH pretreatment caused transient, but substantial, lessening of (125)I-EGF binding. Competitive binding experiments revealed that the decreased binding was primarily due to decreased affinity, rather than a change in the number of EGF binding sites. The effect of GH on EGF binding was concentration dependent and temporally correlated with GH-induced ERK activation and EGFR PTP101-reactive phosphorylation. Blockade of the MEK1/ERK but not the protein kinase C pathway, prevented GH's effects on EGF binding, and our results indicate that the mechanisms of GH- and phorbol-12-myristate-13-acetateinduced inhibition of EGF binding differ substantially. Overall, our findings suggest that GH can modulate both EGF binding kinetics and the EGFR's postbinding signaling itinerary in a MEK1/ERK pathway-dependent fashion.  相似文献   

15.
Ethanol inhibits the tyrosine autophosphorylation of the insulin-like growth factor (IGF)-1 receptor, an action that correlates with the inhibition of IGF-I-stimulated cell proliferation [J. Biol. Chem . 268:21777–21782 (1993)l. In the current study, the IGF-I-dependent proliferation of mouse BALB/c3T3 cells was completely inhibited by ethanol, but the growth of BALB/c3T3 cells that overexpress the IGF-l receptor (p6 cells) was only partially inhibited by ethanol. BALB/ c3T3 cells that simultaneously overexpress both the IGF-I receptor and IGF-I were insensitive to growth inhibition by ethanol. In p6 cells, increasing concentrations of IGF-l overcame the inhibition of IGF-l receptor tyrosine autophosphorylation in the presence of ethanol. The importance of the IGF-I receptor as a specific target for ethanol was further investigated in C6 rat glioblastoma cells that respond mitogenically to both epidermal growth factor (EGF) and IGF-I. The mitogenic response of C6 cells to EGF was abrogated In cells expressing antisense mRNA to the IGF-l receptor. Thus, EGF action in these cells is dependent on activation of an IGF-I/lGF-I receptor au-tocrine pathway. Indeed, EGF stimulated an increase in IGF-l receptor levels by more than 100%. Ethanol completely inhibited the prollferation of C6 cells in response to either EGF or IGF-I. However, ethanol did not directly interfere with EGF receptor function, because EGF-induced cell proliferation was unaffected by ethanol when added exclusively during a 1-hr exposure to EGF. Ethanol did not interfere with the EGF-induced increase in IGF-I receptor expression. The addition of both EGF and IGF-I overcame the inhibitory action of ethanol. In conclusion, the potency of ethanol as an inhibitor of IGF-I-mediated cell proliferation correlates with the level of IGF-I receptors. In contrast to its effect on the IGF-I receptor, ethanol has no direct effect on EGF receptor activation.  相似文献   

16.
17.
The effect of oxidized and reduced glutathione on inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ release from endoplasmic reticular Ca2+ stores was studied in digitonin-permeabilized hepatocytes from chronically ethanol-fed rats and pair-fed control animals. The fractional Ca2+ release induced by a subsaturating concentration of lnsP3 was significantly enhanced in cells from ethanol-fed rats in the absence of a change in maximal lnsP3-releasable Ca2+ pool size, and this difference was not affected by preincubation with reduced glutathione. Incubation with oxidized glutathione (1 mM) increased the efficacy of Ca2+ release by subsaturating concentrations of lnsP3 in both control preparations and in cells from ethanol-fed rats. The shift in the InsP3 dose-response curve was not significantly different between the two preparations. These findings suggest that the enhanced efficacy of InsP3-induced Ca2+ release in hepatocytes from ethanol-fed rats is not caused by the oxidation of protein-bound thiol groups on the lnsP3 receptor.  相似文献   

18.
Kim YN  Bertics PJ 《Endocrinology》2002,143(5):1726-1731
Several studies have shown that an EGF receptor C-terminal truncation at residue 973 (CT973) attenuates ligand-induced receptor endocytosis and is associated with cell transformation. Previously, we have shown that EGF stimulation of murine B82L fibroblasts expressing CT973 EGF receptors can promote the tyrosine phosphorylation of caveolin-1, which is a major component of caveolae membranes. Because dynamin plays an essential role in receptor-mediated endocytosis via clathrin-coated pits and caveolae, and because dynamin has been localized to caveolae, we tested the hypothesis that dynamin associates with caveolin-1 and is differentially modified in response to the abnormal actions of internalization-defective EGF receptors. We found that dynamin coimmunoprecipitates with caveolin-1 in cells containing normal or CT973 EGF receptors, but EGF stimulated the tyrosine phosphorylation of dynamin only in cells expressing truncated/oncogenic EGF receptors. Maximum dynamin phosphorylation was observed within 15 min of EGF administration and decreased thereafter. Furthermore, phosphotyrosine-containing proteins in the dynamin immunocomplexes were observed to be reactive with anticaveolin-1 antibodies. The EGF receptor does not appear to directly phosphorylate dynamin because a Src antagonist, PP1, inhibited the EGF-induced tyrosine phosphorylation of dynamin at a concentration that does not block EGF receptor autophosphorylation. These results provide the first evidence that caveolin-1 and dynamin form a complex, and that the EGF-induced tyrosine phosphorylation of dynamin occurs via a Src inhibitor-sensitive signaling pathway that is associated with the aberrant actions induced by internalization-defective EGF receptors.  相似文献   

19.
Insulin and epidermal growth factor (EGF) share a number of metabolic actions, including stimulation of protein synthesis and growth in certain tissues, and activation of apparent receptor tyrosine kinase activities. We have shown that insulin and EGF promote the phosphorylation of a number of intracellular proteins in common, suggesting that some of the shared metabolic actions of these hormones might be due to shared effects on protein kinases or phosphatases. We, therefore, compared the effects of these hormones on their respective membrane receptor autophosphorylation reactions in detergent extracts prepared from rat liver microsomes. Under appropriate conditions, ligand-promoted receptor autophosphorylation could be observed without further receptor purification. Insulin- and EGF-stimulated receptor autophosphorylation exhibited differing requirements for divalent cations and optimum ATP concentrations, and were enhanced by detergent extraction of the membranes. Insulin-promoted receptor autophosphorylation occurred on a tyrosine residue. In liver microsomal extracts prepared from rats exposed to various dietary conditions, insulin-stimulated receptor autophosphorylation was enhanced in extracts prepared from starved or diabetic animals when compared to those prepared from fed or fasted-refed animals. Experiments with extracts from several transplantable rat hepatomas of varying degrees of differentiation indicated that both insulin binding and insulin-stimulated receptor autophosphorylation were remarkably preserved in all tumors; in contrast, EGF binding and EGF-induced receptor autophosphorylation were diminished or absent in all tumors studied. These studies suggest that the relationship between insulin-mediated receptor phosphorylation and subsequent metabolic events might be profitably studied in these tissues.  相似文献   

20.
Insulin-like growth factor I (IGF-I) plays a critical role in the induction of cell cycle progression and survival in many cell types. However, there is minimal IGF-I binding to hepatocytes, and a role for IGF-I in hepatocyte signaling has not been elucidated. The dynamics of IGF-I receptor (IGF-IR) activation were examined in freshly isolated rat hepatocytes. IGF-I did not activate the IGF-IR. However, des(1-3)IGF-I, which weakly binds IGF binding protein-3 (IGFBP-3), induced IGF-IR phosphorylation. IGFBP-3 surface coating was identified by confocal immunofluorescence microscopy. In contrast with the inactivity of IGF-I, epidermal growth factor (EGF) induced the tyrosine phosphorylation of the IGF-IR in parallel with EGF receptor phosphorylation. Transactivation of the IGF-IR by EGF was inhibited by tyrphostin I-Ome-AG538, a tyrosine kinase inhibitor with high specificity for the IGF-IR. Src kinase inhibitors pyrazolopyrimidine PP-1 and PP-2 inhibited transactivation of the IGF-IR by EGF. EGF stimulated the tyrosine phosphorylation of Src, and induced its association with the IGF-IR. EGF-induced phosphorylations of insulin-related substrate (IRS)-1, IRS-2, Akt, and p42/44 mitogen-activated protein kinases (MAPKs) were inhibited variably by I-Ome-AG538. In conclusion, the data show an EGF- and Src-mediated transactivation pathway for IGF-IR activation in hepatocytes, and indicate a role for the IGF-IR in hepatocyte intracellular signaling. The findings also show a role for IGFBP-3 in the inhibition of IGF-I signaling in hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号