首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N Brecha  S C Sharma  H J Karten 《Neuroscience》1981,6(12):2737-2746
Substance P-like immunoreactivity was localized to amacrine cells in both adult and developing goldfish retina using immunohistochemical techniques. These studies utilized a well-characterized monoclonal antiserum directed to substance P. Specificity was established by absorption of the anti-serum with 10 μm synthetic substance P. Specific substance P-like immunoreactivity was localized within a seemingly distinct population of unistratified amacrine cells which were distributed in both central and peripheral retinal regions. The immunoreactive somata were located at the border of the inner nuclear layer and inner plexiform layer and were characterized by a round or ovoid somata which measured about 9μm in diameter. These immunoreactive amacrine cells typically had a single process which descended to and ramified within lamina 3 of the inner plexiform layer.Specific substance P-like immunoreactivity first appeared 60 h after hatching (stage 27) within both somata and processes located in differentiated retinal regions. No substance P-like immunoreactive somata or processes were observed in undifferentiated retinal regions. In retinas from stage 27 to 14 days after hatching, the immunoreactive somata were characterized by an ellipsoidal soma and a large nucleus devoid of immunoreactivity. These immunoreactive cells were also characterized by a single process that descended to and ramified within lamina 3 of the differentiated inner plexiform layer. At 30 days after hatching, the substance P-containing cells were identical in appearance to these same cell types observed within the adult retina.  相似文献   

2.
Somatostatin-like immunoreactive amacrine cells of the chicken retina have been characterized by immunohistochemistry at the light and electron microscope levels. The cell bodies were set back from the junction of the inner nuclear and inner plexiform layers, and prominent fibre plexuses were found in sublaminas 1 and 3-5 of the inner plexiform layer. The cells were distributed across the retinal surface with a centroperipheral gradient of cell density. Locally, the cells were organized in a non-random mosaic. Ultrastructurally, immunohistochemical reaction product was found throughout the cytoplasm of the cell bodies, particularly associated with membranous structures, including the cytoplasmic surfaces of the Golgi apparatus, and within large dense-core vesicles. In dendritic varicosities in the inner plexiform layer, reaction product was associated with the external surfaces of small, clear synaptic vesicles. The synaptic relationships of the somatostatin-immunoreactive terminals in sublamina 1 were distinct from those in sublaminas 3-5. Those in sublamina 1 received input predominantly, possibly exclusively, from bipolar cells. Feedback synapses onto bipolar terminals or to the other amacrine cell process at a synaptic dyad were observed. In sublaminas 3-5, input came predominantly, possibly exclusively, from other, non-immunoreactive amacrine cells, and output was primarily onto other amacrine cells. No synaptic contacts with ganglion cells or with other somatostatin-immunoreactive amacrine cells were identified. Changes in levels of somatostatin-like immunoreactivity in retinas of chicks kept on 12:12 light:dark cycles were detected by radioimmunoassay, and by light and electron microscopic immunohistochemistry. Levels of retinal somatostatin-like immunoreactivity increased in the light and decreased in the dark. The changes appear to be light-driven rather than circadian, since with prolonged exposure to light or dark, the levels of somatostatin-like immunoreactivity continued to increase or decrease until plateaus were reached. The light-driven change in levels of somatostatin-like immunoreactivity may be related to the predominance of bipolar input to the immunoreactive processes in sublamina 1 of the inner plexiform layer. The reduction in peptide levels in the dark may indicate greater release of somatostatin-like immunoreactivity from the amacrine cells in the dark, resulting in an inability of peptide synthesis to keep pace with breakdown. In the light, release of somatostatin-like immunoreactivity may be lower, leading to a net synthesis of peptide.  相似文献   

3.
The enzyme for the synthesis of epinephrine, phenylethanolamine-N-methyltransferase, has been localized, by an indirect immunofluorescent staining method, to a subpopulation of amacrine cells in the rat retina. The immunoreactive cells are located primarily in the inner nuclear layer and send a single process to the inner plexiform layer. Most of the immunoreactivity is found in the center of the inner plexiform layer. A small percentage of immunoreactive cell bodies were found in the inner plexiform layer and occasionally cells were observed in the ganglion cell layer. These epinephrine-containing amacrine cells are morphologically distinct from the dopamine-containing amacrine cells previously described by formaldehyde fluorescence and we speculate from reports in the literature that epinephrine-containing amacrine cells may play a role in modulating the activity of dopamine-containing amacrine cells.  相似文献   

4.
Neurotensin-like and somatostatin-like immunoreactivity was demonstrated in the pigeon retina, using both immunohistochemical and radioimmunoassay techniques.Immunohistochemical studies utilized both the indirect immunofluorescence and immunoperoxidase procedures with two well-characterized antisera to neurotensin and three well-characterized antisera to somatostatin. Specific immunoreactivity of each antiserum was established by absorption with either 10 μM synthetic neurotensin, somatostatin or leu5-enkephalin. Specific immunohistochemical staining for neurotensin and for somatostatin was observed within separate populations of multistratified amacrine cells. Neurotensin-like and somatostatin-like immunoreactivity were observed within somata located in the inner nuclear layer and within varicose processes ramifying in laminae 1, 3 and 4 of the inner plexiform layer. Immunoreactive somata and processes were observed throughout the retina and their density appeared to be greatest within central retinal regions. The somata-containing neurotensin-like and somatostatin-like immunoreactivity measured about 7 μm in diameter. The cell to cell spacing of neurotensin-like immunoreactive somata was approximately 30 μm and the cell to cell spacing of somatostatin-like immunoreactive somata was approximately 27 μm in central retinal regions. Within more peripheral retinal regions, immunoreactive cells were spaced farther apart.Radioimmunoassays utilizing well-characterized antisera to neurotensin and somatostatin demonstrate specific neurotensin-like and somatostatin-like immunoreactivity in acetic acid extracts of the retina. The concentration of immunoreactive neurotensin is 59 ± 7 fmoles per whole retina (mean ± S.E.M.) or 15.4 ± 2 fmoles per mg protein. The concentration of immunoreactive somatostatin is 2209 ± 440 fmoles per whole retina or 527 ± 76 fmoles per mg protein.These results demonstrate the existence of two additional neuropeptides within selected populations of retinal amacrine cells. The localization of several different neuropeptides within the retina suggests that neuropeptides play a specific role in retinal function.  相似文献   

5.
本文介绍用免疫组织化学的单标和双标技术研究脑啡肽(ENK)和生长抑素(SOM)在鸡视网膜无长突细胞的定位和共存。单标的实验结果表明,一些SOM免疫反应阳性无长突细胞的形态、胞体在内核层的位置及其突起在内网层的分支式样与某些ENK免疫反应阳性无长突细胞相似,虽然其突起在内网层的第3、4亚层形成的丛网不象ENK免疫反应阳性突起那样丛密,在内网层的第5亚层也未见SOM免疫阳性突起。双标的实验结果表明,一些无长突细胞显示ENK和SOM两种免疫阳性反应,而另一些无长突细胞分别只显示ENK或SOM阳性免疫反应。文中还对视网膜神经多肽间或与经典神经递质的共存进行了讨论。  相似文献   

6.
The distribution of substance P (SP)-like immunoreactivity in the rat retina was investigated by immunohistochemistry. SP-positive cells were found throughout the retina. The majority of them were located in the proximal portion of the inner nuclear layer and the processes from these cells directed to the inner plexiform layer where they ramified, suggesting that SP-positive cells located in this region probably are amacrine cells. Few SP-positive cells were seen within the ganglion cell layer. They were considered displaced amacrine cells.  相似文献   

7.
Summary To study the distribution ofl-homocysteate in the rat retina, specific polyclonal and monoclonal anti-homocysteate antibodies have been used in combination with a highly sensitive postembedding method for light microscopic immunocytochemistry. In central and peripheral retina, the most strongly immunoreactive cell bodies lay in the inner nuclear layer. They represented about 17% of the total neuronal cell population of the layer and were identified as bipolar cells (19–20% of cells in the outer half of the inner nuclear layer) and amacrine cells (15% of cells in the inner half of the inner nuclear layer). A third cell type showing heavy homocysteate-like immunoreactivity was identified as Müller glial cells. Characteristically, their descending processes formed three immunoreactive bands in the inner plexiform layer. Furthermore, the outer and inner limiting membranes as well as glia around and between ganglion cell axons and in the vicinity of blood vessels were labelled intensely. Photoreceptors and their terminals, and ganglion cells, were not immunostained. These findings indicate the presence of homocysteate in some bipolar and amacrine cells of the inner nuclear layer and support a role for this sulphur-containing excitatory amino acid as a neurotransmitter candidate in the retina.  相似文献   

8.
The distribution of neuropeptide Y (NPY)-like immunoreactivity in the pigeon retina was investigated by fluorescence immunohistochemistry. NPY-positive cells were found in central and peripheral retina. NPY somata were located in the proximal portion of the inner nuclear layer and their processes directed to the inner plexiform layer where they ramified in 3 immunoreactive bands. NPY might play a role as a neurotransmitter or neuromodulator in the pigeon retina.  相似文献   

9.
M.C. Yu  W.W.Y. Li  K. Liu  D.T. Yew 《Neuroscience》1994,60(4):983-987
The localization and distribution of the protooncogene c-fos were studied immunohistochemically in the retina of human fetuses ranging in age from 15 to 40 weeks of gestation. The highest levels of immunoreactivity were observed in the retinae of younger fetuses, decreasing in intensity with increasing age. At 15 weeks of gestation intense immunoreactivity was observed in the inner nuclear layer while the photoreceptor cells exhibited moderate staining. At 26 weeks of gestation, immunoreactivity in the inner nuclear layer was reduced. The ganglion cells, amacrine cells and photoreceptor cells showed moderate immunopositivity throughout the 26–40 weeks period.

The role of c-fos in development is discussed in the light of its other known functions.  相似文献   


10.
Cholinergic amacrine cells of the chicken retina were detected by immunohistochemistry using an antiserum against affinity-purified chicken choline acetyltransferase. Three populations of cells were detected: type I cholinergic amacrine cells had cell bodies on the border of the inner nuclear and inner plexiform layers and formed a prominent laminar band in sublamina 2 of the inner plexiform layer, while type II cholinergic amacrine cells had cell bodies in the ganglion cell layer, and formed a prominent laminar band in sublamina 4 of the inner plexiform layer. Type III cholinergic amacrine cell bodies were located towards the middle of the inner nuclear layer, and their processes were more diffusely distributed in sublaminas 1 and 3-5 of the inner plexiform layer. Type I and type II cells were present at densities of over 7000 cells/mm2 in central areas declining to less than 2000 cells/mm2 in the temporal retinal periphery. The cells were organized locally in a non-random mosaic, with regularity indices ranging from 3 peripherally to over 5 centrally. Neither at the light nor electron microscopic levels was a lattice of cholinergic dendrites of the kind reported by Tauchi and Masland [J. Neurosci. 5, 2494-2501 (1985)] detectable. Within the two prominent dendritic plexuses, a major feature of the synaptic interactions of the type I and type II cholinergic cells was extensive synaptic interaction between cholinergic processes. Apart from this, there was little, if any, input to cholinergic processes from non-cholinergic amacrine cells, but there was input from bipolar cells. Output from the cholinergic amacrine cell processes was directed towards non-cholinergic amacrine cells as well as other cholinergic amacrine cells, and ganglion cells.  相似文献   

11.
The distribution of parvalbumin-like immunoreactivity was studied in the embryonic and postnatal chicken retina. In post-hatched chickens, parvalbumin-like immunoreactivity was confined to amacrine cells. Three distinct subpopulations were identifiable based upon soma position and level of dendritic arborization in the inner plexiform layer. The primary dendrites from parvalbumin-immunoreactive amacrine cells descended vertically into the inner plexiform layer and eventually branched to give rise to a laminarly arrayed plexus in sublamina I, sublamina V and, to a lesser extent, at the boundary between sublaminae III and IV. Parvalbumin-like immunoreactive amacrine cells projecting to sublamina I of the inner plexiform layer were consistently monostratified. Some, but not all, contributed thick fibers to sublamina I that could be followed for long distances across the retina and were generally not radially organized. The parvalbumin-like immunoreactive cells that projected to sublamina V gave rise to a primary dendrite from which three to five fibers branched radially. Collateral branches of these same primary dendrites gave rise to the parvalbumin-like immunoreactive plexus at the interface between sublaminae III and IV. In prenatal chickens, parvalbumin-like immunoreactivity was not detected until embryonic day 14. At this time it appeared as a faint band at the inner nuclear layer-inner plexiform layer boundary in the central retina. By embryonic day 18 the intensity of immunoreactivity and the complexity of the arborizations of the parvalbumin-like immunoreactive dendrites approached that seen in the post-hatched chicken. In the chicken retina, parvalbumin-like immunoreactivity was displayed by morphologically distinct subpopulations of amacrine cells suggesting that these amacrine cells may subserve diverse functions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
P2X3 purinoceptors are involved in fast, excitatory neurotransmission in the nervous system, and are expressed predominantly within sensory neurons. In this study, we examined the cellular and synaptic localization of the P2X3 receptor subunit in the retina of the rat using immunofluorescence immunohistochemistry and pre-embedding immunoelectron microscopy. In addition, we investigated the activity of ecto-ATPases in the inner retina using an enzyme cytochemical method. The P2X3 receptor subunit was expressed in the soma of a subset of GABA immunoreactive amacrine cells, some of which also expressed protein kinase C-alpha. In addition, punctate immunoreactivity was observed within both the inner and outer plexiform layers of the retina. Double labeling studies showed that P2X3 receptor puncta were associated with both rod and cone bipolar cell axon terminals in the inner plexiform layer. Ultrastructural studies indicated that P2X3 receptor subunits were expressed on putative A17 amacrine cells at sites of reciprocal synaptic input to the rod bipolar cell axon terminal. Moreover, we observed P2X3 immunolabeling on amacrine cell processes that were associated with cone bipolar cell axon terminals and other conventional synapses. In the outer retina, P2X3 immunoreactivity was observed on specialized junctions made by putative interplexiform cells. Ecto-ATPase activity was localized to the inner plexiform layer on the extracellular side of all plasma membranes, but was not apparent in the ganglion cell layer or the inner nuclear layer, suggesting that ATP dephosphorylation occurs exclusively in synaptic regions of the inner retina. These data provide further evidence that purines participate in retinal transmission, particularly within the rod pathway.  相似文献   

13.
14.
The retina of the adult ferret, Mustelo furo, was studied with light and transmission electron microscopy to provide an anatomical basis for use of the ferret as a model for retinal research. The pigment epithelium is a simple cuboidal layer of cells characterized by a zone of basal folds, apical microvilli, and pigment granules at various stages of maturation. The distinction between rod and cone photoreceptor cells is based on their location, morphology, heterochromatin pattern and the electron density of their inner segments. The round, light-staining cone cell nuclei occupy the layer of perikarya along the apical border of the outer nuclear layer. The remainder of the outer nuclear layer consists of oblong, deeply-stained rod cell nuclei. Ribbon type synaptic complexes involving photoreceptor cell axons, horizontal cell processes, and bipolar cell dendrites characterize the outer plexiform layer. The inner nuclear layer is comprised of horizontal, bipolar, and amacrine cell perikarya as well as the perikarya of the Müller cells. The light-staining horizontal cell nuclei are prominent along the apical border of the inner nuclear layer. The light-staining amacrine cell nuclei form a more or less continuous layer along the basal border of the inner nuclear layer. Both conventional and ribbon-type synapses characterize the inner plexiform layer. The ganglion cells form a single cell layer. The optic fiber layer contains bundles of axons surrounded by Müller cell processes. Small blood vessels and capillaries are present in the basal portion of the retina throughout the region extending from the internal limiting membrane to the outer plexiform layer. The adult one-year-old retina is compared with the retina at the time of eye opening.  相似文献   

15.
We investigated the patterns of degenerative changes of indoleamine-accumulating cells (IACs) induced by 5,7-dihydroxytryptamine (5,7-DHT, 100 microg), and the glial reaction to the neurodegenerative changes of IACs in the cat retina by using light-and electron-microscopy. The neurons accumulating 5,7-DHT in the cat retina were a few ganglion cells and displaced amacrine cells located in the ganglion cell layer (GCL), and some amacrine cells in the inner nuclear layer (INL). The cell density (per unit area, 1 mm2) of the 5,7-DHT accumulating cells in the GCL and INL was 910 and 134 cells, respectively. Most 5,7-DHT accumulating cells showed dark degeneration characterized by widening of the cellular organelles at early stage, and by darkening of the cytoplasm at a late stage. In addition, amacrine cells, showing a typical filamentous degeneration, were observed in a few cases. The degenerated neurons were phagocytosed by microglial cells and astrocytes. The immunoreactivity for glial fibrillary acidic protein (GFAP) in Muller cells was increased at early stage, but thereafter abruptly decreased. In a few cases, severe degenerative changes were observed in Miller cells. These results indicate that 5,7-DHT induces severe dark degeneration of IACs, and most degenerated cells could be eliminated by microglial cells and astrocytes in the cat retina.  相似文献   

16.
P.G. Layer  S. Kotz 《Neuroscience》1983,9(4):931-941
Whole chick embryo eyes between embryonic day 10.5 and 12 (E10.5–E12) were incubated in a solution of Lucifer Yellow and examined in frozen sections. Starting around day 10.5, brightly stained cells were observed in the innermost part of the inner nuclear layer. Their size, shape and location suggest that most of them represent a subclass of amacrine cells.A distinct spatio-temporal development of Lucifer Yellow-staining of this subpopulation of cells within the inner nuclear layer between E10.5 and E12 is revealed in detail using 3-dimensional models of Lucifer Yellow-stained eyes. The staining can be first observed at a specific location at the ventro-posterior side not far from the fundus. It then spreads radially in a complex pattern reaching the ora serrata first on the ventro-posterior side, then sequentially reaching into the dorso-posterior, the ventro-anterior and finally the dorso-anterior quadrants of the retina. Our results suggest that a horizontal (posterior-anterior) axis and a vertical (ventro-dorsal) axis function as a coordinate system during differentiation of the tissue.We conclude that there are precise spatio-temporal patterns of Lucifer Yellow-staining which most probably reflect spatio-temporal patterns of cell differentiation within the chicken retina. The correlation of these findings with other data on spatio-temporal patterns during differentiation of the chicken retina is discussed.  相似文献   

17.
The cellular localization of Thy-1 in the chick retina was investigated by selectively destroying certain populations of neurons with toxins. In control retinae four weeks after intravitreal injection of vehicle, there was strong immunoreactivity for Thy-1 in the nerve fibre layer, ganglion cell layer and inner plexiform layer. By contrast, 4 weeks after intraocular injection with 1.25 nmol of colchicine, virtually all ganglion cells had been destroyed, but most amacrine cells remained. Very little Thy-1 immunoreactivity was evident in these retinae. Four weeks after intraocular injection of 2 mumol of N-methyl-D-aspartic acid (NMDA), a large proportion of amacrine cells had been destroyed, but most ganglion cells remained. In these retinae Thy-1 immunoreactivity was present in the nerve fibre, ganglion cell and inner plexiform layers, in the latter with greater intensity than in controls. We conclude that in chicks the Thy-1 antigen is principally, if not exclusively restricted to ganglion cells.  相似文献   

18.
19.
Summary The development of neurons immunoreactive to tyrosine hydroxylase (TH-IR) in the retina ofXenopus laevis was investigated from stage 53 tadpoles to adult, by using an antibody against tyrosine hydroxylase. At all developmental stages, most of the immunoreactive somata were located in the inner nuclear layer, and a few in the ganglion cell layer. Immunoreactive processes arborised in the scleral and vitreal sublaminae of the inner plexiform layer, indicating that these cells were bistratified amacrine cells. However, occasionally a few immunoreactive processes were observed projecting to the outer plexiform layer, suggesting the presence of THIR interplexiform cells. The number of immunoreactive amacrine cells in the inner nuclear layer per retina increased from 204 at stage 53 tadpole to 735 in adult, while the number of immunoreactive amacrine cells in the ganglion cell layer did not change significantly over the same period. Retinal area increased from 1.95 mm2 at stage 53 to 23.40 mm2 in the adult, and correspondingly cell density in the inner nuclear layer decreased from 104/mm2 to 31/mm2. At all stages there was an increasing density towards the ciliary margin, but this gradient decreased with age. The soma size of immunoreactive amacrine cells increased with age, and was consistently larger in the central than in the peripheral retina. Dendritic field size was estimated to increase 13-fold, from stage 53 to adult. This study shows that tyrosine hydroxylase-like immunoreactive amacrine cells are generated continuously throughout life, that after metamorphosis the retina grows more by stretching than by cell generation at the ciliary margin, and that the increase of dendritic field size is proportional to the increase in retinal surface area.On leave from Department of Anatomy, Zhanjiang Medical College, Guangdong, People's Republic of China  相似文献   

20.
Summary Two types of amacrine cell immunoreactive for tyrosine hydroxylase, the rate-limiting enzyme in the catecholamine synthetic pathway, are present in the retina of the rhesus monkey,Macaca mulatta. The well-known dopaminergic, or type 1 catecholamine amacrine cells have relatively large cell bodies almost exclusively in the inner nuclear layer with processes that densely arborize in the outermost stratum of the inner plexiform layer and fine, radially-oriented fibres in the inner nuclear layer. Type 2 catecholamine amacrine cells, in contrast, have smaller cell bodies in the inner nuclear layer, the inner plexiform layer and the ganglion cell layer, and have sparsely-branching processes ramifying in the centre of the inner plexiform layer. Although type 2 catecholamine cells are more numerous than type 1 catecholamine amacrines, type 2 cells contain less than one-third the amount of tyrosine hydrolase as the type 1 cells. Electron microscopy of retinal tissue immunoreacted for tyrosine hydrolase by the peroxidase-antiperoxidase method revealed synaptic input from amacrine cells at conventional synapses, and bipolar cells at ribbon synapses onto the type 2 catecholamine amacrine cells. Curiously, although the synaptic input is comparatively easily found, the output synapses, or synapses of the type 2 catecholamine amacrine cells onto other neuronal elements, are rarely found. Some synapses of the type 2 catecholamine cells onto non-immunoreactive amacrine cells have been identified, however. This unusual pattern of synaptic organization, with many identifiable input synapses but few morphologically characterizable output synapses, suggests a paracrine function for the dopamine released by the type 2 catecholamine amacrine cells in the primate retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号