首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 Small, stereotaxically guided injections of true blue (TB) were made into the retrosplenial granular cortex (RSg) and of diamidino yellow (DY) into the dorsal portion of the rostral pole of the thalamic reticular nucleus (TRN) in 16 adult rats to determine whether axons projecting from the anterior thalamic nuclear complex (ATN) to the TRN are branches of axons also projecting to the RSg. Following injections of the fluorescent dyes, serial coronal sections of the brain revealed single retrogradely labelled, and large numbers of double retrogradely labelled neuronal cell bodies in the ipsilateral anteroventral and anterodorsal nuclei and smaller numbers in the anteromedial nucleus of the ATN complex. In a se- cond series of six adult rats with similar double injections of TB and DY, two sections in three were immunoreacted, one with antiserum against glutamate and one with antiserum against aspartate, using indirect immunofluorescence with rhodamine to detect reactive cells. The great majority of both single and double retrogradely labelled cell bodies were also immunoreactive for aspartate or glutamate. In addition, a moderate to small number of non-immunolabelled neurons projecting to the TRN and/or to the RSg were also found in all three nuclei of the ATN complex. These results are compatible with the possibility that large numbers of neurons in the ATN send axonal branches to both the RSg and the TRN, and that many such neurons use glutamate and/or aspartate as transmitters. The findings also suggest that the projections from the ATN might be heterogeneous with respect to transmitter phenotype. Received: 27 June 1996 / Accepted: 5 February 1997  相似文献   

2.
Electrical stimulation of the reticular nucleus of the rat thalamus results in activation of c-fos immunoreactivity in nerve cells of the ipsilateral retrosplenial cortex. The c-fos immunoreactive neurons are mainly concentrated in lamina IV of the retrosplenial cortex. Conversely, electrical stimulation of the retrosplenial cortex induced c-fos immunoreactivity in the ipsilateral reticular nucleus of the thalamus. The results of the electrical stimulation suggest a direct synaptic connection between the cerebral cortex and the ipsilateral reticular thalamic nucleus. Simultaneous immunohistochemical staining proves that the majority of nerve cells and dendro-dendritic terminals in the reticular thalamic nucleus contain parvalbumine and, at the same time, also GABA. The role of GABA-ergic parvalbumine immunoreactive terminals in the reticular thalamic nucleus seems to be related to integration and processing of impulses and attentional gating, distinguishing between noxious and innocuous inputs.  相似文献   

3.
This study tested the hypothesis that neurons of thalamic nuclei, which are normally devoid of inputs from the reticular thalamic nucleus, do not display spindle oscillations and related rhythmic spike bursts. This proposal derived from our recent studies indicating that the reticular nucleus is the generator of spindling rhythmicity. We used retrograde tracing methods, intracellular recordings in barbiturized cats, and extracellular recordings of single neurons and field potentials in anteroventral (AV), anteromedial (AM), ventroanterior (VA), ventrolateral (VL), and central lateral (CL) thalamic nuclei in cats with rostral brain stem transections (cerveau isolé preparations), before and after administration of barbiturates. The observation that AV and AM nuclei do not receive inputs from the reticular nucleus was confirmed by using injections of horseradish peroxidase conjugated to wheat germ agglutinin confined within the limits of anterior nuclei. Such injections led to massive retrograde labeling in mammillary nuclei and layer VI of the retrosplenial cortex but left free of labeling the neurons of the reticular thalamic nucleus. Intracellular recordings showed that AV-AM neurons discharge tonically in response to a depolarizing current applied at rest, whereas they give rise to a slow spike that underlies a burst of fast action potentials when the membrane is hyperpolarized by 5-12 mV. Despite the fact that they share similar properties with other thalamic neurons, intracellularly recorded AV-AM neurons do not exhibit spindle waves under barbiturate anesthesia, whereas VA-VL, CL, and other thalamocortical neurons that receive afferents from the reticular nucleus commonly display such oscillations. With extracellular recordings performed simultaneously in CL and AV or AM nuclei of the unanesthetized cerveau isolé preparation, focal spindle oscillations and related rhythmic high-frequency spike bursts of single CL cells contrasted with absence of spindles and spike bursts in AV or AM neurons. Spindling could be induced in AV-AM nuclei only after administration of barbiturates at doses exceeding 3 mg/kg, and it appeared approximately 35-40 s after the barbiturate effect was detected in the simultaneously recorded CL nucleus. Moreover, the spike bursts that were elicited in AV-AM neurons after barbiturate administration were not temporally related with focal spindles. Since spindle oscillations did not appear intracellularly in AV-AM neurons, the possibility was envisaged that barbiturate-induced spindles were the passive reflection of field potentials actively generated in neighboring thalamic nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Neurochemical and key connectional characteristics of the anterior entopeduncular nucleus (Enta) of the turtle (Testudo horsfieldi) were studied by axonal tracing techniques and immunohistochemistry of parvalbumin, gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD). We showed that the Enta, which is located within the dorsal peduncle of the lateral forebrain bundle (Pedd), has roughly topographically organized reciprocal connections with the dorsal thalamic visual nuclei, the nucleus rotundus (Rot) and dorsal lateral geniculate nucleus (GLd). The Enta receives projections from visual telencephalic areas, the anterior dorsal ventricular ridge and dorsolateral cortex/pallial thickening. Most Enta neurons contained GABA and parvalbumin, and some of them were retrogradely labeled when the tracer was injected into the visual dorsal thalamic nuclei. Further experiments using double immunofluorescence revealed colocalization of GAD and parvalbumin in the vast majority of Enta neurons, and many of these cells showed retrograde labeling with Fluoro-gold injected into the Rot and/or GLd. According to these data, the Enta may be considered as a structural substrate for recurrent inhibition of the visual thalamic nuclei. Based on morphological and neurochemical similarity of the turtle Enta, caiman Pedd nucleus, the superior reticular nucleus in birds, and the thalamic reticular nucleus in mammals, we suggest that these structures represent a characteristic component which is common to the thalamic organization in amniotes.  相似文献   

5.
Summary Unilateral stereotaxic lesions were made in the anterior thalamic nuclei of the cat, and the ensuing terminal degeneration traced to the medial cortex by the methods of Nauta-Gygax and Fink-Heimer. The anterodorsal nucleus projects to the retrosplenial, postsubicular and presubicular areas. These projections appear to be organized in the dorsoventral direction. The posterior portion of the retrosplenial area receives no fibers from the anterodorsal nucleus. Fibers from this nucleus are distributed largely in layer I and in layer III and the deep portion of layer II of the posterior limbic cortex. The anteroventral nucleus sends fibers to the cingular area and parts of the retrosplenial, postsubicular and presubicular areas. These projections appear to be organized in a topical manner mediolaterally. When the lesion involves the parvocellular part of the nucleus, degeneration spreads to the lower lip, bank and fundus of the splenial sulcus. There appears to be an anteroposterior organization in the cortical projections of the anteroventral nucleus. Fibers from the anteroventral nucleus are distributed most profusely in layers IV and III and in the superficial portion of layer I of the posterior limbic cortex. The anteromedial nucleus sends fine fibers to the anterior limbic region and to the cingular, retrosplenial, postsubicular and presubicular areas. The cortical projections of the anteromedial nucleus appear to be topographically organized in the dorsoventral direction. Fibers from the anteromedial nucleus are distributed largely in cortical layers V and VI of the anterior and posterior limbic regions.Abbreviations used in Figures a anterior - AD anterodorsal nucleus - AM anteromedial nucleus - AMD dorsolateral part of anteromedial nucleus - AMV ventromedial part of anteromedial nucleus - AV anteroventral nucleus - AVM magnocellular part of anteroventral nucleus - AVP parvocellular part of anteroventral nucleus - CC corpus callosum - Cg cingular area - CM medial central nucleus - Il infralimbic area - LA anterior limbic region - LD dorsal lateral nucleus - MD dorsal medial nucleus - Of orbitofrontal region - p posterior - Pr presubicular area - Prag precentral agranular area - Ps postsubicular area - Pt paratenial nucleus - Pv anterior paraventricular nucleus - R reuniens nucleus - Rs retrosplenial area - Rt thalamic reticular nucleus - SC cruciate sulcus - SM stria medullaris - Sm submedial nucleus - SS splenial sulcus - VA ventral anterior nucleus - VL ventral lateral nucleus - VM ventral medial nucleus  相似文献   

6.
We have studied GABAergic projections from the thalamic reticular nucleus to the anterior thalamic nuclei of the rat by combining retrograde labelling with horseradish peroxidase and GABA-immunohistochentistry. Small iontophoretic injections of the tracer into subnuclei of the anterior thalamic nuclear complex resulted in retrograde labelling of cells in the rostrodorsal pole of the ipsilateral thalamic reticular nucleus. All of these cells were also GABA-positive. The projections were topographically organized. Neurons located in the most dorsal part of the rostral reticular nucleus projected to the dorsal half of both the posterior subdivision and the medial subdivision of the anteroventral thalamic nucleus, and to the rostral portion of the anterodorsal thalamic nucleus. Immediately ventral to this group of neurons, but still within the dorsal portion of the reticular nucleus, a second group of neurons, extending from the dorsolateral to the dorsomedial edge of the nucleus, projected to the ventral parts of the posterior and medial subdivisions of the anteroventral nucleus. Following injection of tracer into the dorsal part of the rostral anteroventral nucleus, retrograde labelled GABA-containing cell bodies were also found in the ipsilateral anterodorsal nucleus.  相似文献   

7.
Most dorsal thalamic nuclei send axons to specific areas of the neocortex and to specific sectors of the thalamic reticular nucleus; the neocortex then sends reciprocal connections back to the same thalamic nucleus, directly as well indirectly through a relay in the thalamic reticular nucleus. This can be regarded as a 'canonical' circuit of the sensory thalamus. For the pathways that link the thalamus and the hippocampal formation, only a few comparable connections have been described. The reuniens nucleus of the thalamus sends some of its major cortical efferents to the hippocampal formation. The present study shows that cells of the hippocampal formation as well as cells in the reuniens nucleus are retrogradely labelled following injections of horseradish peroxidase or fluoro-gold into the rostral part of the thalamic reticular nucleus in the rat. Within the hippocampal formation, labelled neurons were localized in the subiculum, predominantly on the ipsilateral side, with fewer neurons labelled contralaterally. Labelled neurons were seen in the hippocampal formation and nucleus reuniens only after injections made in the rostral thalamic reticular nucleus (1.6-1.8 mm caudal to bregma). In addition, the present study confirmed the presence of afferent connections to the rostral thalamic reticular nucleus from cortical (cingulate, orbital and infralimbic, retrosplenial and frontal), midline thalamic (paraventricular, anteromedial, centromedial and mediodorsal thalamic nuclei) and brainstem structures (substantia nigra pars reticularis, ventral tegmental area, periaqueductal grey, superior vestibular and pontine reticular nuclei). These results demonstrate a potential for the thalamo-hippocampal circuitry to influence the functional roles of the thalamic reticular nucleus, and show that thalamo-hippocampal connections resemble the circuitry that links the sensory thalamus and neocortex.  相似文献   

8.
Neurons likely to use endothelin as a neurotransmitter/neurohormone were mapped in the rat brain using polyclonal antibodies directed against endothelin-converting enzyme-1, endothelin-1, and endothelin-3. Anti-endothelin-converting enzyme-1 antibodies produced the most robust staining, permitting the best visualization of the distribution and morphology of neurons. Labeled neurons were found in the dorsal thalamic nuclei and reticular thalamic nuclei, medial preoptic area, pontine nucleus, and locus coeruleus. Localization of endothelin-converting enzyme-like immunoreactivity in the locus coeruleus and in the reticular nucleus of the thalamus suggests that endothelin is co-localized with norepinephrine and GABA, respectively. Additionally, endothelin-converting enzyme-like immunoreactivity was found in the globus pallidus, septal nuclei, and in both the vertical and horizontal limbs of the nucleus of the diagonal band of Broca, and the ventrolateral area of the caudate-putamen. Strong endothelin-converting enzyme-like immunoreactivity was found in a continuous band of pyramidal neurons throughout the neocortex primarily in layer V, extending into the cingulate gyrus and piriform cortex. Motor nuclei, including oculomotor, facial, and trigeminal nuclei, were also endothelin-converting enzyme-immunoreactive. In the cerebellum, Purkinje cells were stained. Non-neuronal cells such as oligodendroglia, microglia, and astrocytes generally were not endothelin-converting enzyme-immunoreactive, although astrocytes were rarely stained. Endothelin-converting enzyme-, endothelin-1-, and endothelin-3-like immunoreactivities were generally found co-existing in given nuclei. The diversity of neurons immunostained for endothelin suggests multiple roles of endothelin in the CNS.  相似文献   

9.
Previous deafferentation studies have suggested that most hypothalamic GABAergic innervation originates from neurons within the hypothalamus. We have investigated the distribution of GABAergic cell groups in the rat hypothalamus by means of the in situ hybridization technique, using a cDNA probe for messenger RNA encoding glutamate decarboxylase. Several major GABAergic cell groups were demonstrated, including cells of the tuberomammillary nucleus, arcuate nucleus, suprachiasmatic nucleus, medial preoptic area, anterior hypothalamic area, the dorsomedial hypothalamic nucleus, perifornical area, and lateral hypothalamic area. The most prominent glutamate decarboxylase mRNA-containing cell groups were located in the medial preoptic area, anterior hypothalamic area and dorsomedial hypothalamic nucleus, and were composed of small- to medium-sized neurons. Compared to previously well-characterized GABAergic cell groups in the tuberomammillary nucleus, reticular thalamic nucleus, and non-pyramidal cells of cerebral cortex, the cells of these GABAergic groups demonstrated only weak cDNA labelling, indicating that they contain lower levels of glutamate decarboxylase mRNA. Several types of control experiments supported the specificity of this cDNA labelling, and the GABAergic nature of these cell populations was further supported by detection of glutamate decarboxylase and GABA immunoreactivity. Abundance of GABAergic cells in many hypothalamic nuclei indicates that GABA represents quantitatively the most important transmitter of hypothalamic neurons, and may be involved in neuroendocrine and autonomic regulatory functions.  相似文献   

10.
We used laser scanning photostimulation through a focused UV laser of caged glutamate in an in vitro slice preparation through the rat's somatosensory thalamus to study topography and connectivity between the thalamic reticular nucleus and ventral posterior lateral nucleus. This enabled us to focally stimulate the soma or dendrites of reticular neurons. We were thus able to confirm and extend previous observations based mainly on neuroanatomical pathway tracing techniques: the projections from the thalamic reticular nucleus to the ventral posterior lateral nucleus have precise topography. The reticular zone, which we refer to as a "footprint," within which photostimulation evoked inhibitory postsynaptic currents (IPSCs) in relay cells, was relatively small and oval, with the long axis being parallel to the border between the thalamic reticular nucleus and ventral posterior lateral nucleus. These evoked IPSCs were large, and by using appropriate GABA antagonists, we were able to show both GABA(A) and GABA(B) components. This suggests that photostimulation strongly activated reticular neurons. Finally, we were able to activate a disynaptic relay cell-to-reticular-to- relay cell pathway by evoking IPSCs in relay cells from photostimulation of the region surrounding a recorded relay cell. This, too, suggests strong responses of relay cells, responses strong enough to evoke spiking in their postsynaptic reticular targets. The regions of photostimulation for these disynaptic responses were much larger than the above-mentioned reticular footprints, and this suggests that reticulothalamic axon arbors are less widespread than thalamoreticular arbors, that there is more convergence in thalamoreticular connections than in reticulothalamic connections, or both.  相似文献   

11.
Summary Potentially convergent inputs to cerebellar-receiving and basal ganglia-receiving areas of the thalamus were identified using horseradish peroxidase (HRP) retrograde tracing techniques. HRP was deposited iontophoretically into the ventroanterior (VA), ventromedial (VM), and ventrolateral (VL) thalamic nuclei in the cat. The relative numbers of labeled neurons in the basal ganglia and the cerebellar nuclei were used to assess the extent to which the injection was in cerebellar-receiving or basal ganglia-receiving portions of thalamus. The rostral pole of VA showed reciprocal connections with prefrontal portions of the cerebral cortex. Only the basal ganglia and the hypothalamus provided non-thalamic input to modulate these cortico-thalamo-cortical loops. In VM, there were reciprocal connections with prefrontal, premotor, and insular areas of the cerebral cortex. The basal ganglia (especially the substantia nigra), and to a lesser extent, the posterior and ventral portions of the deep cerebellar nuclei, provided input to VM and may modulate these corticothalamo-cortical loops. The premotor cortical areas connected to VM include those associated with eye movements, and afferents from the superior colliculus, a region of documented importance in oculomotor control, also were labeled by injections into VM. The dorsolateral portion of the VA-VL complex primarily showed reciprocal connections with the medial premotor (area 6) cortex. Basal ganglia and cerebellar afferents both may modulate this cortico-thalamo-cortical loop, although they do not necessarily converge on the same thalamic neurons. The cerebellar input to dorsolateral VA-VL was from posterior and ventral portions of the cerebellar nuclei, and the major potential brainstem afferents to this region of thalamus were from the pretectum. Mid- and caudo-lateral portions of VL had reciprocal connections with primary motor cortex (area 4). The dorsal and anterior portions of the cerebellar nuclei had a dominant input to this corticothalamo-cortical loop. Potentially converging brainstem afferents to this portion of VL were from the pretectum, especially pretectal areas to which somatosensory afferents project.List of Abbreviations AC central amygdaloid nucleus - AL lateral amygdaloid nucleus - AM anteromedial thalamic nucleus - AV anteroventral thalamic nucleus - BC brachium conjunctivum - BIC brachium of the inferior colliculus - Cd caudate nucleus - CL centrolateral thalamic nucleus - CM centre median nucleus - CP cerebral peduncle - CUN cuneate nucleus - DBC decussation of the brachium conjunctivum - DR dorsal raphe nuclei - EC external cuneate nucleus - ENTO entopeduncular nucleus - FN fastigial nucleus - FX fornix - GP globus pallidus - GR gracile nucleus - IC internal capsule - ICP inferior cerebellar peduncle - IP interpeduncular nucleus - IVN inferior vestibular nucleus - LD lateral dorsal thalamic nucleus - LGN lateral geniculate nucleus - LH lateral hypothalamus - LP lateral posterior thalamic complex - LRN lateral reticular nucleus - LVN lateral vestibular nucleus - MB mammillary body - MD mediodorsal thalamic nucleus - MG medial geniculate nucleus - ML medial lemniscus - MLF medial lengitudinal fasciculus - MT mammillothalamic tract - MVN medial vestibular nucleus - NDBB nucleus of the diagonal band of Broca - NIA anterior nucleus interpositus - NIP posterior nucleus interpositus - OD optic decussation - OT optic tract - PAC paracentral thalamic nucleus - PPN pedunculopontine region - PRO gyrus proreus - PRT pretectal region - PT pyramidal tract - PTA anterior pretectal region - PTM medial pretectal region - PTO olivary pretectal nucleus - PTP poterior pretectal region - Pul pulvinar nucleus - Put putamen - RF reticular formation - RN red nucleus - Rt reticular complex of the thalamus - S solitary tract - SCi superior colliculus, intermediate gray - SN substantia nigra - ST subthalamic nucleus - VA ventroanterior thalamic nucleus - VB ventrobasal complex - VL ventrolateral thalamic nucleus - VM ventromedial thalamic nucleus - III oculomotor nucleus - IIIn oculomotor nerve - 5S spinal trigeminal nucleus - 5T spinal trigeminal tract - VII facial nucleus  相似文献   

12.
There is growing evidence that lesions of the anterior thalamic nuclei cause long-lasting intrinsic changes to retrosplenial cortex, with the potential to alter its functional properties. The present study had two goals. The first was to identify the pattern of changes in eight markers, as measured by in-situ hydridisation, in the granular retrosplenial cortex (area Rgb) following anterior thalamic lesions. The second was to use retrograde trans-neuronal tracing methods to identify the potential repercussions of intrinsic changes within granular retrosplenial cortex. In Experiment 1, adult rats received unilateral lesions of the anterior thalamic nuclei and were perfused 4 weeks later. Of the eight markers, four (c-fos, zif268, 5ht2rc, kcnab2) showed a very similar pattern of change, with decreased levels in superficial retrosplenial cortex (lamina II) in the ipsilateral hemisphere but little or no change in deeper layers (lamina V). A fifth marker (cox6b) showed a shift in activity levels in the opposite direction to the previous four markers. Three other markers (cox6a1, CD74, ncs-1) did not appear to change activity levels after surgery. The predominant pattern of change, a decrease in superficial cortical activity, points to potential alterations in plasticity and metabolism. In Experiment 2, wheat germ agglutin (WGA) was injected into the anterior thalamic nuclei in rats given different survival times, sometimes in combination with the retrograde, fluorescent tracer, Fast Blue. Dense aggregations of retrogradely labeled cells were always found in lamina VI of granular retrosplenial cortex, but additional labeled cells in lamina II were only found: (1) in WGA cases, that is never after Fast Blue injections, and (2) after longer WGA survival times (3 days). These layer II Rgb cells are likely to have been trans-neuronally labeled, revealing a pathway from lamina II of Rgb to those deeper retrosplenial cells that project directly to the anterior thalamic nuclei.  相似文献   

13.
Glutamatergic components of the retrosplenial granular cortex in the rat   总被引:3,自引:0,他引:3  
The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 microm in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V-VI; some were also present in layers I-III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.  相似文献   

14.
The prefrontal cortex projects to many thalamic nuclei, in pathways associated with cognition, emotion, and action. We investigated how multiple projection systems to the thalamus are organized in prefrontal cortex after injection of distinct retrograde tracers in the principal mediodorsal (MD), the limbic anterior medial (AM), and the motor-related ventral anterior/ventral lateral (VA/VL) thalamic nuclei in rhesus monkeys. Neurons projecting to these nuclei were organized in interdigitated modules extending vertically within layers VI and V. Projection neurons were also organized in layers. The majority of projection neurons to MD or AM originated in layer VI (∼80%), but a significant proportion (∼20%) originated in layer V. In contrast, prefrontal neurons projecting to VA/VL were equally distributed in layers V and VI. Neurons directed to VA/VL occupied mostly the upper part of layer V, while neurons directed to MD or AM occupied mostly the deep part of layer V. The highest proportions of projection neurons in layer V to each nucleus were found in dorsal and medial prefrontal areas. The laminar organization of prefrontal cortico-thalamic projections differs from sensory systems, where projections originate predominantly or entirely from layer VI. Previous studies indicate that layer V cortico-thalamic neurons innervate through some large terminals thalamic neurons that project widely to superficial cortical layers. The large population of prefrontal projection neurons in layer V may drive thalamic neurons, triggering synchronization by recruiting several cortical areas through widespread thalamo-cortical projections to layer I. These pathways may underlie the synthesis of cognition, emotion and action.  相似文献   

15.
Summary The distributions of five amino acids with well-established neuroexcitatory or neuroinhibitory properties were investigated in the feline vestibular complex. Consecutive semithin sections of plastic-embedded tissue were incubated with antisera raised against protein-glutaraldehyde conjugates of GABA, glycine, aspartate, glutamate and taurine. This approach allowed us to study the relative densities of the different immunoreactivities at the level of individual cell profiles. The results indicate that in the vestibular nuclei, neuronal colocalization of two or more neuroactive amino acids is the rule rather than an exception. Colocalization was found of immunoreactivities for GABA and glycine; glycine, aspartate and glutamate; glycine and aspartate, and glutamate and aspartate. GABA immunoreactive neurons were generally small and were found scattered throughout the vestibular complex. Glycine immunoreactive neurons were similarly distributed, except in the superior nucleus where the latter type of neuron could not be detected. Neuronal profiles colocalizing immunoreactivities for GABA and glycine occurred in all nuclei, but were most numerous in the lateral nucleus. The vast majority of the neurons showed noteworthy staining for glutamate and aspartate, although the level of immunoreactivities varied (e.g., the large neurons in the lateral and descending nuclei were more intensely aspartate immunoreactive than the smaller ones). Taurine-like immunoreactivity did not occur in neuronal cell bodies but appeared in Purkinje cell axons and in glial cell profiles. The functional significance of the complex pattern of amino acid colocalization remains to be clarified. In particular it needs to be distinguished between metabolic and transmitter pools of the different amino acids. The present results call for caution when attempts are made to conclude about transmitter identity on the basis of amino acid contents alone.Abbreviations D descending vestibular nucleus - L lateral vestibular nucleus (Deiters' nucleus) - M medial vestibular nucleus - S superior vestibular nucleus - N. VIII eighth cranial nerve - V spinal trigeminal tract  相似文献   

16.
Retrograde labelling has been combined with immunohistochemistry to localize neurons containing GABA, glutamate, choline acetyltransferase, leu-enkephalin, neurotensin and substance P-like immunoreactivity in the projection pathways from the midbrain tegmental nuclei to the mammillary nuclei in the rat. Injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the medial mammillary nucleus resulted in retrogradely labelled neurons in the ventral tegmental nucleus of Gudden, whereas injections into the lateral mammillary nucleus resulted in large numbers of retrogradely labelled neurons in the ipsilateral dorsal tegmental nucleus of Gudden and in the laterodorsal tegmental nucleus. In the ventral tegmental nucleus, moderate to small numbers of retrogradely labelled neurons were also immunolabelled for GABA and approximately ten to 18 WGA-HRP-labelled neurons per section were immunoreactive for leu-enkephalin. In addition, small numbers of WGA-HRP-labelled neurons in the principal subnucleus of the ventral tegmental nucleus were immunoreactive for Glu whereas small numbers of retrogradely labelled neurons in the compact subnucleus of the central superior nucleus displayed neurotensin-like immunoreactivity. In the ventral subnucleus of the dorsal tegmental nucleus, moderate to small numbers of retrogradely labelled neurons were also GABA-immunoreactive and approximately ten to 14 WGA-HRP labelled neurons per section were immunoreactive for leu-enkephalin. The ventral subnucleus of the dorsal tegmental nucleus also contained small numbers of retrogradely labelled neurons that displayed either glutamate or substance P-like immunoreactivity. In addition, moderate to small numbers of WGA-HRP-labelled neurons (five to 20 per section) in the laterodorsal tegmental nucleus were immunoreactive for choline acetyltransferase. These results are compatible with the possibility that tegmentomammillary projection neurons use several different neurochemicals as neurotransmitter(s) and/or neuromodulator(s).  相似文献   

17.
The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 m in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V–VI; some were also present in layers I–III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.  相似文献   

18.
Afferents to the nucleus accumbens septi utilizing glutamate or aspartate have been investigated in the rat by autoradiography following injection and retrograde transport of D[3H]aspartate. Parallel experiments with the intra-accumbal injection of [3H]GABA were employed to establish the transmitter-selective nature of the retrograde labelling found with D[3H]aspartate. The topography of cortical and thalamic perikarya labelled by D[3H]aspartate was extremely precise. D[3H]Aspartate labelled perikarya were found in layer V of agranular insular cortex; bilaterally within prelimbic and infralimbic subareas perikarya, but predominantly ipsilaterally. Ipsilateral labelling was observed in dorsal, ventral and posterior agranular insular cortices, and in perirhinal cortex. Injections into ventral accumbens labelled perikarya in ipsilateral entorhinal cortex, while infusion of D[3H]aspartate into anterior caudate-putamen resulted in labelling of perikarya in ipsilateral cingulate and lateral precentral cortices. Following infusion of D[3H]aspartate, ipsilateral midline thalamic nuclei contained the highest density of labelled perikarya; infusions centred on nucleus accumbens resulted in heavy retrograde labelling of the parataenial nucleus, but labelling was sparse from a lateral site and not observed after injection into anterior caudate-putamen. Less prominent labelling of perikarya was seen in other thalamic nuclei (mediodorsal, central medial, rhomboid, reuniens and centrolateral), mostly near the midline. Perikaryal labelling was also found in the ipsilateral amygdaloid complex, particularly in basolateral and lateral nuclei. Only weak labelling resulted in ventral subiculum. Numerous labelled cells were present bilaterally in anterior olfactory nucleus, although perikarya were more prominent ipsilaterally. Labelled perikarya were not consistently observed in other regions (ventral tegmental area, medial substantia nigra, raphe nuclei and locus coeruleus) known to innervate nucleus accumbens. Presumptive anterograde labelling was detected in ventral pallidum/substantia innominata, ventral tegmental area and medial substantia nigra. [3H]GABA was generally not retrogradely transported to the same regions labelled by D[3H]aspartate; an exception being the anterior olfactory nucleus, where large numbers of labelled perikarya were found. [3H]GABA failed to label perikarya in thalamus and amygdala, and a topographic distribution of label was absent in neocortex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The effects of stimulating the laterodorsal tegmental cholinergic nucleus upon inhibitory postsynaptic potentials recorded in relay cells of the anterior thalamic complex were studied in urethane-anesthetized cats. The inhibitory postsynaptic potentials induced in anterior thalamic relay cells by stimulating mammillary nuclei or retrosplenial cortex are generated by local-circuit inhibitory neurons since this nuclear complex is devoid of afferents from the other intrathalamic source of inhibition, the reticular thalamic nucleus. In a parallel study from this laboratory, it has been shown that cortical stimulation elicits a biphasic inhibitory postsynaptic potential consisting of two (A and B) components attributed to axonal firing of local interneurons, whereas mammillary stimulation elicits, in addition to the A-B sequence, an earlier component (a) presumably generated by presynaptic dendrites in thalamic glomeruli. In the present study, short pulse-trains applied to the laterodorsal tegmental nucleus diminished the amplitudes of A and B inhibitory components or completely suppressed them. The B component was more sensitive to the depressive effect. By contrast with the changes of the A and B components, the mammillary-evoked a inhibitory component was not reduced and, in many instances, was enhanced following laterodorsal tegmental stimulation. The effects of laterodorsal tegmental stimulation survived monoamine depletion by reserpine. We suggest that mesopontine cholinergic depressive actions on A and B inhibitory postsynaptic potentials may be due to an increased conductance in thalamocortical cells during the short-lasting nicotinic action combined with a somatic hyperpolarization of local-circuit cells, whereas the enhancement of the earliest (a) inhibitory postsynaptic potential reflects a concomitant potentiating action at the level of intraglomerular presynaptic dendrites.  相似文献   

20.
Visceral sensory perception is subjected to modulation by attention or distraction, like other sensory systems. The thalamic reticular nucleus is a key region in selective attention, effecting a change in the mode of thalamocortical transmission. Each major thalamocortical system is connected with a particular sector of the thalamic reticular nucleus. No connections from the thalamic reticular nucleus have been described to the visceral sensory thalamus. We used axonal tracing techniques to study the possible existence of reciprocal connections between the visceral sensory relay in the lateral ventroposterior parvicellular thalamic nucleus, and the reticular nucleus of the thalamus. We also studied the projections from the visceral sensory cortex, located in the granular insular cortex in the rat, to the reticular nucleus of the thalamus. We found a convergent input from both thalamic and cortical sensory visceral regions to the same sector of the reticular nucleus of the thalamus. This visceral sector in turn sent GABAergic feedback connections to the lateral ventroposterior parvicellular thalamic nucleus. In addition, the visceral thalamus received histaminergic projections from the tuberomammillary nucleus, and noradrenergic projections from the locus coeruleus; both nuclei belong to the ascending activating system.Our findings indicate that the visceral sensory thalamocortical pathway is connected to the same subcortical structures that provide attention mechanisms for other thalamocortical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号