首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative analysis of the density of GABAA receptor subunits was performed at the electron microscope level after indirect pre-embedding immunogold labeling with subunit-specific antibodies of rat cerebellar granule cell cultures grown for 4 or 8 days and in the presence or absence of the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4c]pyridin-3-ol (THIP). THIP (150 μM) induced a 2-fold increase in the number of subunits in both cell bodies and processes in 4-day-old cultures. Extending the culture period to 8 days led to a polarization of the receptor expression, since the increase in the number of subunits selectively was observed in the processes. Moreover, a general subcellular differentiation of the receptor population was observed in all culture conditions, since the ratio between the two subunits () was four times higher in cell bodies compared to processes. A detailed analysis of the less mature (4-day-old) cultures revealed the existence of two populations of neurons exhibiting differences in the average number of receptors. During maturation neurons with few receptors developed into cells with a higher density of receptors resulting in a single population of the latter neurons, a process enhanced by exposure to THIP. This may indicate that receptor development is a discontinuous process with individual neurons following different temporal patterns. In double-labeling experiments, a spatially close association of the subunits could be seen, but the subunits were more frequently found separated from each other. In spite of the fact that exposure of the neurons to THIP increased the total number of receptor subunits, its presence apparently prevented formation of receptors with this subunit composition. Interestingly, receptor subunit clusters, consisting of α1 alone, were more frequently observed than composite () clusters. This substantiates the view that receptors not having subunits in the same complex may exist.  相似文献   

2.
Opiate receptor avidity, roughly equivalent to the ratio of unoccupied receptor density to the receptor dissociation constant (Bmax/KD), was measured in four MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-lesioned rhesus monkeys and nine normal controls with positron emission tomography (PET) and 6-deoxy-6-β-[]fluoronaltrexone (cyclofoxy, CF), a μ- and κ-opiate receptor antagonist. Although the MPTP-lesioned monkeys were dopamine deficient as measured with []-l-fluorodopa ([]-DOPA) and PET [Doudet et al., 6-[]-l-DOPA imaging of the dopamine neostriatal system in normal and clinically normal-MPTP-treated rhesus monkeys, Exp. Brain Res. 78 (1989) 69–80], they had clinically recovered from the acute motor effects of MPTP exposure. Opiate receptor avidity was found to be reduced by 30–35% in the opiate-receptor rich areas of caudate, anterior putamen, thalamus, and amygdala of the MPTP-lesioned animals. The results suggest that opiate pathways make a significant contribution to the adjustment of cortico–striatal–thalamic pathway activity and thereby to behavior in rhesus monkeys following dopamine loss.  相似文献   

3.
The D3 dopamine receptor has been proposed as a potential target for the treatment of schizophrenia and drug abuse. This study compares the distribution of D3 sites in mouse, rat, guinea pig, and rabbit brain, and dog and human cerebellum using quantitative autoradiography with the putatively selective D3 receptor radioligand []PD 128907. In the mouse, rat, guinea pig, and rabbit, specific []PD 128907 binding was heterogeneously distributed with highest densities observed in the islands of Calleja, followed by the nucleus accumbens. Moderate densities of []PD 128907 binding were observed in the anteroventral and dorsomedial caudate nucleus. Dense []PD 128907-labelled sites were observed in the dorsal thalamus, posterior mamilliary nucleus, and dorsomedial interpeduncular nucleus of the rabbit that were not detected in the other species studied. Moderately dense []PD 128907 binding was also observed in the molecular layer of cerebellar lobule X of the rat but not in the mouse, guinea pig, rabbit, dog, or human. These observations indicate significant inter-species differences in the distribution of D3 receptors.  相似文献   

4.
Immunohistochemistry was performed to demonstrate the cellular distribution of N-methyl-D-aspartate (NMDA) receptor subunit NMDAR1 in the intrastriatal grafts of a rat model of Parkinson's disease. Unilateral 6-hydroxydopamine (6-OHDA) lesions of the mesostriatal pathway were produced in young adult female rats. Neural transplantation was performed with fetal ventral mesencephalon (VM) tissue (at embryonic day 15) 3 weeks after the 6-OHDA lesions. In the fetal VM in which the tyrosine hydroxylase (TH) immunoreactivity was intensely observed, no NMDAR1 subunit immunoreactivity was detected. Immunopositive cells of NMDAR1 were densely distributed in the intact SNc contralateral to the lesions, in which intense immunoreactivity for TH was observed. In contrast, the cells positive for NMDAR1 in the SNr were scattered. The immunoreactivity for NMDAR1 was markedly decreased in the SNc, but not in the SNr on the lesioned side. Double immunostaining revealed that most TH-positive cells in the SNc showed moderate NMDAR1 immunoreactivity. Within the intrastriatal fetal VM grafts containing TH-positive cells, NMDAR1-positive cells tended to locate homogeneously within the grafts. These were composed of various cell sizes and shapes, but they were mainly medium-sized and aspiny cells. Double immunostaining revealed that a part of the TH-positive cells in the grafts was also immunopositive for NMDAR1. Taken together with our previous studies, it is suggested that both dopaminergic neurons and nondopaminergic neurons in the VM transplants appear to be modified functionally by glutamatergic afferents via various glutamate receptors, including NMDAR1.  相似文献   

5.
Estimation of a regression function from data which consists of an independent and identically distributed sample of the underlying distribution with additional measurement errors in the independent variables is considered. It is allowed that the measurement errors are not independent and have a nonzero mean. It is shown that the rate of convergence of suitably defined least squares neural network estimates applied to this data is similar to the rate of convergence of least squares neural network estimates applied to an independent and identically distributed sample of the underlying distribution as long as the measurement errors are small.  相似文献   

6.
We have investigated the role of the glycine recognition site of the N-methyl-d-aspartate receptor (the GlyNMDA site) in the facilitation of NMDA receptor agonist-evoked activity in rat dorsal horn neurons that is brought about by neurokinin 1 (NK1) receptor agonist and the contribution of protein kinase C (PKC) activation to this phenomenon. Ionophoresis of the selective NMDA receptor agonist 1-aminocyclobutane-ci's-1,3-dicarboxylic acid (ACBD) produced a sustained increase in the firing rate of single laminae III-V neurons recorded extracellularly using multibarrelled glass electrodes. The highly selective NK1 receptor agonist acetyl-[Arg6, Sar9, Met(O2)11]-SP6–11 (Sar9-SP) greatly facilitated this response, but under the present conditions had no effect when applied alone or with a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA receptor agonist) at the same current. In the presence of the GlyNMDA site antagonists 2-carboxy-4,6-dichloro-(1H)-indole-3-propanoic acid (MDL 29951), 7-chloro-3-(cyclopropylcarbonyl)-4-hydroxy-2(1H)-quinoline (L701,252), 5,7-dinitroquinaxoline-2,3-dione (MNQX) or 7-chlorothiokynurenic acid (7-CTK), or the PKC inhibitors, chelery-thrine or GF109203X, the Sar9-SP-induced facilitation of ACBD-evoked activity was prevented, generally restoring activity to a level similar to that in the presence of ACBD alone, whilst an AMPA receptor antagonist, 6-nitro-7-sulfamoylbenzo (f) quinoxaline-2,3-dione (NBQX) did not inhibit the facilitation. At the same ionophoretic currents these compounds had no effect on ACBD-evoked activity in the absence of Sar9-SP but were inhibitory at significantly greater currents. To further substantiate the importance of the GlyNMDA site in the interaction, the effects of NMDA receptor antagonists selective for alternative recognition sites on the NMDA receptor were investigated. MK-801, a non-competitive NMDA receptor antagonist and arcaine, a competitive inhibitor at the polyamine site, were applied to the facilitated activity seen in the presence of Sar9-SP and ACBD, and to ACBD-evoked activity alone. Unlike the GlyNMDA site antagonists and PKC inhibitors, these compounds reduced both facilitated and ACBD-evoked activity at similar currents. Furthermore, like the NK1 receptor agonist, a selective GlyNMDA site agonist 1-aminocyclopropane carboxylic acid (ACPC) caused facilitation of ACBD-evoked activity which was also blocked by currents of L701,252 that did not alter activity evoked by ACBD alone. These data suggest that activation of the GlyNMDA site (perhaps as a consequence of glycine release or modification of its influence by intracellular signalling cascades) is an essential component of the means by which NK1 receptor activation results in facilitated responsiveness of dorsal horn neurons towards NMDA receptor agonists.  相似文献   

7.
Glycine is a requisite cofactor for glutamatergic activation of the N-methyl-

-aspartate (NMDA) receptor. Antagonism of glutamate at the NMDA receptor has been shown to cause substantial changes in regional cerebral metabolic rate for glucose utilization (CMRglu) and blood flow (CBF). This study examined CMRglu and CBF changes caused by antagonism of glycine at the NMDA receptor recognition site. Rats were anesthetized with halothane and vascular access was obtained. The animals were then awakened. One hour later, either vehicle (control) or ACEA 1021 (5 mg/kg followed by 3.5 mg·kg−1·h−1 or 10 mg/kg followed by 7 mg·kg−1·h−1) was infused intravenously. CMRglu and CBF were then determined. Autoradiographic analysis of 25 regions revealed effects of ACEA 1021 on CMRglu in the frontal, sensory, parietal and auditory cortices and the anteroventral and subthalamic nuclei. These changes deviated less than 15% from control. Effects on CBF were also small. The CMRglu and CBF effects of ACEA 1021 are substantially less than those previously observed for either competitive or non-competitive glutamate NMDA antagonists. We conclude that inhibition of the NMDA glycine recognition site has little or no effect on CMRglu or CBF at the doses examined. This is consistent with the absence of psychotomimetic effects observed for this class of drugs.  相似文献   

8.
Cultured cerebellar granule cells and cerebellar slices from neonatal rats have been widely used to examine the biochemistry of excitatory amino acid-induced cell death mediated in part by the activation of NMDA receptors. However, the NMDA subunit stoichiometry, producing functional NMDA receptors is different in cultured granule cells, neonatal and adult rat cerebellum as compared to the NMDA receptors in forebrain regions. We have used thel-2-chloropropionic acid (l-CPA) (750 mg/kg) model of NMDA-medialed selective cerebellar granule cell necrosis in vivo to examine the role of the glycine binding site and possible effect of the NR2C subunit (which is largely expressed only in the cerebellum) on granule cell necrosis. The abilities of various NMDA receptor antagonists were examined in vivo to determine the relative contribution of both glutamate and glycine sites involved in thel-CPA-induced neurotoxicity. The potent neuroprotective, non-competitive NMDA receptor antagonist dizocilpine (MK-801) was compared with glutamate and glycine site NMDA antagonists. We have examined a number of markers for thel-CPA-induced granule cell necrosis. Thel-CPA-induced reduction in cerebellar aspartate and glutamate concentrations were used as markers of granule cell necrosis. We also measured the cerebellar water content and sodium concentrations as measures of thel-CPA-induced cerebellar edema that accompanies the granule cell necrosis. Finally the ability of the NMDA antagonists to attenuate thel-CPA-induced reductions in body weight gain and the prevention of the loss in hindlimb function using a behavioral measure of hindlimb retraction were examined. The potent glutamate antagonists, CPP and CGP40116 and dizocilpine prevented thel-CPA-induced locomotor dysfunction and granule cell necrosis as measured by their ability to preventl-CPA-induced reductions in aspartate and glutamate concentrations. CPR CGP40116 and dizocilpine also prevented the appearance of cerebellar edema followingl-CPA administration. In addition, dizocilpine, CPP and CGP40116 were able to partially prevent thel-CPA-induced loss in body weight over the 48 h experimental period. In contrast, none of the glycine partial agonists or antagonists, namely (±)HA-966,d-cycloserine, MDL-29951, DPCQ, MNQX or L-701 252 were able to prevent thel-CPA-induced loss in body weight,l-CPA-induced granule cell necrosis and behavioral disturbances when administered to rats. None of the NMDA antagonists had any effect on the cerebellar neurochemistry when injected alone or had any effect on animal behavior except for dizocilpine, CPP, CGP401 l6 and (±)HA-966 which resulted in a transient sedation for between three and five hours immediately following their administration. In conclusion, we demonstrate that NMDA open channel blockade and glutamate antagonists can provide full neuroprotection against thel-CPA-induced granule cell necrosis. The failure of the glycine partial agonists and antagonists to provide any neuroprotection againstl-CPA-induced neurotoxicity in the cerebellum contrasts with their neuroprotective efficacy in other animal models of excitatory amino acid-induced cell death in forebrain regions in vivo. We therefore suggest that the glycine site plays a lesser role in modulating NMDA receptor function in the cerebellum and may explain why cells expressing NMDA receptors composed of NR1/NR2C subunits are particularly resistant to excitatory amino acid-induced neurotoxicity.  相似文献   

9.
Alfredo Vellido   《Neural networks》2006,19(10):1624-1635
The Generative Topographic Mapping (GTM) was originally conceived as a probabilistic alternative to the well-known, neural network-inspired, Self-Organizing Maps. The GTM can also be interpreted as a constrained mixture of distribution models. In recent years, much attention has been directed towards Student t-distributions as an alternative to Gaussians in mixture models due to their robustness towards outliers. In this paper, the GTM is redefined as a constrained mixture of t-distributions: the t-GTM, and the Expectation-Maximization algorithm that is used to fit the model to the data is modified to carry out missing data imputation. Several experiments show that the t-GTM successfully detects outliers, while minimizing their impact on the estimation of the model parameters. It is also shown that the t-GTM provides an overall more accurate imputation of missing values than the standard Gaussian GTM.  相似文献   

10.
Cell cycle blockers inhibit growth in dividing cells, but promote survival of differentiated cells, including neurons. Low micromolar dopamine profoundly inhibited cell growth in dopamine transporter transfected SK-N-MC neuroblastoma cells by cell cycle arrest at G(1). This effect was independent of oxy radical formation, antagonized by transporter block, abolished by FeCl(3) and mimicked by the iron chelator deferoxamine. We propose that dopamine inhibits cell growth by its ability to chelate intracellular iron. This novel biological action unrelated to neurotransmitter receptors, second messengers or oxidative stress, observed in human neuroblastoma cells of striatal origin, may be important for cell differentiation during neurodevelopment and survival of differentiated dopamine (nigral) neurons.  相似文献   

11.
Phencyclidine (PCP), a non-competitive antagonist of the NMDA subtype of glutamate receptor, which also acts as an indirect dopamine agonist and at sigma sites, can induce a long lasting psychotic state when taken acutely. It is well established that PCP is toxic to specific limbic structures and we have recently demonstrated that it induces apoptosis of a subpopulation of striatal neurons. These neurons lie predominantly in the dorsomedial striatum and project to the globus pallidus. The mechanisms mediating this neuronal death are unclear though manipulations of dopamine transmission can induce striatal c-fos expression and continuous c-fos expression has been implicated in the molecular cascades controlling apoptosis. We accordingly undertook a series of experiments to determine the action of PCP on striatal Fos-like immunoreactivity (FLI). PCP (80 mg/kg, s.c.) elicited FLI in three distinct striatal areas, namely dorsomedial, dorsolateral and the nucleus accumbens. The level of PCP-induced FLI was consistently attenuated by the co-administration of the D-1 antagonist, SCH 23390. Vehicle injections also induced modest levels of FLI in the dorsomedial striatum and the nucleus accumbens which again were attenuated by SCH 23390. The type of striatal neuron in which PCP-induced FLI was determined by the use of a retrograde anatomical tracer. A colloidal gold tracer was thus injected into the major areas of termination of striatal projection neurons prior to the administration of PCP. This procedure demonstrated that the majority of the FLI positive striatal cells were striatopallidal neurons, though some FLI positive striatoentopeduncular neurons were also seen. The potential pharmacological mechanisms underlying the results are discussed. It is argued that the complex pattern of PCP-induced striatal FLI might be accounted for by a differential action upon extracellular dopamine levels whereby they are elevated in some striatal areas and simultaneously reduced in others.  相似文献   

12.
AIMS: Recent evidence points towards dissociable effects of dopaminergic medication on motor function and cognitive function mediated by different fronto-striatal neural circuits. This study aimed to clarify the role of dopaminergic medication in spatial working memory, and reinforcement-based associative learning in relation to clinical changes in motor function in early Parkinson's disease (PD). METHOD: We tested 14 patients with mild to moderate PD on and off dopaminergic medication, on a spatial delayed-response working memory task, and on spatial and non-spatial (visual) trial-and-error learning tasks based on reinforcement, carefully matched for motor requirements. In addition, we explored relationships between the effects of withdrawal on motor symptom expression and performance on the cognitive tasks. RESULTS: Withdrawal from dopaminergic medication significantly exacerbated motor symptoms. This was related to spatial learning, but not visual learning, or delayed response accuracy. Moreover, medication withdrawal led to dissociable effects of response latency on the spatial learning and spatial delayed response tasks, with patients becoming faster after spatial learning, but relatively slower on the delayed response task. These changes in response latency were unrelated to motor symptom impairment. CONCLUSION: Our findings suggest dissociable effects of dopamine medication withdrawal on cognitive processes putatively mediated by dorsal and ventral striatal regions.  相似文献   

13.
We have previously shown that metabotropic glutamate receptor (mGluR) activation can attenuate N-methyl-d-aspartate (NMDA)-induced excitotoxic injury in the neostriatum both in vivo and in vitro. Our earlier studies made use of the non-subtype selective mGluR agonist 1-amino-cyclopentane-1,3-dicarboxylic acid (tACPD). In the present study, we extended these observations by identifying the subtype of mGluR involved. Using selective mGluR agonists, we provide evidence that the Group II mGluRs are responsible for inhibition of NMDA excitotoxicity in the neostriatum. In addition, we provide evidence that the inhibitory effects of tACPD on excitotoxicity are dependent upon calcium influx as they are blocked by a low calcium solution as well as the broad-spectrum calcium channel blocker cadmium. The tACPD-induced attenuation was also blocked by omega-conotoxin GVIA suggesting participation of N-type calcium channels. Whole cell voltage clamp recordings were made to directly determine the effects of mGluRs on voltage-gated calcium channels in neostriatal neurons. As predicted, both tACPD and the Group II agonist 3C4HPG inhibited calcium currents in neostriatal neurons. Again this effect was blocked by omega-conotoxin GVIA. Overall the results suggest that mGluR regulation of voltage-gated calcium channels can limit NMDA toxicity in the neostriatum.  相似文献   

14.
We recently identified the direct product of dopamine (DA) by monoamine-oxidase (MAO) activity, dihydroxyphenylacetaldehyde (DOPALD) in the trans-striatal dialysate. Based on these findings, in this work, we directly measured the variations in DOPALD levels after various kinds of pharmacological treatment in rat striatal extracellular fluid. Using both reversible and irreversible MAO inhibitors, we found that MAO-A inhibition suppressed, whereas MAO-B inhibition did not modify DOPALD levels in the dialysate. The vesicular DA uptake blocker Ro 4-1284 led to an increase in extracellular DA and DOPALD, whereas the increase in extracellular DA obtained after administration of the plasma membrane DA uptake blocker GBR-12909 occurred without concomitant changes in DOPALD extracellular levels. Microinfusions of DA through the dialysis probe or systemic administration of L-DOPA increased striatal DOPALD to a greater extent compared with other DA metabolites, both in intact and in 6-hydroxydopamine (6-OHDA)-lesioned striatum. This study indicates that the direct product of MAO activity within the rat striatum derives from the activity of the isoenzyme MAO-A. The assay of DOPALD, together with DOPAC, represents a reliable tool to measure directly, in freely moving animals, DA oxidative metabolism. As recent studies have shown that microinfusions of exogenous DOPALD might induce cell death, pharmacological modulation of DOPALD levels might also be relevant for an understanding of the mechanisms involved in DA neurotoxicity.  相似文献   

15.
Summary The possible neuroprotective effects of two new non-N-methyl-d-aspartate receptor antagonists were determined by quantitative light microscopy after intracerebral administration of kainic acid (KA) in two rat brain regions. KA alone or KA in combination with the antagonists -amino-3-carboxy-methoxy-5-methyl-4-isoxazolepropionic acid (AMOA) and -amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)methyl-5-methyl-3-oxo-4-isoxazoline-4-propionic acid (AMNH) were stereotaxically injected into the striatum or into the CA3 region of hippocampus. Seven days later neuropathological examination including cell counts was performed on paraffin sections from the two brain regions. In the striatum, AMOA almost completely attenuated KA-induced cell damage, whereas AMNH showed no protective effect. In the hippocampal CA3 region none of the test compounds possessed neuroprotective properties against KA. These results seem to be consistent with a difference in the mechanisms responsible for the neurotoxic action of KA in the hippocampus compared to the striatum.Supported by the Danish State Biotechnology Programme 1987–1990, the Danish Technical and Medical Research Councils and The Lundbeck Foundation  相似文献   

16.
Nitric oxide modulates the release of serotonin in the rat hypothalamus   总被引:15,自引:0,他引:15  
To investigate the effect of nitric oxide (NO) on the release of serotonin and its main metabolite, 5-hydroxyindoleacetic acid (5-HIAA), the posterior hypothalamus of the conscious rat was superfused through a push-pull cannula with drugs which either liberate NO, or inhibit NO synthase (NOS). The NO donors, linsidomine, diethylamine/nitric oxide (DEA/NO), S-nitroso-N-acetylpenicillamine (SNAP), S-nitroso-glutathione (SNOG) and sodium nitroprusside influenced the release of serotonin in a biphasic way. Low concentrations of drugs diminished, while higher concentrations of these compounds enhanced the outflow of serotonin. The NOS inhibitors N(G)-methyl-L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NINA) enhanced the serotonin release. A high concentration of L-NAME slightly diminished the outflow of serotonin. Inhibition of the guanylyl cyclase by oxodiazolo[4, 3]quinoxaline-one (ODQ) abolished the changes in serotonin outflow induced by both low and high concentrations of linsidomine. The extracellular concentration of the 5-HIAA was not influenced by the compounds used. These data suggest that endogenous NO modulates the release of serotonin in a biphasic and cGMP-dependent way.  相似文献   

17.
Glutathione (GSH) levels are supposed to determine the vulnerability of many cells towards a wide array of insults. We investigated the effects of chronic inhibition of GSH synthesis and acute depletion of GSH on cerebellar granule neurons in vitro and determined cytoplasmic and mitochondrial GSH with relation to mitochondrial function and generation of reactive oxygen intermediates (ROI). l-buthionine sulfoximine (BSO), which irreversibly blocks gamma-glutamyl-cysteine synthase, led to a time- and concentration-dependent loss of cytoplasmic GSH, while mitochondrial GSH was relatively preserved. No increased generation of ROI was detected over 48 h and the mitochondrial membrane potential was largely maintained. Neuronal degeneration occurred when mitochondrial GSH levels had fallen below 50% of control after 24-36 h. In contrast, direct conjugation of mitochondrial and cytoplasmic GSH with etacrynic acid (EA), resulted in immediate loss of mitochondrial GSH, a large increase of ROI within 2 h, subsequent collapse of the mitochondrial membrane potential and complete cell death within 4-8 h. Electron microscopy studies revealed an as yet unknown change of the chromatin structure to a homogeneous granular pattern after BSO, while EA resulted in typical necrotic changes. No typical features of apoptosis, i.e., no chromatin condensation or DNA fragmentation were detected after GSH depletion after BSO or EA treatment.  相似文献   

18.
Pretreatment of rats with the extract of Ginkgo biloba termed EGb761 reduced the behavioral sensitization induced by successive -amphetamine administrations (0.5 mg/kg) as estimated by increasing values of locomotor activity. EGb761 pretreatment also prevented the reduced density of [3H]dexamethasone binding sites in the dentate gyrus and the CA1 hippocampal regions of -amphetamine treated animals. These observations suggest that EGb761, by reducing glucocorticoid levels, could modulate the activity of the neuronal systems involved in the expression of the behavioral sensitization.  相似文献   

19.
This study examined the acute effects of a variety of NMDA and non-NMDA antagonists on the activity of aromatic l-amino acid decarboxylase (AADC) in the corpus striatum (CS) and substantia nigra (SN) of the rat. Sixty min pretreatment with the high affinity NMDA receptor-channel blockers MK 801 (0.01, 0.1 and 1 mg/kg) and phencyclidine (4 mg/kg) elevated AADC activity in both the CS and SN (2- to 3-fold). Even more striking increases in AADC were noted with 40 mg/kg amantadine (3.8-fold for CS, 9.0-fold for SN), 40 mg/kg memantine (3.4-fold for CS, 3.1-fold for SN; 20 mg/kg no effect) and 40 mg/kg dextromethorphan (3.4-fold for CS, 6.2-fold for SN, in 6/10 `responders'). Similarly pronounced increases in AADC activity in CS (1.9-fold) and SN (2.8-fold) were detected after administering clonidine (2 mg/kg). R-HA 966 (5 mg/kg, not 1 mg/kg) modestly raised AADC activity in CS (0.45-fold) and not SN. Other drugs had no effect on the activity of the decarboxylase enzyme, including CGP 40116 (1 and 5 mg/g), eliprodil (10 mg/kg), NBQX (10 mg/kg, 30 min pretreatment) and atropine (1 mg/kg). These experiments indicate that blocking the NMDA receptor-channel (and to a lesser extent the glycine site) or stimulating α2-adrenoceptors, profoundly increases AADC activity, more especially in the SN than CS. By contrast, inhibiting the NMDA glutamate recognition or polyamine sites, AMPA or muscarinic receptors is without effect on AADC in either brain region. The ability of amantadine and memantine to potentiate the antiparkinsonian actions of l-DOPA in the clinic, may be due to facilitated decarboxylation of l-DOPA by the brain.  相似文献   

20.
We have compared the effects of an i.p. pretreatment with L-DOPA (200 mg/kg) associated with benserazide (25 mg/kg) on neurotoxic effects of either 6-hydroxydopamine (6-OHDA) (50 microg, 10 microl per mouse) or 1-methyl-4-phenylpyridinium (MPP+) (17.5 microg, 10 microl per mouse). The striatal dopamine (DA) content, the vesicular monoamine transporter (VMAT2) density, as well as the hypothalamic norepinephrine (NE) content were measured 8 days after treatments. The L-DOPA-benserazide pretreatment worsened by 65% the 6-OHDA-induced depletion in striatal DA. On the contrary, it reduced by 42% the MPP+-induced depletion in striatal DA and by 54% the MPP+-induced decrease in VMAT2 density. It was noticed that the L-DOPA-benserazide pretreatment did not modify the marked decrease in hypothalamic NE content induced by 6-OHDA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号