首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We investigated the involvement of N-methyl-D-aspartate (NMDA) glutamate receptor in the expression of the proteins Zif/268 and c-Fos elicited by painful stimuli. To this purpose, the effect of the administration of MK-801, an NMDA receptor antagonist, on Zif/268 and c-Fos expression following a noxious stimulus, represented by formalin injection into the whisker pad of rats, was examined in neurons of the trigeminal nucleus caudalis. Furthermore, the co-localization of formalin injection-evoked Zif/268 and c-Fos expression and subunit 1 of the NMDA receptor (NR1) was studied in this nucleus. Zif/268 or c-Fos immunoreactivity elicited by formalin injection was significantly reduced by pretreatment with MK-801 in the superficial layer of the trigeminal nucleus caudalis; more than 40% of the neurons expressing Zif/268 and c-Fos in this layer were also immunolabeled by NR1. On the other hand, there was little effect of MK-801 administration on Zif/268 and c-Fos immunoreactivity in the nucleus proprius and deep lamina V of the trigeminal nucleus caudalis, while most neurons expressing Zif/268 or c-Fos in these two regions were labeled by NR1. These results point out differences between the superficial and deeper layers of the trigeminal nucleus caudalis in the involvement of NMDA receptor in the mechanisms underlying the expression of protein products of immediate early genes induced by painful stimuli.  相似文献   

3.
4.
Expression of the immediate early gene zif/268 (also termed NGFI-A, Krox 24, TIS8 and Egr-1) was investigated in awake rats following various long-term potentiation (LTP) induction protocols.zif/268 mRNA (Northern blots) and protein (immunohistochemistry) levels sharply increased following LTP, and followed a time course characteristic of other immediate early genes. When measured across 3 tetanization protocols known to produce differing degrees of LTP persistence,zif/268 induction was found to be more highly correlated with LTP duration than with the magnitude of initial LTP. These data support the hypothesis that the immediate early gene zif/268 plays a role as a third messenger in the cascade of cellular and nuclear events that govern the persistence of LTP.  相似文献   

5.
6.
7.
Our previous work has demonstrated a dose-dependent induction of striatal preprodynorphin (PPD) in response to a single injection of the psychostimulants amphetamine (AMPH) or methamphetamine (METH). In the present study, dose-response effects of acute administration of these stimulants on preproenkephalin (PPE) mRNA expression in the rat striatum were investigated with quantitative in situ hybridization histochemistry 3 h after injection. Acute AMPH or METH at equimolar doses (3.75, 7.5, 15, and 30 μmol/kg) significantly increased PPE mRNA expression in dorsal (caudoputamen), but not ventral (nucleus accumbens), striatum in a dose-dependent fashion. In addition, the role of D1 and D2 dopamine receptors in mediating AMPH- and METH-stimulated PPE and PPD expression was also evaluated by using subtype-specific antagonists. Pretreatment of rats with SCH 23390 (0.1 mg/kg, i.p.), a selective D1 receptor antagonist, completely blocked acute AMPH (21 μmol/kg, i.p.)- or METH (21 μmol/kg, i.p.)-induced PPE as well as PPD mRNA expression in the caudoputamen. Pretreatment with eticlopride (0.5 mg/kg, i.p.), a selective D2 receptor antagonist, also blocked PPD induction by the two stimulants, but PPE induction was unaffected. Furthermore, SCH 23390 decreased, and eticlopride elevated, constitutive PPE mRNA levels in the caudoputamen. Neither antagonist had a significant effect on the basal level of PPE or PPD mRNA in the nucleus accumbens. These results demonstrate a clear dose-related responsiveness of PPE gene expression in striatal neurons in response to acute administration of amphetamines, although the intensity of the response is far less than that for striatal PPD. Furthermore, both D1 and D2 subtypes of dopamine receptors mediate AMPH- and METH-stimulated striatal PPD mRNA expression, whereas D1 receptor activation alone mediates amphetamine-stimulated PPE mRNA expression in the rat striatum. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Stimulation of dopamine D1-receptors by SKF 82958 increased extracellular neurotensin (NT) levels in the striatum and nucleus accumbens as measured by in vivo microdialysis while blockade of D1-receptors had no effect. Antagonism of NMDA receptors with MK 801 completely prevented the increased NT release induced by D1-stimulation in both structures. Tissue content of striatal NT anterior and posterior to the microdialysis probe was oppositely altered by D1-stimulation: increases were observed in the anterior striatum with decreased NT levels in the posterior striatum.  相似文献   

9.
Phencyclidine (PCP) has been shown to cause neurotoxicity in rat retrosplenial cortex following a single administration, although the precise mechanism underlying PCP-induced neurotoxicity is unclear. Using in situ hybridization and immunohistochemistry, we studied the effects of PCP on expression of immediate early gene zif268 mRNA and zif268 protein in the rat brain. High constitutive levels of zif268 mRNA and zif268 immunoreactivity were observed in the brain of control rats. Administration of PCP (12.5, 25 or 50 mg/kg, i.p., 6 h) caused marked induction of zif268 mRNA in the rat retrosplenial cortex, in a dose-dependent manner. However, the basal levels of zif268 mRNA in the other regions of cerebral cortex were decreased by administration of PCP. Emulsion-autoradiographical study suggested that marked expression of zif268 mRNA was observed in the layers III and IV of retrosplenial cortex where the neurotoxicity of PCP was detected. Furthermore, zif268 immunoreactivity in the layer IV of retrosplenial cortex was not changed by administration of PCP (25 mg/kg, i.p., 5 h), but that in the other layers of retrosplenial cortex was reduced by PCP. These results suggest that immediate early gene zif268 may, in part, play a role in the neurotoxicity of NMDA receptor antagonists such as PCP.  相似文献   

10.
In the present paper we investigated the role of the noradrenergic projection from the locus coeruleus on the expression of the immediate early gene zif268 in the visual cortex of rats exposed to ambient light stimulation. Local administrations of 6-hydroxydopamine (6-OHDA), a specific toxin directed against the catecholaminergic system, were performed in the locus coeruleus prior to visual stimulation. Animals were stimulated for 2 h by ambient light, after a 2-week dark adaptation period. Sham-operated controls displayed a massive increase in the number of zif268 positive cells after light stimulation. To the contrary, lesioned animals demonstrated a dramatic reduction in the number of zif268 positive nuclei across all cortical layers. A few scattered immunopositive nuclei were identified in cortical layer IV, however, this region also underwent a significant reduction in the number of zif268 immunopositive nuclei. Our results indicate that the noradrenergic system plays an important role in the expression of zif268 in the visual cortex of rats exposed to ambient light after dark isolation.  相似文献   

11.
Group I metabotropic glutamate receptors (mGluRs) are positively coupled to phosphoinositide hydrolysis, and are expressed in medium spiny neurons of rat striatum in vivo. By modifying intracellular activities, this group of mGluRs is involved in the regulation of gene expression important for neuroplasticity. To characterize the regulatory role of group I receptors in opioid peptide mRNA expression in vitro, primary cultures of striatal cells were prepared from neonatal day-1 rat pups. Cells were cultured in the presence of a mitotic inhibitor, cytosine arabinoside, which generated predominant neuronal cell cultures after 12-14 days in culture as demonstrated by dense immunostaining of more than 90% of cultured cells to a specific marker for neurons (microtubule-associated protein) but not for astroglial cells (glial fibrillary acidic protein). The vast majority of neurons (>90%) were also verified as GABAergic neurons according to their positive immunoreactivity to GABA and glutamic acid decarboxylase-65/67 antibodies. A few large neurons (<5%) showed high levels of choline acetyltransferase immunoreactivity, presumably cholinergic neurons. To confirm group I mGluR expression in cultured neurons, both in situ hybridization and immunocytochemistry were performed, which detected moderate levels of mGluR1 and mGluR5 mRNAs and protein products in most neurons (>70%), respectively. On this culture system, quantitative in situ hybridization was then performed to quantify changes in preprodynorphin (PPD) and preproenkephalin (PPE) mRNA levels in response to mGluR stimulation. Acute incubation of a non-subgroup selective agonist, 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD), increased PPD and PPE mRNA levels in a concentration-dependent manner (176 and 189% over control for PPD and PPE after 100 microM ACPD incubation, respectively). Application of a selective group I agonist, 3,5-dihydroxyphenylglycine (DHPG), produced much greater induction of either mRNA (285 and 289% over control for PPD and PPE after 100 microM DHPG incubation, respectively). Co-incubation of a selective group I antagonist, n-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC), blocked both ACPD- and DHPG-induced PPD/PPE expression. These data demonstrate the validity of a neuronal cell culture model for studying the molecular regulation of opioid gene expression in vitro. Selective activation of identified group I mGluRs facilitates constitutive expression of PPD and PPE mRNAs in cultured striatal neurons.  相似文献   

12.
We have studied the effects of AMPA/kainate receptor agonists on GABA(A) receptor subunit mRNA expression in vitro in cultured rat cerebellar granule cells (CGCs). Kainate (KA) (100 microM) and high K(+) (25 mM) dramatically up-regulated delta subunit mRNA expression to 500-700% of that in control cells grown in low K(+) (5 mM). KA or high K(+) had no effect on the expression of the other major GABA(A) receptor subunits alpha1, alpha6, beta2, beta3 or gamma2. Up-regulation of delta mRNA was also detected with the AMPA receptor-selective agonist CPW-399 and to a lesser extent with the KA receptor-selective agonist ATPA. AMPA/kainate receptor-selective antagonist DNQX completely inhibited KA-, CPW-399- and ATPA-induced delta mRNA up-regulation indicating that the effects were mediated via AMPA and KA receptor activation. NMDA receptor-selective antagonist MK-801 inhibited 76% of the KA- and 57% of the CPW-399-induced delta up-regulation suggesting that KA and CPW-399 treatments may induce glutamate release resulting in NMDA receptor activation, and subsequently to delta mRNA up-regulation. In CGCs, delta subunit is a component of extrasynaptic alpha6betadelta receptors that mediate tonic inhibition. Up-regulation of delta during prolonged glutamate receptor activation or cell membrane depolarization may be a mechanism to increase tonic inhibition to counteract excessive excitation.  相似文献   

13.
Adenosine and the adenosine receptor antagonist, caffeine, modulate locomotor activity and striatal neuropeptide expression through interactions with the dopaminergic system by mechanisms which remain partially undetermined. We addressed this question by using quantitative immunocytochemistry and in situ hybridization, combined with retrograde tracing of striatal neurons, to characterize the mechanism(s) leading to the striatal increase in the immediate early genes (IEG), c-fos, zif-268 and arc, following a single injection of caffeine or the A1 antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). Caffeine and DPCPX induced c-fos, zif-268 and arc expression, both at mRNA and protein levels, in large proportions of striatonigral and striatopallidal neurons. The involvement of dopamine systems was evaluated by manipulations of the dopaminergic transmission. Quinpirole, a D2 agonist, almost completely blocked the caffeine-induced IEG increase in both striatopallidal and striatonigral neurons. Conversely, the lesion of the nigrostriatal pathway and the D1 antagonist SCH23390 abolished the caffeine effects in striatonigral neurons but had no or slight effect, respectively, on its action in striatopallidal neurons. These observations demonstrate that caffeine- and DPCPX-mediated IEG inductions involved different mechanisms in striatonigral and striatopallidal neurons through blockade of A1 receptors. Immediate early gene inductions result from a stimulation of dopamine release in striatonigral neurons and from activation of glutamate release and probably also acetylcholine release in striatopallidal neurons. These results also support the idea that, besides A2A receptors, adenosine acting at the A1 receptor plays pivotal functions in the basal ganglia physiology and that blockade of these receptors by specific or nonspecific antagonists, DPCPX and caffeine, may influence a broad range of neuronal functions in the striatum.  相似文献   

14.
The mRNA levels encoding for the enzyme glutamate decar☐ylase (GAD67) and the peptide enkephalin were measured in the striatum of adult and 15 day-old rats by in situ hydridization histochemistry and radioautography after neonatal injections of 6-hydroxydopamine or after acute pharmacological blockade of dopamine receptors with haloperidol or sulpiride. In adult rats injected as neonates with 6-hydroxydopamine or treated with the D1/D2 dopamine receptors antagonist, haloperidol, an increase in preproenkephalin and GAD67 mRNA levels was measured in the striatum. The D2 dopamine receptor antagonist, sulpiride, did not change the mRNA levels of either GAD67 or PPE in the striatum. In 15-day-old rats, neonatal 6-hydroxydopamine or haloperidol treatment resulted in increased preproenkephalin but unchanged GAD67 mRNA levels compared to controls. In these 15-day-old rats, however, sulpiride produced an increase in GAD67 but not preproenkephalin mRNA levels. Intrastriatal injections to adult rats of pertussis toxin which uncouples Gi/Go proteins from their receptors resulted in a dramatic increase in preproenkephalin without concomitant change in GAD67 mRNA levels. Altogether, these results show that GAD67 and preproenkephalin mRNA levels are modulated in parallel in adult but not in 15 day-old rats after 6-hydroxydopamine injections or dopaminergic blockade. In keeping with evidence of a co-localization of GAD67 and preproenkephalin mRNAs in some striatal neurons, the results indicate that these two mRNAs can be differentially regulated in the same neurons. In addition, the differential effect of haloperidol, sulpiride or pertussis toxin on GAD67 and preproenkephalin mRNA levels suggests that these two mRNAs are regulated through different dopamine receptor subtypes.  相似文献   

15.
16.
At birth, the mammalian nervous system must adapt rapidly to the new conditions it encounters in the extra-uterine environment. One aspect of this adaptation, known as arousal, is mediated by catecholamines, the levels of which in the brain increase rapidly after birth. The pattern of gene expression also changes. Shortly after birth, expression of the immediate early gene c-fos, known to reflect general neural activity, is up-regulated. Furthermore, asphyxia often occurs in connection with birth. In order to examine the effects of this phenomenon on the expression of c-fos, as well as on the rate of noradrenaline (NA) turnover, asphyxia was induced in rat pups delivered by caesarean section. Northern blot analysis and in situ hybridization revealed that the increase in expression of c-fos in certain areas of the brain was greatly enhanced by asphyxia of moderate duration; whereas more prolonged asphyxia lowered the level of c-fos mRNA. Asphyxia had a similar effect on the rate of NA turnover. Adrenergic receptor antagonists administered prior to birth attenuated the birth-related induction of c-fos mRNA. However, the potentiation of c-fos expression by asphyxia was not altered by these antagonists. Therefore, we propose that while catecholamines play an important role in the induction of c-fos in the brain at birth, the effects of asphyxia involve a different mechanism.  相似文献   

17.
18.
The present study investigated the effect of clonidine on the basal and inducible c-jun and c-fos mRNA expression in the nucleus tractus solitarius (middle, mNTS, and rostral, rNTS) and the rostral ventrolateral medulla (caudal, cRVLM, and rostral, rRVLM). Conscious rats received saline, clonidine (30 μg/kg, i.v.), saline plus sodium nitroprusside (NP), or clonidine plus NP. Under basal conditions (saline-infused rats), c-jun mRNA was expressed in the mNTS and rRVLM but not in the rNTS or cRVLM whereas c-fos mRNA was not detectable. Clonidine attenuated the increases in c-fos in the mNTS and cRVLM and c-jun gene expression in the mNTS and rRVLM caused by NP-evoked hypotension and also reduced the basal expression of c-jun mRNA in the mNTS and rRVLM. These findings establish a causal link between clonidine inhibition of c-fos expression in brainstem and its hypotensive action, and provide the first evidence that clonidine attenuates the expression of the closely linked c-jun gene in neurons implicated in centrally mediated hypotension.  相似文献   

19.
The spatial and temporal pattern of expression of the protein products of immediate early genes (IEGs) c-fos, fos B, and egr-1 were mapped in medial preoptic area (MPOA) and ventral bed nucleus of stria terminalis (VBST) during maternal behavior in rats. Immunocytochemical analysis indicated significant increases in the number of cells expressing c-Fos after 2 h of pup exposure, while Fos B levels showed a delayed response, reaching maximal levels after 6 h.  相似文献   

20.
Postnatal development of dopamine D(1), D(2) and D(4) receptors in the caudate-putamen, nucleus accumbens, frontal cortex and hippocampus was assessed in rat brain between postnatal days 7 and 60. In the caudate-putamen and nucleus accumbens, density of all three receptor subtypes increased to a peak at postnatal day 28, then declined significantly in both regions (postnatal days 35-60) to adult levels. In the frontal cortex and hippocampus, these receptors rose steadily and continuously to stable, maximal adult levels by postnatal day 60. Evidently, D(1), D(2) and D(4) receptors follow a similar course of development in several cortical, limbic and extrapyramidal regions of rat forebrain, with selective elimination of excess dopamine receptors at the time of puberty in the caudate-putamen and accumbens but not other brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号