首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental allergic encephalomyelitis (EAE), an animal model resembling multiple sclerosis (MS), is mediated by myelin antigen-specific CD4+ T cells secreting cytokines such as interferon-γ (IFN-γ), tumor necrosis factor-β (TNF-β), and the proinflammatory cytokine TNF-α—all associated with the T-helper-1 (Th1) T cell subset. Based on numerous similarities between MS and EAE, it has been postulated that Th1-like T cells are involved in the pathogenesis of MS. Production of proinflammatory cytokines such as IFN-γ and, in particular, TNF-α/β by autoreactive T cells is considered crucial for the initiation and amplification of inflammatory brain lesions and possibly also for direct myelin damage. In contrast, regulatory cytokines such as interleukin-4 (IL-4), IL-10, and IL-13, which are associated with the Th2-like phenotype, may play a role in the resolution of relapses. Although the human T cell response to myelin basic protein (MBP) is well characterized in terms of antigen specificity, HLA restriction, and T cell-receptor (TCR) usage, little is known about the cytokine pattern of these autoreactive T cells. To gain such information, conditions for studying cytokine secretion by human autoreactive T cell clones (TCC) were established. The cytokine secretion profile of human autoreactive CD4+ TCC, specific for myelin basic protein peptide (83–89) [MBP(83–99)], a candidate autoantigen in MS, was investigated. Our results show that TCC cytokine production in long-term culture was stable. In addition, the correlation of various cytokines within specific TCC revealed differences compared to murine T cells. The comparison of 30 human MBP(83–99)-specific TCC demonstrated heterogeneity in cytokine secretion, with a continuum between Th1- and Th2-like cells rather than distinct Th1 or Th2 subsets. These data are important for further investigation of the potential role of cytokines in the inflammatory process of MS, and provide a powerful tool to investigate therapeutic interventions with respect to their influence on cytokine secretion of autoreactive T cells. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Pituitary adenylate cyclase-activating polypeptide (PACAP), a 38-amino acid neuropeptide belonging to the secretin-glucagon-vasoactive intestinal peptide (VIP) family, performs a variety of functions in both the nervous and immune systems. In this study, we examined the effects of PACAP on experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. When administrated intraperitoneally every other day after immunization with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55, PACAP ameliorated both the clinical and pathological manifestations of EAE Ex vivo examination revealed a significant inhibition of MOG35-55-specific Th1 response in mice treated with PACAP. In vitro analysis revealed that PACAP suppressed the production of inflammatory cytokines, including TNF-alpha, IL-1beta, and IL-12, and expression of the costimulatory factor B7-2 on macrophage and microglia, which may function as antigen presenting cells (APC) in the CNS. While PACAP suppressed the differentiation of MOG35-55-specific T cells into Th1 effectors upon restimulation with MOG35-55-expressing APC, it did not affect interferon (IFN)-gamma production by MOG35-55-specific T cells stimulated with anti-CD3 and anti-CD28. These observations suggested that PACAP suppressed induction of EAE primarily via suppression of APC function and inflammatory cytokine production. PACAP may be useful in the future treatment of Th1-mediated autoimmune diseases, such as multiple sclerosis.  相似文献   

3.
Local expression of cytokines in idiopathic inflammatory myopathies   总被引:3,自引:0,他引:3  
H. Lepidi, V. Frances, D. Figarella-Branger, C. Bartoli, A. Machado-Baeta & J-F. Pellissier (1998) Neuropathology and Applied Biology , 24, 73–79
Local expression of cytokines in idiopathic inflammatory myopathies
The idiopathic inflammatory myopathies (IIM), including dermatomyositis (DM), polymyositis (PM), and inclusion body myositis (IBM), are regarded as autoimmune diseases. They are characterized by chronic lymphocytic and macrophagic infiltration in muscle tissue. Of particular importance in understanding the immune response to IIM is the specific pattern of locally produced cytokines. Frozen muscle tissues from IIM (5 DM, 3 PM, and 1 IBM) were used to investigate the cytokine responses. The RT-PCR technique was instrumental to determine the pattern of expression of pro-inflammatory (IL-1β, IL-6, TNF-α), Th1 (IFN-γ IL-2), and Th2 (IL-4) cytokines. Immunohistochemistry was also used to localize morphologically IFN-γ and IL-4. Our results show that pro-inflammatory cytokines and Th1 cytokines are mainly expressed in IIM. The accumulation of mononuclear inflammatory cells and the inflammatory syndrome in IIM are probably related in part to the production of pro-inflammatory cytokines. Moreover, the pattern of local cytokine expression is consistent with a Th1 immune response related to autoimmune diseases.  相似文献   

4.
Experimental autoimmune encephalomyelitis (EAE) is a mouse model for multiple sclerosis, where disease is mediated by autoantigen-specific T cells. Although there is evidence linking CD4+ T cells that secrete IL-17, termed Th17 cells, and IFN-γ-secreting Th1 cells with the pathogenesis of EAE, the precise contribution of these T cell subtypes or their associated cytokines is still unclear. We have investigated the infiltration of CD4+ T cells that secrete IFN-γ, IL-17 or both cytokines into CNS during development of EAE and have examined the role of T cells in microglial activation. Our findings demonstrate that Th17 cells and CD4+ T cells that produce both IFN-γ and IL-17, which we have called Th1/Th17 cells, infiltrate the brain prior to the development of clinical symptoms of EAE and that this coincides with activation of CD11b+ microglia and local production of IL-1β, TNF-α and IL-6 in the CNS. In contrast, significant infiltration of Th1 cells was only detected after the development of clinical disease. Co-culture experiments, using mixed glia and MOG-specific T cells, revealed that T cells that secreted IFN-γ and IL-17 were potent activators of pro-inflammatory cytokines but T cells that secrete IFN-γ, but not IL-17, were less effective. In contrast both Th1 and Th1/Th17 cells enhanced MHC-class II and co-stimulatory molecule expression on microglia. Our findings suggest that T cells which secrete IL-17 or IL-17 and IFN-γ infiltrate the CNS prior to the onset of clinical symptoms of EAE, where they may mediate CNS inflammation, in part, through microglial activation.  相似文献   

5.
他克莫司治疗重症肌无力作用机制的研究   总被引:3,自引:0,他引:3  
目的:研究他克莫司治疗重症肌无力(MG)的免疫调节机制。方法:收集依据临床表现、实验室和电生理检查确诊的全身型MG患者外周血28份(来自22例患者),健康对照外周血20份(来自20名健康者)。分离单核细胞,稀释后等量分为4份,分别加入他克莫司0、2、10及50ng·mL^-1,培养48hN收集上清液,以ELISA法检测上清液中IL-12、IL-2、IFN-γ、IL-4、IL-10、IL-13、TNF-α、sICAM-1的浓度。结果:对照组随他克莫司浓度的升高(0、2、10和50ng·mL^-1),IL-2、IL-10的浓度显著升高(P〈0.05),TNF-α水平有降低趋势,但差异无统计学意义(P〈0.05)。MG组IL-12、IL-2、IFN-Y、IL-10、IL-13和sICAM-1的水平均显著升高(P〈0.05),而TNF-α水平明显降低(P〈0.05)。结论:他克莫司不是一个单纯的免疫抑制剂。它能抑制炎性因子TNF-α和黏附分子的分泌,诱导和影响Th1和Th2细胞因子产生,最终达到治疗MG的效果。  相似文献   

6.
In this report, we show that in the human astroglioma cell line D54-MG, both interleukin-1 (IL-1β) and tumor necrosis factor-alpha (TNF-α) enhance C3 gene expression in a time- and dose-dependent manner. Kinetic analysis demonstrates that after 96 h, C3 mRNA levels increase approximately 30-fold and 20-fold in response to IL-1β or TNF-α, respectively. C3 protein production increases proportionally, reaching levels 36-fold and 18-fold higher than untreated controls upon exposure to IL-1β or TNF-α, respectively. D54-MG cells require a minimal 1 h exposure to IL-1β in order to enhance C3 gene expression significantly, while 4 to 8 h are required for TNF-α. Simultaneous treatment of D54-MG cells with IL-1β and interferon-gamma (IFN-γ) resulted in an additive increase in both C3 mRNA and protein expression, a finding not seen with the combination of TNF-α and IFN-γ. Primary rat astrocytes also express increased C3 mRNA levels after 48 h in response to IL-1β (5.3-fold increase) and TNF-α (7-fold increase), while an additive effect was observed upon simultaneous treatment with both IL-1β and IFN-γ. In the central nervous system (CNS), endogenous complement and cytokine production by astrocytes, and enhancement by IFN-γ, a product of activated T cells often seen in the CNS in neural autoimmune disease, may contribute to the pathogenesis of inflammatory demyelinating diseases such as multiple sclerosis.  相似文献   

7.
8.
The kinetics of mRNA expression in the central nervous system (CNS) for a series of putatively disease-promoting and disease-limiting cytokines during the course of experimental autoimmune encephalomyelitis (EAE) in Lewis rats were studied. Cytokine mRNA-expressing cells were detected in cryosections of spinal cords using in situ hybridization technique with synthetic oligonucleotide probes. Three stages of cytokine mRNA expression could be distinguished: (i) interleukin (IL)-12, tumor necrosis factor (TNF)-β (=lymphotoxin-α) and cytolysin appeared early and before onset of clinical signs of EAE; (ii) TNF-α peaked at height of clinical signs of EAE; (iii) IL-10 appeared increasingly at and after clinical recovery. The early expression of IL-12 prior to the expression of interferon-γ (IFN-γ) mRNA shown previously is consistent with a role of IL-12 in promoting proliferation and activation of T helper 1 (Th1) type cells producing IFN-γ. The TNF-β mRNA expression prior to onset of clinical signs favours a role for this cytokine in disease initiation. A pathogenic effector role of TNF-α was suggested from these observations that TNF-α mRNA expression roughly paralleled the clinical signs of EAE. This may be the case also for cytolysin. IL-10-expressing cells gradually increased to high levels in the recovery phase of EAE, consistent with a function in down-regulating the CNS inflammation. From these data we conclude that there is an ordered appearance of putative disease-promoting and -limiting cytokines in the CNS during acute monophasic EAE.  相似文献   

9.
Chronic Fatigue Syndrome (CFS) is a complex illness affecting 4 million Americans for which no characteristic lesion has been identified. Instead of searching for a deficiency in any single marker, we propose that CFS is associated with a profound imbalance in the regulation of immune function forcing a departure from standard pre-programmed responses. To identify these imbalances we apply network analysis to the co-expression of 16 cytokines in CFS subjects and healthy controls. Concentrations of IL-1a, 1b, 2, 4, 5, 6, 8, 10, 12, 13, 15, 17 and 23, IFN-γ, lymphotoxin-α (LT-α) and TNF-α were measured in the plasma of 40 female CFS and 59 case-matched controls. Cytokine co-expression networks were constructed from the pair-wise mutual information (MI) patterns found within each subject group. These networks differed in topology significantly more than expected by chance with the CFS network being more hub-like in design. Analysis of local modularity isolated statistically distinct cytokine communities recognizable as pre-programmed immune functional components. These showed highly attenuated Th1 and Th17 immune responses in CFS. High Th2 marker expression but weak interaction patterns pointed to an established Th2 inflammatory milieu. Similarly, altered associations in CFS provided indirect evidence of diminished NK cell responsiveness to IL-12 and LT-α stimulus. These observations are consistent with several processes active in latent viral infection and would not have been uncovered by assessing marker expression alone. Furthermore this analysis identifies key sub-networks such as IL-2:IFN-γ:TNF-α that might be targeted in restoring normal immune function.  相似文献   

10.
HLA-DR2+ patients with multiple sclerosis (MS) that respond to vaccination with TCR Vβ5.2-38-58 peptides have increased frequencies of TCR peptide-specific T cells, reduced frequencies of myelin basic protein (MBP)-specific T cells, and a better clinical course than non-responders. To evaluate possible network regulation of MBP responses by TCR peptide-specific T cells, we compared properties of both cell types. Both MBP- and TCR peptide-specific T cell clones were CD4+ and predominantly HLA-DR restricted. HLA-DR2, which is in linkage disequilibrium in MS patients, preferentially restricted TCR peptide-specific clones as well as MBP-specific responses in HLA-DR2 and DR2,3+ donors. Within the DR2 haplotype, however, both DRβ1*1501 and DRβ5*0101 alleles could restrict T cell responses to Vβ CDR2 peptides, whereas responses to MBP were restricted only by DRβ5*0101. TCR peptide-specific clones expressed message for Th2 cytokines, including IL-4, IL-5, IL-6, IL-10, and TGF-β, whereas MBP-specific T cell clones expressed the Th1 cytokines IFN-γ and IL-2. Consistent with the Th2-like cytokine profile, TCR peptide-specific T cell clones expressed higher levels of CD30 than MBP-specific T cells. Culture supernatants from TCR peptide-specific T cell clones, but not from MBP- or Herpes simplex virus-specific T cells, inhibited both proliferation responses and cytokine message production of MBP-specific T cells. These results demonstrate distinct properties of MBP and TCR peptide-specific T cells, and indicate that both target and bystander Th1 cells can be inhibited by Th2 cytokines secreted by activated TCR peptide-specific T cells. These data support the rationale for TCR peptide vaccination to regulate pathogenic responses mediated by oligoclonal T cells in human autoimmune diseases. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Astrocytes play important roles in the complex and as yet not very well understood net of interactions among resident and infiltrating cells during central nervous system (CNS) inflammation. In such an intricate network, cytokines represent an essential means for intercellular communication, and astrocytes are able to affect their generation and/or release. Among various cytokines produced by infiltrating cells, interferon (IFN)-gamma and interleukin (IL)-17 are the focus of this research, because they are pivotal cytokines of helper T-cell type 1 (Th1) and helper T-cell type 17 (Th17), respectively. Importantly, both Th1 and Th17 cells, as well as their cytokines, have been shown to be of importance for the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of a prototypical CNS disease with inflammatory pathogenesis, multiple sclerosis. Therefore, the influence of astrocytes on the generation of IFN-gamma and IL-17 in concanavalin A- and myelin basic protein-stimulated lymph node cells of healthy rats and rats with developing EAE, respectively, was investigated in vitro. Astrocytes up-regulated IL-17 and IFN-gamma gene expression and protein synthesis in T cells, which coincided with astrocytes' ability to express IL-23 subunit p19 and common IL-12/IL-23 subunit p40 but not IL-12 subunit p35 in the co-cultivations. These results suggest one more way in which astrocytes could contribute to the complex interactions during CNS inflammation.  相似文献   

12.
The Guillain-Barré syndrome (GBS) and multiple sclerosis (MS) are though to result from aberranr immune responses to myelin antigens. Recent evidence to implicate the cytokine tunmor necrosis factor-α(TNF-α) and the intercellular adhesion molecule-1(ICAM-1) in the pathogenesis of these disorders is reviewed. In GBS, elevared serum concentrations of TNF-α are detectable in 20 to 50% of patients. TNF-α released from autoreactive T cells, macrophages, or microglia may contribute to inflammatory demyelinative processes by upregulating the expression of recognition molecules on antigen-presenting cells; by cytotoxic damage to endothlium; by stimulating the secretion of inflammatory mediators; by directly injuring the myelin sheath; or by interfering with impluse propagation. Its pathogenic potential in GBS is underscored by findings in experimental autoimmune neuritis. Soluble ICAM-1, originating from T cells, macrophages, endothelium, or glial cells, circulates at increases concentrations in serum and cerebrospinal fluid of patients with active MS. ICAM-1 may be crucially involved in the migration of autoreactive T lymphocytes from blood to brain. Whether ICAM-1 can serve as a maker of acute inflammatory events in ms associated with clinical relapses warrants further investigation. TNF-α and ICAM-1 coud be targets for antigen nonspecific treatment approaches to the inflammatory demyelinating diseases GBS and MS.  相似文献   

13.
The female predominance of multiple sclerosis (MS) has suggested that hormonal differences between the sexes must confer some protective effect on males or enhance the susceptibility of females to this disease. There has been evidence that gonadal hormones can modulate the immune response regulated by antigen presenting cells and T cells. These cells control the immune response by the production of interacting pro- and anti-inflammatory cytokines. The first include the acute phase pro-inflammatory cytokines of the innate immune response as well as the T-helper 1 (Th1) cytokines, while the later contain the Th2 cytokines as well as the suppressor cytokines. There is some evidence that MS and experimental autoimmune encephalitis (EAE) are Th1 cell-mediated diseases. For this reason many studies have been done to influence the pro-inflammatory cytokine production of these Th1 cells in favour of an anti-inflammatory immune response as mediated by Th2 cells. However the role of the regulatory T cells in this context is not clearly understood. Here we review the studies concerning the role of sex hormones on the cytokine production in relation to the disease course of MS and EAE and in particular in the light of the recent revival of the regulatory T cells and their suppressive cytokines.  相似文献   

14.
Myasthenia gravis (MG) and its animal model experimental autoimmune myasthenia gravis (EAMG) are caused by autoantibodies against nicotinic acetylcholine receptor (AChR) in skeletal muscle. The production of anti-AChR antibodies is mediated by cytokines produced by CD4+ and CD8+ T helper (Th) cells. Emerging investigations of the roles of cytokines in MG and EAMG have revealed that the Th2 cell related cytokine interleukin 4 (IL-4), an efficient growth promoter for B-cell proliferation and differentiation, is important for anti-AChR antibody production. IL-6 and IL-10 have similar effects. The Th1 cytokine IFN-γ is important in inducing B-cell maturation and in helping anti-AChR antibody production and, thereby, for induction of clinical signs and symptoms. Results from studies of time kinetics of cytokines imply that IFN-γ is more agile at the onset of EAMG, probably being one of the initiating factors in the induction of the disease, and IL-4 may be mainly responsible for disease progression and persistance. Even though other Th1 cytokines like IL-2, tumor necrosis factor α (TNF-α), and TNF-β as well as the cytolytic compound perforin do not directly play a role in T-cell-mediated help for anti-AChR antibody production, they are actually involved in the development of both EAMG and MG, probably by acting in concert with other cytokines within the cytokine network. In contrast, transforming growth factor β (TGF-β) exerts immunosuppressive effects which include the down-regulation of both Th1 and Th2 cytokines in MG as well as EAMG. Suppressive effects are also exerted by interferon α (IFN-α). Based on elucidation of the role of cytokines in EAMG and MG, treatments that up-modulate TGF-β or IFN-α and/or suppress cytokines that help B-cell proliferation could be useful to improve the clinical outcome. © 1997 John Wiley & Sons, Inc. Muscle Nerve, 20, 543–551, 1997  相似文献   

15.
OBJECTIVE: Ingested type I IFN inhibits clinical attacks, relapses and inflammation in murine chronic relapsing EAE by inhibiting Th1-like cytokines. Type I IFN activates human suppressor T cells that produce SIRS. METHODS: We examined whether oral (ingested) SIRS peptide inhibits EAE by decreasing Th1-like cytokines. RESULTS: Parenteral SIRS peptide 1-21 showed a significant inhibition of disease severity in murine EAE. Ingested SIRS peptide at 10 and 100 microg SIRS peptide showed a significant inhibition of disease severity but also a prolonged delay in the onset of disease compared to placebo. There were significantly less inflammatory foci in the SIRS peptide fed group compared to the control mock fed group. Splenocytes from SIRS peptide 1-21 fed mice showed increased production of Th2-like CD30L, IL-13, TCA-3 cytokines/chemokines and decreased production of Th1-like cytokine lymphotactin. INTERPRETATION: Ingested (oral) SIRS peptide significantly inhibits both clinical EAE and inflammation predominately via counter-regulatory type 2-like cytokines/chemokines IL-13, CD30L and TCA-3.  相似文献   

16.
Perivascular accumulation of mononuclear cells (MNCs) in the central nervous system (CNS) and high levels of myelin autoantigen-reactive T cells in blood and further enriched in cerebrospinal fluid (CSF) are characteristic for multiple sclerosis (MS) and suggest a role for immunoregulatory cytokines in MS pathogenesis. The difficulties inherent to measurements of cytokine concentrations in body fluids have been partly overcome by adopting techniques allowing cytokine determinations on cellular level. MS is associated with the parallel up-regulation of proinflammatory [interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), lymphotoxin-α, and interleukin (IL)-12] and immune response-down-regulating [transforming growth factor-β (TGF-β), IL-10] cytokines systemically. A preferential up-modulation of TNF-α and lymphotoxin-α is observed in clinical exacerbations and of TGF-β and IL-10 in remissions. The B cell-stimulating IL-4 and IL-6 are also up-regulated in MS, as is the cytolysis-promoting perforin. Cytokine production is elevated to an even higher degree in the CSF than systemically, underlining the autonomy of the immune responses in the CSF. All cytokine abnormalities are demonstrable already in very early MS, manifested by acute unilateral optic neuritis associated with more than two MS-like lesions on brain magnetic resonance imaging and oligoclonal IgG bands in CSF. The cytokine abnormalities hitherto observed are not MS specific, because they can be found in other inflammatory CNS diseases, e.g., aseptic meningitis and even noninflammatory neurological diseases like stroke. The influence on cytokine profiles, e.g., suppressing proinflammatory cytokines and promoting TGF-β and IL-10, could be an important way to identify new and promising treatments of MS. © 1996 Wiley-Liss, Inc.  相似文献   

17.
The expression of the adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), and their respective receptors on leukocytes, very late activation antigen-4 (VLA-4) and lymphocyte function–associated antigen-1 (LFA-1), together with a selection of proinflammatory and immunomodulatory cytokines (interleukin [IL]-1, IL-2, IL-4, IL-10, tumor necrosis factor-α [TNF-α], transforming growth factor-β [TGF-β], and interferon-γ [IFN-γ]) was examined by immunocytochemistry in multiple sclerosis (MS) lesions of different ages and compared with central nervous system (CNS) tissue from other neurological diseases, both inflammatory and noninflammatory, and normal CNS tissue. These molecules play key roles in lymphocytic infiltration and interactions during tissue inflammation and are in large part normally not expressed by CNS cells. High levels of expression of all the molecules tested were found in MS, particularly in chronic active lesions. Positivity for all molecules was also seen in other neurological diseases, even in noninflammatory conditions. There was some suggestion that the VCAM-1/VLA-4 adhesion pathway was expressed at higher levels in chronic MS lesions, while ICAM-1/LFA-1 was used more uniformly in lesions of all ages. Of the cytokines examined, there was increased expression of TNF-α and IL-4 in MS; this was found to be statistically significant when compared with noninflammatory neurological diseases. The expression of most adhesion molecules and some cytokines was negligible in normal CNS tissue although low-level reactivity for ICAM-1 TGF-β, IL-4, TNF-α, and IL-10 was detected, perhaps indicative of immunoregulatory mechanisms. Microglial cells and astrocytes were the major CNS cell types expressing cytokines. The results indicate a potential in the CNS for widespread induced expression of molecules involved in the inflammatory cascade. No adhesion or cytokine molecule or pattern of expression unusual for MS was apparent.  相似文献   

18.
Li Z  Chen L  Niu X  Liu J  Ping M  Li R  Xie X  Guo L 《Journal of neuroimmunology》2012,250(1-2):9-17
Combination therapies are gaining momentum over monotherapies in the treatment of multiple sclerosis (MS). Suboptimal doses of atorvastatin and rapamycin prevented or reversed clinical and histologic experimental autoimmune encephalomyelitis (EAE). Secretion of proinflammatory Th1 and Th17 cytokines was reduced and Th2 and Treg cytokine secretion was increased in mice. Combination therapy promoted induction of Treg cells and attenuated the infiltration of inflammatory IL-17 cells in EAE. It appeared that rapamycin-reactivated ERK was blunted by addition of atorvastatin. Our results demonstrate that agents with different mechanisms of immune modulation can combine synergistically in treating CNS autoimmunity.  相似文献   

19.
Cytokines and chemokines govern leukocyte trafficking, thus regulating inflammatory responses. In this study, the anti-inflammatory effects of low dose 17 beta-estradiol were evaluated on chemokine, chemokine receptor, and cytokine expression in the spinal cords (SC) of BV8S2 transgenic female mice during acute and recovery phases of experimental autoimmune encephalomyelitis (EAE). In EAE protected mice, 17 beta-estradiol strongly inhibited mRNA expression of the chemokines RANTES, MIP-1 alpha, MIP-2, IP-10, and MCP-1, and of the chemokine receptors CCR1, CCR2 and CCR5 at both time points. Conversely, ovariectomy, which abrogated basal 17 beta-estradiol levels and increased the severity of EAE, enhanced the expression of MIP-1 alpha and MIP-2 that were over-expressed by inflammatory mononuclear cells in SC. 17 beta-estradiol inhibited expression of LT-beta, TNF-alpha, and IFN-gamma in SC, but had no effect on IL-4 or IL-10, indicating reduced inflammation but no deviation toward a Th2 response. Interestingly, elevated expression of CCR1 and CCR5 by lymph node cells was also inhibited in 17 beta-estradiol treated mice with EAE. Low doses of 17 beta-estradiol added in vitro to lymphocyte cultures had no direct effect on the activation of MBP-Ac1-11 specific T cells, and only at high doses diminished production of IFN-gamma, but not IL-12 or IL-10. These results suggest that the beneficial effects of 17 beta-estradiol are mediated in part by strong inhibition of recruited inflammatory cells, resulting in reduced production of inflammatory chemokines and cytokines in CNS, with modest effects on encephalitogenic T cells that seem to be relatively 17 beta-estradiol insensitive.  相似文献   

20.
Experimental autoimmune encephalomyelitis (EAE) as an experimental model of multiple sclerosis (MS) is characterized by demyelination, infiltration of inflammatory cells into the nervous system and dysregulation of serum inflammatory cytokines. We investigated the correlation of serum cytokines and other inflammatory markers with the EAE pathogenesis. After EAE induction, the levels of different serum cytokine/inflammatory mediators were measured. Furthermore, motor functions, myelination, and lymphocyte infiltration in EAE mice were also assessed. Our results revealed that the serum concentrations of T-helper 1 (Th1) and Th17 cytokines, interleukin (IL)-6, IL-1β, IL-1α and prostaglandin E2 in EAE mice were significantly higher than controls. The ratios of pro- to anti-inflammatory cytokines were different between the EAE and the control group. A statistically significant positive correlation was found between the IL-6/IL-10 ratio and the EAE severity, demyelination rate, and lymphocyte infiltration in EAE mice. Results indicate that the profiles of serum pro- and anti-inflammatory cytokines might be useful as biomarkers for monitoring the pathological manifestation of EAE. Furthermore, evaluating the dynamic interplay of serum cytokine levels and the correlation with pathogenic mechanisms of EAE may provide diagnostic and therapeutic insights for MS and some other inflammatory disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号