首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in potential between the pial and cut surfaces of rat olfactory cortex slices evoked by N-methyl-d-aspartate (NMDA), quisqualate, kainate,l-glutamate andl-aspartate and also by γ-aminobutyric acid (GABA) have been monitored using extracellular electrodes. All agonists produced a pial-negative potential response when superfused onto the pial surface, GABA,l-aspartate andl-glutamate being less potent than the others. Repeated applications of NMDA, but not of the other agonists, led to a progressive reduction in response to approximately 30% of the initial depolarization. The responses to NMDA (100 μM) were selectively abolished by(±)2-amino-5-phosphonopentanoic acid (APP; 100 μM) while depolarizations evoked byl-glutamate andl-aspartate (both at 10 mM) were only antagonized by21 ± 2 (n = 12) and36 ± 3 (n = 12) percent respectively (means ± S.E.M.). γ-d-Glutamylglycine (γ-DGG; 1 mM) and(±)cis-2,3-piperidine dicarboxylate (cis-PDA; 2 and 5 mM), in addition to antagonizing responses to NMDA, also partially blocked quisqualate- and kainate-evoked depolarizations. When a mixture of APP (100 μM), γ-DGG (1 mM) and cis-PDA (5 mM) was applied to preparations, although NMDA receptors were completely blocked and responses to both quisqualate and kainate antagonized by approximately 80%,l-glutamate andl-aspartate evoked depolarizations were only reduced by51 ± 7 (n = 4) and 49 ± 4 (n = 4) percent respectively (means ± S.E.M.). The results are discussed in terms of the contributions made by NMDA, quisqualate and kainate receptors to the composite responses evoked byl-aspartate andl-glutamate.  相似文献   

2.
Primary cultures of cerebellar granule cells have been used in pharmacologically and functionally characterizing excitatory amino acid recognition sites coupled with guanylate cyclase. When granule cells were incubated in physiological culture conditions (Locke's solution, pH 7.4), only kainate and, to a lesser extent, L-glutamate increased cyclic GMP (cGMP) levels. Under these conditions, L-aspartate, N-methyl-D-aspartate (NMDA), and quisqualate were inactive. When granule cells were incubated in the absence of extracellular Mg2+ or in the presence of the depolarizing agent veratrine, L-glutamate, L-aspartate, and NMDA became as effective as kainate in enhancing cGMP formation. The action of kainate was preferentially antagonized by 2,3-cis-piperidindicarboxylate, whereas the action of L-glutamate was preferentially antagonized by (+/-)2-amino-5-phosphonovalerate. These data suggest that 2 different excitatory amino acid recognition sites (activated by kainate or by L-glutamate, L-aspartate, and NMDA, respectively) are coupled with guanylate cyclase in primary cultures of cerebellar granule cells: While the coupling of the recognition site for kainate with guanylate cyclase operates under resting conditions and in the presence of Mg2+, the coupling of the recognition site for L-glutamate, L-aspartate, and NMDA with guanylate cyclase requires depolarizing conditions or the absence of extracellular Mg2+.  相似文献   

3.
The interaction of the catecholamines epinephrine (E) and norepinephrine (NE) (1.0-100 microM) and excitatory amino acids on motoneurons of the isolated superfused frog spinal cord was investigated by sucrose gap recordings from ventral roots. Exposure of the cord to E or NE 30 sec prior to application of L-aspartate or L-glutamate reduced the motoneuron depolarizations produced by the amino acids. The reduction of responses to the mixed receptor agonists L-glutamate and L-aspartate may be the result of opposite actions of the catecholamines on the activation of specific excitatory receptors by the amino acids. Thus, E and NE facilitated depolarizations caused by application of N-methyl-D-aspartate (NMDA) and depressed those produced by quisqualate. The effect on NMDA responses appeared to be beta-adrenoceptor mediated because it was mimicked by the beta-agonist isoproterenol and blocked by propranolol. The effect on quisqualate depolarizations appeared to require activation of alpha 2-adrenoceptors; it was mimicked by the alpha 2-agonists clonidine and alpha-methylnorepinephrine and antagonized by yohimbine and piperoxan. These results are important in understanding the actions of catecholamines on reflex transmission in spinal pathways which use excitatory amino acids as transmitters.  相似文献   

4.
Dose-response curves for activation of excitatory amino acid receptors on mouse embryonic hippocampal neurons in culture were recorded for 15 excitatory amino acids, including the L-isomers of glutamate, aspartate, and a family of endogenous sulfur amino acids. In the presence of 3 microM glycine, with no extracellular Mg, micromolar concentrations of 11 of these amino acids produced selective activation of N-methyl-D-aspartate (NMDA) receptors. L-Glutamate was the most potent NMDA agonist (EC50 2.3 microM) and quinolinic acid the least potent (EC50 2.3 mM). Dose-response curves were well fit by the logistic equation, or by a model with 2 independent agonist binding sites. The mean limiting slope of log-log plots of NMDA receptor current versus agonist concentration (1.93) suggests that a 2-site model is appropriate. There was excellent correlation between agonist EC50S determined in voltage clamp experiments and KdS determined for NMDA receptor binding (Olverman et al., 1988). With no added glycine, and 1 mM extracellular Mg, responses to NMDA were completely blocked; responses to kainate and quisqualate were unchanged. Under these conditions, glutamate and the sulfur amino acids activated a rapidly desensitizing response, similar to that evoked by micromolar concentrations of quisqualate and AMPA, but mM concentrations of L-aspartate, homoquinolinic acid, and quinolinic acid failed to elicit a non-NMDA receptor-mediated response. Except for L-glutamate (EC50 480 microM), the low potency of the sulfur amino acids prevented the study of complete dose-response curves for the rapidly desensitizing response at quisqualate receptors. Small-amplitude nondesensitizing quisqualate receptor responses were activated by much lower concentrations of all quisqualate receptor agonists. Full dose-response curves for the nondesensitizing response were obtained for 9 amino acids; L-glutamate was the most potent endogenous agonist (EC50 19 microM). Domoate (EC50 13 microM) and kainate (EC50 143 microM) activated large-amplitude, nondesensitizing responses.  相似文献   

5.
Sucrose gap recordings from the ventral roots of isolated, hemisected frog spinal cords were used to evaluate the effects of high concentrations of serotonin (5-HT) and alpha-methyl-5-HT (alpha-Me-5-HT) on the changes in motoneuron potential produced by dorsal root stimulation and by excitatory amino acids and agonists. Bath application of 5-HT in concentrations of 10 microM or greater produced a concentration-dependent motoneuron depolarization. Polysynaptic ventral root potentials evoked by dorsal root stimuli were reduced in both amplitude and area by 5-HT or alpha-Me-5-HT (both 100 microM). This may result from a reduction of the postsynaptic sensitivity of motoneurons to excitatory amino acid transmitters because 5-HT significantly depressed motoneuron depolarizations produced by addition of L-glutamate and L-aspartate to the superfusate. Similarly, 5-HT reduced depolarizations produced by the excitatory amino acid agonists N-methyl-D-aspartate (NMDA), quisqualate, alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA), and kainate. alpha-Me-5-HT reduced NMDA depolarizations. Tetrodotoxin (TTX) did not affect the ability of 5-HT to attenuate NMDA or kainate depolarizations, but did eliminate the 5-HT-induced attenuation of quisqualate and AMPA depolarizations. The glycine receptor site associated with the NMDA receptor did not appear to be affected by 5-HT because saturation of the site by excess glycine did not alter the 5-HT-induced depression of NMDA responses. The 5-HT1C/2 antagonist ketanserin and the 5-HT1A/2 antagonist spiperone significantly attenuated the 5-HT-induced depression of NMDA-depolarizations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
S E Dryer 《Brain research》1988,443(1-2):173-182
The characteristics of excitatory amino acid-evoked currents and of excitatory synaptic events have been examined in lamprey Müller neurons using voltage clamp and current clamp recording techniques. Application of glutamate evoked depolarizations associated with a decrease in input resistance. The reversal potential of the responses was -35 mV. Under voltage clamp conditions, a series of excitatory amino acid agonists evoked inward currents associated with little or no increase in baseline current noise. The order of potency of the excitatory amino acid agonists was quisqualate greater than kainate greater than glutamate greater than aspartate, while N-methyl-D-aspartic acid (NMDA) was inactive. Inward currents evoked by glutamate, as well as by kainate and quisqualate were attenuated reversibly by 1 mM kynurenic acid (KYN). In contrast, glutamate-evoked currents were not affected by 100 microM D(-)-2-amino-5-phosphonovaleric acid (APV), a selective NMDA antagonist. Spontaneously occurring and stimulus-evoked excitatory postsynaptic events were antagonized reversibly by 1 mM KYN. At this concentration, KYN had no effect on membrane potential, input resistance, or excitability of the cells. In contrast, excitatory postsynaptic currents were unaffected by APV. It is concluded that both glutamate responses and excitatory synaptic transmission in lamprey Müller neurons are mediated by non-NMDA-type receptors and that these receptors are associated with ionic channels with a low elementary conductance. The combined pharmacological and biophysical characteristics of these responses are therefore different from those previously reported in other preparations. Spontaneous (but not stimulus-evoked) inhibitory synaptic events in Müller neurons were blocked reversibly by 1 mM KYN but not by 100 microM APV, suggesting that excitation of interneurons inhibitory to Müller cells was also mediated by non-NMDA receptors.  相似文献   

7.
A study has been undertaken to assess the percentage contributions made by N-methyl-D-aspartate (NMDA), kainate and quisqualate receptors to the composite depolarizations evoked by L-cysteate, L-cysteinesulphinate, L-homocysteate and S-sulpho-L-cysteine in the rat olfactory cortex slice. The percentage contribution made by NMDA receptors, which was quantified by measuring the reduction in agonist responses in the presence of the highly selective NMDA receptor antagonist 2-amino-5-phosphonopentanoate (0.1 mM), was: L-homocysteate, 73%; S-sulpho-L-cysteine, 65%; L-cysteate, 42% and L-cysteinesulphinate, 30%. Responses mediated by NMDA, kainate and quisqualate receptors were abolished by a 'desensitization' procedure involving repeated application of a mixture containing high concentrations of the selective agonists followed by perfusion of the non-selective receptor antagonist cis-2,3-piperidine dicarboxylate (5 mM). Following this procedure, responses to L-homocysteate and S-sulpho-L-cysteine were almost abolished and simple calculation gave the contribution of kainate plus quisqualate receptors to the agonist responses as: L-cysteinesulphinate, 46%; L-cysteate, 34%; S-sulpho-L-cysteine, 28% and L-homocysteate, 23%. However, approximately 24% of the composite depolarizations evoked by L-cysteate and L-cysteinesulphinate was mediated by a mechanism not involving NMDA, kainate or quisqualate receptors, neither did it reflect possible electrogenic uptake of the amino acids nor an interaction with 2-amino-4-phosphonobutyrate receptors. It is suggested that this fraction of the depolarizations evoked by L-cysteate and L-cysteinesulphinate might be due to a non-receptor-mediated release of K+ or, perhaps, to activation of an as yet unidentified receptor category.  相似文献   

8.
In the present study, we have shown by single afferent unit recording in the organs of Lorenzini that L-serine-O-phosphate (L-SOP) decreases the resting discharge frequency as well as electrically evoked responses. L-SOP in a concentration of 0.1-100 microM antagonizes responses induced by L-glutamate (L-GLU) and N-methyl-D-aspartate (NMDA) and has no effect on the responses to application of kainate (KA) and quisqualate (Q). The results obtained confirm previous observations about the existence of NMDA receptors in the afferent synapse of the ampullae of Lorenzini.  相似文献   

9.
The voltage-dependency of the responses of Purkinje cells to excitatory amino acids was examined in rat cerebellar slices, using intrasomatic recordings with the single electrode voltage-clamp. In standard perfusion medium, the depolarizations evoked in these neurones by ionophoretic pulse applications (less than 300 ms) of L-glutamate, L-aspartate and quisqualate in their dendritic fields had underlying inward currents which did not increase or even decreased, as the holding potential was shifted to values more negative than -65 mV. This 'abnormal' voltage-dependency was still present in Mg2+ -free solution but was abolished in the presence of CsCl2 (10 mM) in the perfusion medium. When TTX (5 microM) and CdCl2 (0.1 mM) were further added to the bath in order to block regenerative conductances, thus broadening the range of the clamp voltages to more positive values than -50 mV, the current-voltage relation between -80 and 0 mV for responses to L-glutamate and L-asparate was almost linear. Our results support the view that low doses of both amino acids act on Purkinje cells essentially via the activation of receptors which are not of the N-methyl-D-aspartate type.  相似文献   

10.
Responses evoked by L-cysteine-sulphinate (L-CSA) and L-aspartate (L-Asp) were recorded with intracellular electrodes from caudate neurons in halothane anesthetized cats. L-CSA and L-Asp were applied microiontophoretically to caudate cells and their effects on membrane and action potentials, as well as on cortically evoked synaptic potentials were evaluated. L-CSA and L-Asp induced depolarizations accompanied by regular firing resembling kainate (KA)- or quisqualate (QUIS)-induced excitation patterns (type 1) in 82% and 72% of the recorded neurons, respectively, and a mixed pattern consisting of a N-methyl-D-aspartate (NMDA)-like excitation (type 2) followed by a regular type 1 pattern in the remaining cells. In about a quarter of the cells the effects of L-CSA and L-Asp, but not those of KA or QUIS, were partially antagonized by 2-amino-7-phosphonoheptanoate (AP-7), a specific NMDA receptor antagonist. Kynurenate, a broad spectrum excitatory amino acid antagonist, blocked responses elicited by either L-CSA or QUIS. The actions of L-CSA and L-Asp on the firing pattern and membrane potential of cat caudate neurons in situ provide evidence in favor of their mixed agonist nature with respect to NMDA and non-NMDA excitatory amino acid receptors.  相似文献   

11.
The actions of the putative quisqualate-selective agonist DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) were examined in identified embryonic chick motoneurons using gigaseal recording techniques and compared with properties of the selective non-NMDA excitatory amino acid agonists kainate and quisqualate. Pressure application of AMPA induces an inward going current when neurons are voltage-clamped at negative membrane potentials. The current-voltage relationship for this response is linear with reversal near 0 mV. Over the range of 1 microM-10 mM, the AMPA-induced current is dose-dependent with an ED50 of 40 microM. AMPA currents are insensitive to the selective NMDA receptor antagonist, 2-amino-5-phosphonovalerate, and the putative quisqualate selective blocker, glutamate diethyl ester, but are partially inhibited by kynurenic acid. In competition experiments, applications of saturating concentrations of AMPA and either kainate or quisqualate produce responses intermediate between the response to either agonist alone, indicating commonality in the mechanism of these agents. Applications of AMPA with the NMDA-selective agonist aspartate give an additive response. Analysis of current fluctuations indicates that AMPA, quisqualate, and kainate gate a channel with a primary conductance near 20 pS. Differences in maximal macroscopic current evoked by saturating concentrations of AMPA, kainate, and quisqualate cannot be explained by differences in mean channel open time as the most efficacious agonist, kainate, has the shortest channel open time (AMPA = 5.9 +/- 0.4 msec, kainate = 2.7 +/- 0.1 msec, quisqualate = 5.0 +/- 0.5 msec). Rather, kainate induces a greater frequency of channel opening. This finding contrasts with results obtained at the nicotinic ACh receptor, where the most efficacious agonists have the longest mean channel open time. Our results suggest that AMPA acts at the same receptor-channel complex as kainate and quisqualate on chick motoneurons and support the hypothesis that only 2 classes of excitatory amino acid receptor complexes exist in this preparation.  相似文献   

12.
In the spinal cord of the anaesthetized cat microelectrophoretically administered (+/-)-cis-2,3-piperidine dicarboxylate (2,3-PDA), (+/-)-cis-2,5-piperidine dicarboxylate (2,5-PDA), gamma-D-glutamylglycine (gamma DGG), beta-D-aspartyl-beta-alanine (beta DAA), (+/-)-2-amino-4-phosphonobutyrate (2-APB), (+/-)-2-amino-5-phosphonovalerate (2-APV) and (+/-)-2-amino-7-phosphonoheptanoate (2-APH) were assessed as antagonists of chemical excitation of dorsal horn interneurones and Renshaw cells by N-methyl-D-aspartate (NMDA), L-aspartate, quisqualate (QUIS), kainate and L-glutamate, and of monosynaptic and polysynaptic excitation by impulses in primary afferent fibres of muscle and cutaneous origin. Whereas polysynaptic excitation of interneurones was readily and reversibly depressed by 2-APV, 2-APH, beta DAA, gamma DGG and 2,3-PDA, all of which also reduced excitation by NMDA (and L-aspartate) more than that by QUIS (and L-glutamate), no selective antagonism of monosynaptic excitation could be demonstrated. In particular, 2,3-PDA, which depressed excitation by kainate to a greater extent than that by either QUIS or NMDA, appeared to have no effect on monosynaptic excitation. The results support the involvement of L-aspartate as the transmitter of some spinal excitatory interneurones, but none of the antagonists tested were considered suitable for assessing the role of L-glutamate as the transmitter of some spinal primary afferent fibres.  相似文献   

13.
J. Davies  J.C. Watkins   《Brain research》1985,327(1-2):113-120
We have investigated the effects of iontophoretically administered gamma-D-glutamylaminomethyl sulfonate (GAMS) on excitation of dorsal horn neurons and Renshaw cells of the cat spinal cord induced by exogenous excitants and by synaptic activation following stimulation of low threshold primary afferent fibers. Comparisons were made between the synaptic depressant effects of GAMS and those of gamma-D-glutamylglycine (gamma DGG) and (+/-)-2-amino-5-phosphonovalerate (APV). At low iontophoretic ejection currents, GAMS showed clear selectivity in antagonizing responses to excitatory amino acids in the order kainate greater than quisqualate greater than L-aspartate greater than NMDA greater than L-glutamate. This selectivity was decreased at high ejection currents, when acetylcholine-induced excitation of Renshaw cells was also reduced. GAMS was equieffective with gamma DGG in depressing both APV-sensitive polysynaptic excitation and APV-resistant monosynaptic excitation of spinal neurons. Ventral root evoked excitation of Renshaw cells was not reduced by GAMS. In some cells a depression of synaptic excitation by GAMS was observed in the absence of an effect on either L-glutamate- or L-aspartate-induced excitation. This raises the possibility that some other endogenous substance may be a transmitter acting at kainate/quisqualate type receptors in the cat spinal cord. However, other factors are discussed which may explain this observation.  相似文献   

14.
Effect of bath-application of L-serine-O-phosphate (SOP) on the resting and evoked activity as well as on responses elicited by L-glutamate (L-GLU), quisqualate (Q), kainate (KA) and N-methyl-D-aspartate (NMDA) were studied at the level of afferent synapses of the ampullae of Lorenzini. SOP blocked the synaptic transmission (threshold concentration 10(-7) mol/l) and inhibited responses elicited by application of L-GLU and NMDA, while Q- and KA-induced responses remained unchanged. The data obtained permit supposing that inhibitory effects of SOP in the afferent synapses of the ampullae of Lorenzini are associated with its action on membrane receptors of the NMDA type.  相似文献   

15.
A study has been made of the effects of a series of excitatory amino acid receptor antagonists on the field potentials evoked on electrical stimulation of the lateral olfactory tracts of olfactory cortex slices perfused in vitro. The antagonists studied included (+/-)-2-amino-5-phosphonovaleric acid, a potent, specific antagonist of N-methyl-D-aspartate (NMDA) receptors, gamma-D-glutamylglycine, an antagonist of NMDA and kainate receptors and (+/-)-cis-2,3-piperidine dicarboxylic acid and 2-amino-4-phosphonobutyric acid, drugs which in addition to antagonizing NMDA and kainate receptors also block responses to quisqualic acid. From the patterns of effects of the drugs it is proposed that quisqualate and NMDA but not kainate receptors are involved in mediating excitatory transmission in the olfactory cortex; quisqualate receptors are located at the lateral olfactory tract - superficial pyramidal cell synapse whereas NMDA receptors are present at the synapses of the superficial pyramidal cell collaterals with the deep pyramidal cell dendrites and/or at the synapses of the pyramidal cell collaterals and inhibitory interneurones. The results are discussed in terms of possible presynaptic and/or postsynaptic sites of antagonist action.  相似文献   

16.
Threshold concentrations for L-glutamate, L-aspartate and their agonists, kainate, quisqualate and N-methyl-D,L-aspartate, were determined for horizontal cells of the intact carp retina and horizontal cells that were enzymatically isolated and maintained in culture. Our results indicate that uptake or other mechanisms decrease the apparent sensitivity of these cells in the intact retina to L-glutamate by 25-200 times. Our findings also suggest that L-glutamate is more likely a photoreceptor transmitter than L-aspartate.  相似文献   

17.
K Okano  S Obara 《Brain research》1988,457(1):79-88
Tonic electroreceptors of the marine catfish Plotosus were isolated, and effects of chemicals applied in the bath were examined in terms of firing rate (F) responses in single unit afferent nerve. L-Glutamate (L-Glu) and agonists caused marked F increase in the spontaneous discharge. Their potencies, estimated from concentrations for 50% of max F increase, were in the order of quisqualate (2 microM), kainate (7 microM), L-Glu (0.4 mM), L-homocysteate (0.4 mM), D-Glu (3 mM) and L-aspartate (L-Asp, greater than 10 mM). N-Methyl-D,L-aspartate (10 mM) had no effect. L-Glu induced F increase also in the receptors fully suppressed either by cathodal pulses or by high Mg (15 mM), which indicated the postsynaptic action. The synaptic responses were often affected differently in the fast and slow phases, here termed as the peak F and the adapted F, respectively. L-Asp potentiated only the adapted F. Kynurenic acid (Kyn) suppressed only the adapted F, but incompletely and rather dose-independently. Kyn, however, competitively antagonized the amino acid-induced responses. The present results suggest the presence of two distinct postsynaptic receptors, one a Kyn-sensitive Glu receptor that is responsible for part of the adapted F, and the other still undetermined that is responsible for most of the synaptic responses.  相似文献   

18.
Dendrodendritic synapses occur between granule cell dendrites and secondary dendrites of mitral cells within the olfactory bulb and are attainable in a subcellular fraction (DDS). Since the mitral cells are thought to utilize an excitatory amino acid as a neurotransmitter, we determined the pharmacologic specificity of Na+-independent L-[3H]glutamate binding to fresh membranes of DDS in 50 mM Tris-HCl, pH 7.1. Binding of L-glutamate to membranes of DDS was specific, Cl(-)-dependent, and saturable. Scatchard plots were analyzed by nonlinear regression analyses using the computer program LIGAND, and the data was best-fitted to a one-site model with KD of 0.56 +/- 0.04 microM and an apparent Bmax of 48 +/- 5 pmol/mg protein. Hill plots also indicated the presence of one site and no cooperativity (nH = 0.99 +/- 0.03). However, the relative effectiveness of several compounds in inhibiting L-glutamate binding to membranes of DDS clearly demonstrated the presence of more than one site. Electrophysiological studies suggest that 2-amino-4-phosphonobutyrate (APB) is a potent antagonist of evoked responses elicited by stimulation of mitral cell axons and that quisqualate is a potent agonist; both of these compounds were highly effective inhibitors of L-glutamate binding to DDS membranes. APB displaced about 70% of the sites labeled with 200 nM L-glutamate with a KI of 1.6 microM, whereas quisqualate inhibition of L-glutamate binding yielded a line that was curvilinear in the Scatchard plot and was resolved into two sites of relatively high affinity (KI values of 0.02 and 0.65 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Several lines of evidence indicate a possible interaction between the major inhibitory and excitatory cortical neurotransmitters, GABA and glutamate. To assess the neurochemical basis for such an interaction, we examined the effects of glutamate and several analogs on GABA-dependent chloride uptake in a mouse cortical synaptoneurosome preparation. L-Glutamate and the specific receptor subtype ligands kainate and quisqualate led to a small but significant enhancement in chloride uptake in the presence, but not the absence, of the GABA analog muscimol (5 microM). Enhancement was seen at excitatory amino acid (EAA) concentrations of 2-10 microM, but not at higher concentrations. D-Glutamate, NMDA, the NMDA-related antagonists APV and MK801, and the kainate/quisqualate antagonist CNQX, had no effect on chloride uptake. However, CNQX (50 microM) but not APV (50 microM) blocked the increase in chloride uptake due to kainate or quisqualate (10 microM). In addition, depolarization of synaptoneurosomes using high potassium (40 mM KC1) or ouabain pretreatment (5 microM) blocked the effects of kainate and quisqualate. Glutamate, kainate, and quisqualate had no effect on binding at the benzodiazepine, TBPS, or GABA sites on the GABAA receptor complex.  相似文献   

20.
Retinal neurons were enzymatically and mechanically dissociated from adult skate retinas and maintained in cell culture for up to 14 days. Intracellular recordings were made from isolated horizontal and bipolar cells while neurotransmitters were applied via pressure ejection. L-Glutamate, quisqualate, kainate, and gamma-amino-butyric acid (GABA), when applied to horizontal cells, produced large (60 to 70 mV), long-lasting depolarizations. These responses appear to consist of at least two components: a graded depolarization and a Ca++-dependent regenerative component. As regards bipolar cells, L-glutamate and its analogues depolarized about 30% of the cells tested, while GABA hyperpolarized most of these neurons. Both agents acted on bipolar cells by increasing conductance. Repeated applications of L-glutamate, quisqualate, kainate, and GABA to horizontal cells produced no desensitization, but in these circumstances the glutamate analogues, kainate and quisqualate, induced certain morphological changes, most notably a retraction of cell processes and the appearance of blebs on the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号