首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
OBJECTIVE: The purpose of this study was to investigate the properties of the slow component of the delayed rectifier potassium current (I(Ks)) in myocytes isolated from undiseased human left ventricles. METHODS: The whole-cell configuration of the patch-clamp technique was applied in 58 left ventricular myocytes from 15 hearts at 37 degrees C. Nisoldipine (1 microM) was used to block inward calcium current (I(Ca)) and E-4031 (1-5 microM) was applied to inhibit the rapid component of the delayed rectifier potassium current (I(Kr)). RESULTS: In 31 myocytes, an E-4031 insensitive, but L-735,821 and chromanol 293B sensitive, tail current was identified which was attributed to the slow component of I(K) (I(Ks)). Activation of I(Ks) was slow (tau=903+/-101 ms at 50 mV, n=14), but deactivation of the current was relatively rapid (tau=122.4+/-11.7 ms at -40 mV, n=19). The activation of I(Ks) was voltage independent but its deactivation showed clear voltage dependence. The deactivation was faster at negative voltages (about 100 ms at -50 mV) and slower at depolarized potentials (about 300 ms at 0 mV). In six cells, the reversal potential was -81.6+/-2.8 mV on an average which is close to the K(+) equilibrium potential suggesting K(+) as the main charge carrier. CONCLUSION: In undiseased human ventricular myocytes, I(Ks) exhibits slow activation and fast deactivation kinetics. Therefore, in humans I(Ks) differs from that reported in guinea pig, and it best resembles I(Ks) described in dog and rabbit ventricular myocytes.  相似文献   

2.
OBJECTIVE: To elucidate the regional difference of the K+ current blocking effects of methanesulfonanilide class III agents. METHODS: Regional differences in action potential duration (APD) and E-4031-sensitive component (IKr) as well as -insensitive component (IKs) of the delayed rectifier K+ current (IK) were investigated in enzymatically isolated myocytes from apical and basal regions of the rabbit left ventricle using the whole-cell clamp technique. RESULTS: At 1 Hz stimulation, APD was significantly longer in the apex than in the base (223.1 +/- 10.6 vs. 182.7 +/- 14.5 ms, p < 0.05); application of 1 microM E-4031 caused more significant APD prolongation in the apex than in the base (32.5 +/- 6.4% vs. 21.0 +/- 8.8%, p < 0.05), resulting in an augmentation of regional dispersion of APD. In response to a 3-s depolarization pulse to +40 mV from a holding potential of -50 mV, both IK tail and IKs tail densities were significantly smaller in apical than in basal myocytes (IK: 1.56 +/- 0.13 vs. 2.09 +/- 0.21 pA/pF, p < 0.05; IKs: 0.40 +/- 0.15 vs. 1.43 +/- 0.23, p < 0.01), whereas IKr tail density was significantly greater in the apex than in the base (1.15 +/- 0.13 vs. 0.66 +/- 0.11 pA/pF, p < 0.01). The ratio of IKs/IKr for the tail current in the apex was significantly smaller than that in the base (0.51 +/- 0.21 vs. 3.09 +/- 0.89; p < 0.05). No statistical difference was observed in the voltage dependence as well as activation and deactivation kinetics of IKr and IKs between the apex and base. Isoproterenol (1 microM) increased the time-dependent outward current of IKs by 111 +/- 8% during the 3-s depolarizing step at +40 mV and its tail current by 120 +/- 9% on repolarization to the holding potential of -50 mV, whereas it did not affect IKr. CONCLUSIONS: The regional differences in IK, in particular differences in its two components may underlie the regional disparity in APD, and that methanesulfonanilide class III antiarrhythmic agents such as E-4031 may cause a greater spatial inhomogeneity of ventricular repolarization, leading to re-entrant arrhythmias.  相似文献   

3.
The mechanism by which isoproterenol (ISO) prevents the prolongation of action potential duration (APD) and refractory period (RP) by the class III antiarrhythmic agent E-4031 was studied. E-4031 (1 microM) increased RP by 50% with no effect on contractile force in papillary muscles isolated from guinea pig heart. ISO (1 microM) increased force of contraction more than fivefold and decreased RP by 25%. The prolongation of RP by E-4031 was prevented by pretreatment of muscles with ISO. The prolongation of APD in isolated guinea pig ventricular myocytes by 5 microM E-4031 also was antagonized by prior exposure of the cells to 1 microM ISO. Instantaneous currents and delayed rectifier K+ currents, IK, were measured in isolated myocytes using the suction microelectrode voltage-clamp technique. Currents were measured in response to 225-msec depolarizing pulses from a holding potential of -40 mV. Previous studies have demonstrated that IK in these cells results from activation of two distinct outward K+ currents, IKs and IKr (specifically blocked by E-4031). ISO doubled the magnitude of IKs without significant effect on IKr. The instantaneous current, putatively identified as a Cl- current, also was doubled by ISO but was unaffected by E-4031. The augmented conductance of IKs and instantaneous current by ISO results in a decrease in RP. The small effect of E-4031 on APD and RP in the presence of ISO results from the smaller contribution of IKr relative to the augmented repolarizing currents.  相似文献   

4.
Block of the delayed rectifier potassium current, IK, by the class IC antiarrhythmic agent, flecainide, and by the novel selective class III antiarrhythmic agent, E-4031, were compared in isolated cat ventricular myocytes using the single suction-pipette, voltage-clamp technique. Flecainide (10 microM) markedly reduced IK elicited on depolarization steps to plateau voltages (+10 mV) and nearly completely blocked the "tail currents" elicited on repolarization to -40 mV (93 +/- 4% block at +40 mV, n = 3). E-4031 (1 microM) produced similar effects (96 +/- 3% block at +40 mV, n = 3). Slow voltage ramps from -100 to +40 mV confirmed inward rectifying properties of IK and showed that flecainide and E-4031 have no effects on the background potassium current, IK1. Thus, the results demonstrate that block of IK is a common feature of flecainide and E-4031. IK block by E-4031 most likely underlies the drug's potent class III antiarrhythmic properties. On the other hand, flecainide block of IK during an action potential would tend to prolong repolarization, but this effect may be obscured by concomitant block of plateau Na+ channels to produce little or no change in action potential duration, consistent with its class IC classification.  相似文献   

5.
INTRODUCTION: The aim of the present study was to investigate the acute action of amiodarone on the slow component of delayed rectifier K+ current (IKs) under basal conditions and during beta-adrenoceptor stimulation in guinea pig ventricular myocytes. METHODS AND RESULTS: Using the whole-cell patch-clamp method, IKs was evoked by depolarizing voltage-clamp steps, during superfusion with the Na+-, K+-, and Ca2+-free solution supplemented with 0.4 microM nisoldipine and 5 microM E-4031. The acute effect of amiodarone was evaluated, within approximately 10 minutes after starting the bath application, by the amplitude of deactivating tail currents at -50 mV. Amiodarone concentration dependently blocked I(Ks) and exerted a more potent effect on IKs when activated by shorter pulse durations; the degree of block by 30 microM amiodarone on IKs activated by 200 ms, 500 ms, and 2000 ms depolarizing pulses to +30 mV was 55.9 +/- 5.8%, 38.6 +/- 6.0%, and 27.1 +/- 4.0% (n = 5 each), respectively. An envelope of tails test conducted at +10, +30, and +60 mV demonstrated that the degree of IKs block by amiodarone was gradually attenuated during membrane depolarization, which can be described by a monoexponential function, thus supporting the presence of open channel unblock. Amiodarone also blocked IKs maximally stimulated by 1 microM isoprenaline, to an extent similar to control, when IKs was activated by pulse durations of < or =2000 ms. CONCLUSION: We propose that amiodarone acutely blocks native IKs with characteristics associated with open channel unblock, and that the protein kinase A-mediated phosphorylation of channel proteins only minimally affects the amiodarone block.  相似文献   

6.
目的研究芍药苷对内向整流钾电流(IK1)、瞬时外向钾电流(Ito)以及延迟整流钾电流(IKs和IKr)的作用。方法用全细胞膜片钳技术记录大鼠心室肌细胞的Ito和IK1电流。而IKs和IKr电流在转染相应质粒的HEK293细胞上记录。对比芍药苷使用前后的电流图,观察芍药苷对各种离子通道电流的影响。结果在-100mV测试电压下,100μmol/L的芍药苷能使IK1峰值密度从(-25.26±8.21)pA/pF降至(-17.65±6.52)pA/pF,平均抑制率为30.13%(n=6,P<0.05),但对其反转电位以及内向整流特性无影响。此外,100μmol/L芍药苷对Ito、IKs和IKr电流无明显作用。结论芍药苷对IK1电流具有明显的抑制作用,而对Ito、IKs及IKr无明显作用。  相似文献   

7.
OBJECTIVES: The effects of almokalant (4-[3-ethyl[3-(propylsulphinyl)propyl]-amino]-2-hydroxy-propoxy]- benzonitrile), E-4031 (1-[2-(6-methyl-2-pyridyl)-ethyl]-4-(4-methylsulphonyl-amino- benzoyl)piperidine), d-sotalol, and quinidine were investigated on the delayed K+ rectifier current IK. The aim of the study was to compare the drug action on the two components of this current. METHODS: Membrane currents were measured in ventricular myocytes from guinea pig hearts with the whole cell voltage clamp technique. IK was activated during clamp steps from a holding potential of -40 mV to test potentials -30 and +50 mV. The tail current Itail was measured upon stepping back to holding potential. RESULTS: In control experiments. IK and Itail declined spontaneously ("run down"). With 300 ms long test pulses to +50 mV, only d-sotalol (10(-4) M) caused a significant further decrease in IK, whereas all four agents significantly reduced Itail (almokalant 10(-6) M, E-4031 10(-7) M, quinidine 10(-5) M). When tested with 1 s long clamp steps at various potentials almokalant (3 x 10(-6) M), E-4031 (10(-6) M), quinidine (10(-5) M), and d-sotalol (10(-4) M) reduced IK in the potential range between -20 and +40 mV, yielding a bell shaped inward rectifying drug sensitive current. Itail was reduced by almokalant and E-4031 over the whole voltage range with saturation of block positive to +20 mV. Similar reductions with quinidine but not with d-sotalol were also significant. With rest pulses to +50 mV of increasing duration (25 ms-4000 ms), Itail developed with a faster time course than IK and therefore the ratio of Itail/IK declined with pulse duration. With almokalant and E-4031, this ratio became independent of test pulse duration. For 250 ms pulses, Itail/IK was also significantly reduced by d-sotalol and quinidine. CONCLUSION: Inhibition of the rapidly activating inwardly rectifying component of IK is prominent with almokalant and E-4031 and less pronounced with d-sotalol and quinidine. Since inhibition of this component prolongs the cardiac action potential, it should contribute to the antiarrhythmic properties of the agents.  相似文献   

8.
OBJECTIVE: The long QT syndrome, N629D HERG mutation, alters the pore selectivity signature sequence, GFGN to GFGD. Heterologous co-expression of N629D and the wildtype HERG resulted in a relative loss of the selectivity of K+ over Na+, but its physiologic relevance has not been assessed in cardiac myocytes. METHODS AND RESULTS: Accordingly, N629D was overexpressed, via adenoviral gene transfer, in cardiomyocytes derived from mouse stem cells. Three IKr phenotypes were observed: (1) the wildtype-like IKr showed inward rectification and a positive tail current; (2) the N629D-like IKr showed outward rectification and an inward tail current; and (3) intermediate IKr showed a small outward tail current. Action potentials (AP) were paired with the IKr measurements in each cell. Resting membrane potential (RMP) was critically dependent on the IKr phenotype. The resting membrane potential of the cells was -61 +/- 5 mV (n=40) in wildtype, -63 +/- 3 mV (n=18) in wildtype-like IKr phenotype, -30 +/- 2 mV (n=12) in N629D-like and -47 +/- 2 mV (n=24) in intermediate phenotype (p<0.00001). Triggered action potential durations (APD) were: 62 +/- 12 ms (n=6) in wildtype, 65 +/- 11 ms (n=6) in wildtype-like IKr phenotypes and 106 +/- 10 ms (n=6) (p<0.01) in intermediate IKr phenotypes. Lowering [K+]o hyperpolarized wildtype cells and cells with a wildtype-like IKr phenotype, but depolarized those with intermediate phenotype (from -45 +/- 1 to -35 +/- 0.5 mV (n=12), p<0.01). In 6 of 12 cells, with intermediate phenotype, the hypokalemia-induced depolarization resulted in triggered activity. TTX suppressed this triggered activity. CONCLUSION: Overexpression of N629D in cardiomyocytes derived from stem cells results in phenotypic variability in IKr, which was the critical determinant of the resting membrane potential, action potential duration and arrhythmogenic response to low [K+]o.  相似文献   

9.
In the present study the voltage dependence of contraction and the characteristics of the "L-type" Ca2+ current (ICa) were compared in control (C) and severely hypertrophied (H) myocytes (M). Hypertrophy was induced in young cats by slow progressive pressure overload of the feline right ventricle. The amount of hypertrophy induced in this study was more severe than previously examined in this laboratory. The major findings of this study were: (1) The voltage dependence of contraction was not significantly different in C and HM. Peak shortening occurred at 6.2 +/- 1.2 mV in HM and at 9.5 +/- 1.3 mV in CM. (2) The magnitude of peak ICa density was significantly smaller in HM (5.56 +/- 0.53 pA/pF; n = 17) than in Cm (7.09 +/- 0.42 pA/pF; n = 20). In both groups of cells ICa reached a maximum at + 10 mV. (3) There were no significant changes in the voltage dependence of both ICa activation and steady-state inactivation. This is the first study to provide evidence that ICa density is reduced in severe hypertrophy. The 21% decrease in peak ICa density could reduce the contractile state of the heart if calcium-induced calcium release is normal and the reduction of ICa alters the Ca2+ released from the sarcoplasmic reticulum. The reduction in "L-type" Ca2+ current density in severely hypertrophied myocytes may play a role in the transition from the compensated hypertrophic state to congestive heart failure. Data are means +/- standard error.  相似文献   

10.
Mesoridazine, a phenothiazine antipsychotic agent, prolongs the QT interval of the cardiac electrocardiogram and is associated with Torsade de pointes-type arrhythmias. In this study, we examined the effects of mesoridazine on human ether-a-go-go-related gene (HERG) K+ currents. HERG channels were stably expressed in human embryonic kidney 293 cells and studied using standard whole-cell patch-clamp technique (37 degrees C). Mesoridazine blocked HERG currents in a concentration-dependent manner (IC50 550 nM at 0 mV); block increased significantly over the voltage range where HERG activates and saturated at voltages eliciting maximal HERG channel activation. Tonic block of HERG current by mesoridazine (1.8 microM) was minimal (< 2-4%). The rate of the onset of HERG channel block was rapid and dose dependent (tau = 54 +/- 7 ms at 0 mV and 1.8 microM mesoridazine), but not significantly affected by test potentials ranging from -30 to +30 mV. The V1/2 for steady-state activation was shifted from -31.2 +/- 1.0 to -39.2 +/- 0.5 mV (P < 0.01). The apparent rate of HERG channel deactivation was significantly reduced (fast tau = 153 +/- 8 vs. 102 +/- 6 ms at -50 mV, P < 0.01; slow tau = 1113 +/- 63 vs. 508 +/- 27 ms, P < 0.01). The inactivation kinetics and voltage dependence of steady-state inactivation of the HERG channel were not significantly altered by mesoridazine. These findings demonstrate that mesoridazine is a potent and rapid open-channel blocker of HERG channels. This block would explain the QT prolongation seen clinically at therapeutic concentrations (0.3-3.6 microM).  相似文献   

11.
The different sodium channel currents (I(Na)) were reported in myocardium, neuron, and skeletal muscles. To study whether I(Na) is homogeneous within the heart, we applied whole-cell voltage clamp technique to evaluate fast voltage-gated I(Na) in atrial and ventricular myocytes isolated from guinea pig heart. It was found that the density of inward I(Na) was 50% greater at -35 mV in atrial (-42.6+/-2.9 pA/pF) than in ventricular (-27.5+/-1.8 pA/pF, P<0.01) myocytes. The half activation and inactivation voltages (V(0.5)) of I(Na) in atrial myocytes were shifted 4.5+/-0.2 and 9.6+/-0.3 mV negative to those of ventricular myocytes. Time constants for I(Na) activation (tau(m)) and inactivation (tau(h)) were twice as rapid in atrial as in ventricular myocytes. The tau(m) and tau(h) were 0.34+/-0.03 and 1.36+/-0.07 ms for atrial myocytes, and 0.69+/-0.05 and 3.27+/-0.23 ms for ventricular myocytes, respectively. Recovery of I(Na) from inactivation was slower in atrial than in ventricular myocytes, whereas the development of resting state inactivation was more rapid in atrial (tau=67.5+/-4.3 ms) than in ventricular (152.8+/-7.5 ms, P<0.01) myocytes. The results reveal marked heterogeneity of I(Na) in the density and biophysical properties in atrial and ventricular myocytes, and the study suggests the potential possibility of tissue specific cardiac sodium channel isoforms.  相似文献   

12.
Whole-cell voltage-clamp experiments and single-channel current recordings in cell-attached patch mode were performed on enzymatically dissociated single ventricular myocytes harvested from feline endocardial and epicardial surfaces. The studies were designed to compare the characteristics of inward rectifier K+ current (IK1) and delayed rectifier K+ current (IK) between endocardial and epicardial cells and to test the hypothesis that the differential characteristics of IK1 and/or IK are responsible for the differences in action potential configuration between the two cell types. IK1 in endocardial cells displayed a distinct N-shaped current-voltage (I-V) relation, with a prominent outward current at potentials between -80 and -30 mV. In epicardial cells, an outward current region was much smaller, and the I-V relation demonstrated a blunted N-shaped I-V relation. In single-channel current recordings in cell-attached patch mode, neither unitary current amplitude of IK1 nor probability of channel opening was different between endocardial and epicardial cells, suggesting that the difference in the number of functional channels might be responsible for the differential IK1 I-V relations. The characteristics of IK also differed between endocardial and epicardial cells. The time course of growth of tail current of IK (IK,tail) (activation of IK) was significantly enhanced and that of IK,tail deactivation was delayed in epicardial cells compared with endocardial cells. The time constant of the slow component of IK activation at +20 mV was 3,950 +/- 787 msec in endocardial cells and 2,746 +/- 689 msec in epicardial cells (p less than 0.05); the corresponding values for IK deactivation at -50 mV were 1,041 +/- 387 msec and 1,959 +/- 551 msec, respectively (p less than 0.01). The voltage dependence of steady-state activation of IK,tail was similar between endocardial and epicardial cells, suggesting that the probability of channel opening at any potential was not different in the two cell types. The amplitude and density of fully activated IK (IK,full) were significantly greater in epicardial cells than in endocardial cells. At repolarization to -20 mV, IK,full amplitude was 452 +/- 113 pA in endocardial cells and 578 +/- 135 pA in epicardial cells (p less than 0.05), and the corresponding values for IK,full density were 2.86 +/- 0.73 and 4.21 +/- 0.83 microA/cm2, respectively (p less than 0.05). A nonstationary fluctuation analysis revealed that the amplitude of IK unitary current was similar between endocardial and epicardial cells (0.23 +/- 0.07 versus 0.22 +/- 0.03 pA, p = NS).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
OBJECTIVE: It was the aim of our study to describe repolarizing currents in ventricular myocytes isolated from children with tetralogy of Fallot. This is the first report on outward currents in ventricular myocytes from children. METHODS: Ventricular myocytes were isolated from tissue samples of the outflow tract of the right ventricle which were obtained during corrective surgery of tetralogy of Fallot. Action potentials and whole-cell currents were recorded with the patch clamp technique at a temperature of 36-37 degrees C. RESULTS: The mean resting potential was -71.7 +/- 1.92 mV, action potential amplitude was 110 +/- 2.96 mV and action potential duration at 90% repolarization was 794 +/- 99.5 ms (n = 12). In four out of 12 myocytes early afterdepolarizations (EADs) were observed. Upon hyperpolarization Ba(2+)-sensitive inward currents similar to the inward rectifier current (IKl) could be observed. The current density at -120 mV was -22.8 +/- 2.47 pA/pF (n = 14). A transient outward current (Itol) could be recorded in all myocytes studied, the current density varied from 0.3 to 8.6 pA/pF with a mean of 3.77 +/- 0.47 pA/pF at +40 mV (n = 38). Recovery of Itol from inactivation was fast (70% recovery within 100 ms), rate-dependent reduction amounted to 38.2% at 4 Hz. A delayed rectifier current was seen in only two out of 38 myocytes (rapid component IKr). CONCLUSIONS: The electrophysiological characteristics of right ventricular myocytes isolated from children with tetralogy of Fallot resemble in most cases subendocardial myocytes from adults. The most prominent difference is a fast recovery from inactivation as well as a small rate dependent reduction of Itol. The observed EADs may have clinical implications.  相似文献   

14.
Previous modeling studies have suggested that the rapid component of the delayed rectifier (I(Kr)) may contribute importantly to action potential dynamics during tachycardia. To test this idea experimentally, I(Kr) was measured as the E-4031-sensitive current in isolated canine endocardial myocytes at 37 degrees C using the perforated patch-clamp technique. Command potentials were trains of action potential waveforms recorded at cycle lengths (CLs) of 1000, 500, 320, 170, and 120 ms. Action potential duration (APD) alternans occurred at CLs of 170 and 120 ms. During an action potential, I(Kr) increased gradually to a maximum at -55 to -60 mV. Peak I(Kr) increased initially as CL was shortened from 1000 to 500 ms (from 0.55+/-0.03 to 0.57+/-0.03 pA/pF), but decreased progressively as CL was shortened further (to 0.45+/-0.03 pA/pF at CL=120 ms). Baseline I(Kr) was negligible at CLs of 1000 to 320 ms, but increased to 0.12+/-0.01 pA/pF at a CL of 120 ms. During APD alternans, peak I(Kr) was larger for the short than for the long action potential (0.48+/-0.03 versus 0.46+/-0.03 pA/pF). A computer model of I(Kr) based on these data indicated that increasing I(Kr) suppressed alternans and decreasing I(Kr) increased alternans. In support of the latter result, inhibition of I(Kr) by E-4031 increased the maximal amplitude of alternans. These results indicate that I(Kr) contributes importantly to rate-related alterations of repolarization, including APD alternans. Modifying I(Kr) may be a promising approach to suppressing alternans and thereby preventing ventricular tachyarrhythmias.  相似文献   

15.
Objective Abnormal QT prolongation associated with arrhythmias is considered the major cardiac electrical disorder and a significant predictor of mortality in diabetic patients. The precise ionic mechanisms for diabetic QT prolongation remained unclear. The present study was designed to analyze the changes of ventricular repolarization and the underlying ionic mechanisms in diabetic rabbit hearts. Methods Diabetes was induced by a single injection ofalloxan (145mg/kg, Lv. ). After the development of diabetes (10 weeks), ECG was measured. Whole-cell patch-clamp technique was applied to record the action potential duration (APD50, APD90), slowly activating outward rectifying potassium current (IKs), L-type calcium current (ICa-L) and inward rectifying potassium current (IK1). Results The action potential duration (APD50 and APD90) of ventricular myocytes was obviously prolonged from 271.5+32.3 ms and 347.8+36.3 ms to 556.6~72.5 ms and 647.9~72.2 ms respectively (P〈 0.05). Meanwhile the normalized peak current densities of IKs in ventricular myocytes investigated by whole-cell patch clamp was smaller in diabetic rabbits than that in control group at test potential of+50mV (1.27~0.20 pA/pF vs 3.08~0.67 pA/pF, P〈0.05). And the density of the ICa-L was increased apparently at the test potential of 10 mV (-2.67~0.41 pA/pF vs -5.404-1.08 pA/pF, P〈0.05). Conclusion Ventricular repolarization was prolonged in diabetic rabbits, it may be partly due to the increased L-type calcium current and reduced slow delayed rectifier K+ current (IKs) (J Geriatr Cardio12010; 7:25-29).  相似文献   

16.
OBJECTIVE: The aim was to study the L-type calcium current (ICa,L) in cardiac myocytes as a possible target of insulin in the regulation of cardiac function. METHOD: Using the whole-cell configuration of the patch-clamp technique, we investigated the stimulation of ICa,L by insulin in isolated rat ventricular myocytes. RESULTS: The stimulation of ICa,L by insulin was dose-dependent (EC50 = 33 nM) and reversible. Maximum stimulation of ICa,L over basal ICa,L was 86 +/- 11% (n = 25) at 1 microM insulin. Insulin (1 microM) shifted the current-voltage relationship and potential-dependent availability of ICa,L to more negative potentials by about 3.5 and 1.5 mV, respectively. The maximum conductance of ICa,L was increased by 1 microM insulin, from 26 +/- 4 to 39 +/- 5 nS (n = 11). Isoproterenol (100 nM), which stimulated ICa,L by 156 +/- 23% (n = 10) over basal ICa,L, acted faster than insulin. The half-maximum stimulation of ICa,L by isoproterenol and insulin was reached after 44 +/- 5 and 80 +/- 9 s, respectively. Insulin and isoproterenol responses were not additive. Insulin (1 microM) and isoproterenol (100 nM) stimulation of ICa,L was inhibited by Rp-cAMPS (1 mM) to 12 +/- 3 and 32 +/- 4%, respectively. Insulin (1 microM) increased cAMP content in rat cardiomyocytes by about two-fold. Insulin-like growth factor-1 (IGF-1; 5 microM) increased ICa,L by only 5.9 +/- 0.9% (n = 6). CONCLUSIONS: Our data show that insulin stimulates the L-type calcium current in isolated rat ventricular myocytes in a dose-dependent and reversible manner and suggest that this effect is mediated by insulin receptors and the cAMP-dependent protein kinase.  相似文献   

17.
OBJECTIVE: Heart failure in patients and in animal models is associated with action potential prolongation of the ventricular myocytes. Changes in several membrane currents have been already demonstrated to underlie this prolongation. However, information on the two components (I(Kr) and I(Ks)) of the delayed rectifier potassium current (I(K)) in rapid pacing induced heart failure is lacking. METHODS AND RESULTS: Action potentials and whole-cell currents, I(K), I(to1), I(K1), and I(Ca-L) were recorded in apical myocytes of left ventricle from 10 rabbits subjected to left ventricular pacing at 350-380 beats/min for 3-4 weeks and 10 controls with sham operation. Action potential duration at 90% repolarization (APD(90)) was prolonged in myocytes from failing hearts compared to controls at both cycle lengths of 333 and 1000 ms. Both E-4031-sensitive and -resistant components of I(K) (I(Kr), I(Ks)) in myocytes from failing hearts were significantly less than those of control hearts; tail current densities of I(Kr) and I(Ks) following depolarization to +50 mV were 0.62+/-0.05 vs. 0.96+/-0.12 pA/pF (P<0.05), and 0.27+/-0.08 vs. 0.52+/-0.08 pA/pF (P<0.05), respectively. There was no significant difference between control and failing myocytes in the voltage- and time-dependence of activation of total I(K), I(Kr) and I(Ks). The peak of L-type Ca(2+) current (I(Ca-L)) was significantly reduced in myocytes from failing hearts (at +10 mV, -9.29+/-0.52 vs. -12.28+/-1.63 pA/pF, P<0.05), as was the Ca(2+)-independent transient outward current (I(to1); at +40 mV, 4.8+/-0.9 vs. 9.6+/-1.3 pA/pF, P<0.05). Steady state I-V curve for I(K1) was similar in myocytes from failing and control hearts. CONCLUSIONS: Decrease of I(K) (both I(Kr) and I(Ks)) in addition to reduced I(to1), may underly action potential prolongation at physiological cycle length and thereby contribute to arrhythmogenesis in heart failure.  相似文献   

18.
OBJECTIVE: The goal of this study was to characterize the electrophysiological properties of the Kv4.3 channels expressed in a mammalian cell line. METHODS: Currents were recorded using the whole-cell voltage clamp technique. RESULTS: The threshold for activation of the expressed Kv4.3 current was approximately -30 mV. The dominant time constant for activation was 1.71 +/- 0.16 ms (n = 10) at +60 mV. The current inactivated, this process being incomplete, resulting in a sustained level which contributed 15 +/- 2% (n = 25) of the total current. The time course of inactivation was fit by a biexponential function, the fast component contributing 74 +/- 5% (n = 9) to the overall inactivation. The fast time constant was voltage-dependent [27.6 +/- 2.0 ms at +60 mV (n = 10) versus 64.0 +/- 3.6 ms at 0 mV (n = 10); P < 0.01], whereas the slow was voltage-independent [142 +/- 15 ms at +60 mV (n = 10) versus 129 +/- 33 ms at 0 mV (n = 6) P > 0.05]. The voltage-dependence of inactivation exhibited midpoint and slope values of -26.9 +/- 1.5 mV and 5.9 +/- 0.3 mV (n = 21). Recovery from inactivation was faster at more negative membrane potentials [203 +/- 17 ms (n = 13) and 170 +/- 19 ms (n = 4), at -90 and -100 mV]. Bupivacaine block of Kv4.3 channels was not stereoselective (KD approximately 31 microM). CONCLUSIONS: The functional profile of Kv4.3 channels expressed in Ltk- cells corresponds closely to rat ITO, although differences in recovery do not rule out association with accessory subunits. Nevertheless, the sustained component needs to be considered with respect to native ITO.  相似文献   

19.
In guinea pig cardiac myocytes quinidine (20 microM) caused less than 10% tonic block reduction of the sodium current at -120 mV, but a fast pulse train reduced it more than 90%. Recovery from use-dependent block was time and voltage dependent, and was always slow (tau = 34 +/- 10 seconds at -160 mV; tau = 90 +/- 35 seconds at -120 mV; n = 15, mean +/- SD, p less than 0.001, paired t test). However, in association with repeated activation a fast component of recovery from block was observed: use-dependent unblocking. Availability of sodium channels for use-dependent unblocking was enhanced by hyperpolarization until a plateau was reached near -160 mV. Compared with the availability of drug-free sodium channels (h-curve), the voltage dependence of availability for use-dependent unblocking (h'-curve) was shifted by about 30 mV to more negative potentials, and its slope was reduced 2.5-fold. At -160 mV, the kinetics of development of availability of sodium channels for use-dependent unblocking were rapid (tau less than 10 msec). Depolarization to -120 mV reduced the availability of sodium channels for fast unblocking with a time constant of 191 +/- 46 msec (n = 14). Finally, block established by frequent brief depolarizations (activations) declined during prolonged inactivation. From these results we concluded that the time and voltage dependence of the availability of sodium channels for unblocking are considerably different from the availability for activation of drug-free channels, that rested drug-associated channels do exist, and that drug-associated channels do not conduct (or at least have a greatly reduced conductance) upon activation unless they first unblock. Furthermore, activated and inactivated channels have a different affinity for quinidine, and since quinidine can occupy the channel receptor even when "guarded," our results are incompatible with the guarded receptor hypothesis but can be explained within the framework of the modulated receptor hypothesis.  相似文献   

20.
Whole-cell calcium current (ICa) and inwardly rectifying potassium current (IK1) were studied in 21-day fetal, 28-day fetal (total gestation, 31 days), 2-5-day neonatal, and adult rabbit ventricular myocytes isolated by enzymatic dissociation. Whole-cell peak ICa and IK1 at -100 mV increased significantly after birth. Cell size approximated from cell membrane capacitance also increased with age, with the most significant increase occurring after birth. When normalized to cell surface area, peak ICa density increased from day 21 of gestation to the neonate and then increased again from neonate to adult. In all age groups, peak ICa occurred at a test potential of +10 mV, and the shape of the Ca2+ current-voltage relation did not change with age. These findings suggest that there are no significant developmental changes in the voltage dependence of ICa. Therefore, the measured age-related increase in Ca2+ current density may result from increased channel expression. IK1 also exhibited a pattern of increasing current density with age. For IK1, the increase in current density was most rapid between day 21 and the perinatal period and much slower after birth. These results demonstrate that ICa and IK1 undergo significant changes during late fetal and postnatal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号