首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the debates in infant nutrition concerns whether dietary 18 : 3n-3 (linolenic acid) can provide for the accretion of 22 : 6n-3 (docosahexaenoic acid, DHA) in neonatal tissues. The objective of the present study was to determine whether low or high 18 : 3n-3 v. preformed 22 : 6n-3 in the maternal diet enabled a similar 22 : 6n-3 content in the phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS) of glial cells from whole brain (cerebrum and cerebellum) of 2-week-old rat pups. At parturition, the dams were fed semi-purified diets containing either increasing amounts of 18 : 3n-3 (18 : 2n-6 to 18 : 3n-3 fatty acid ratio of 7.8 : 1, 4.4 : 1 or 1 : 1), preformed DHA, or preformed 20 : 4n-6 (arachidonic acid)+DHA. During the first 2 weeks of life, the rat pups from the respective dams received only their dam's milk. The fatty acid composition of the pups' stomach contents (dam's milk) and phospholipids from glial cells were quantified. The 20 : 4n-6 and 22 : 6n-3 content in the stomach from rat pups at 2 weeks of age reflected the fatty acid composition of the dam's diet. The 20 : 4n-6 content of PE and PS in the glial cells was unaffected by maternal diet treatments. Preformed 22 : 6n-3 in the maternal diet increased the 22 : 6n-3 content of glial cell PE and PS compared with maternal diets providing an 18 : 2n-6 to 18 : 3 n-3 fatty acid ratio of 7.8 : 1, 4.4 : 1 or 1 : 1 (P<0.0001). There was no significant difference in the 20 : 4n-6 and 22 : 6n-3 content of glial cell PC and PI among maternal diet treatments. It was concluded that maternal dietary 22 : 6n-3 is more effective than low or high levels of maternal dietary 18 : 3n-3 at increasing the 22 : 6n-3 content in PE and PS of glial cells from the whole brain of rat pups at 2 weeks of age. The findings from the present study have important implications for human infants fed infant formulas that are devoid of 22 : 6n-3.  相似文献   

2.
The effects of 5, 10 and 20% dietary menhaden oil (MO) on the composition of heart lipid classes and fatty acids were studied. Male Sprague-Dawley rats were fed ad libitum 0, 5, 10 and 20% MO for 3 wk. The heart phosphoglyceride content and composition and cholesterol were unchanged by dietary MO. A nonlinear dose-response relationship was observed between dietary MO levels and fatty acid compositional changes. Cardiolipin, choline (PC), ethanolamine (PE) and serine/inositol (PS/PI) phosphoglycerides showed an incorporation of n-3 fatty acids, eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3), between the control and 5% MO group, a plateau between the 5 and 10% MO groups and a further increase at the 20% MO level. The initial reduction in 20:4n-6 content remained unchanged as dietary MO increased except in PE where a further reduction was found at the 20% MO level. Dietary MO did not significantly change the 20:4n-6 content in neutral lipids. Linoleic acid content was most resistant to dietary MO removal. The level of 18:2n-6 was significantly lowered in heart PC when rats were fed 10% MO. No significant differences were found in PS/PI. In PE and NL significant differences occurred only when rats were fed 20% MO. The significant fatty acid modifications of heart lipid and PL found between the control and lowest level of dietary MO (5%) suggest that dietary fish oil supplementation in human diets may not be required for this effect.  相似文献   

3.

Background

Dietary long-chain polyunsaturated fatty acids (LC-PUFA) are of crucial importance for the development of neural tissues. The aim of this study was to evaluate the impact of a dietary supplementation in n-3 fatty acids in female rats during gestation and lactation on fatty acid pattern in brain glial cells phosphatidylethanolamine (PE) and phosphatidylserine (PS) in the neonates.

Methods

Sprague-Dawley rats were fed during the whole gestation and lactation period with a diet containing either docosahexaenoic acid (DHA, 0.55%) and eicosapentaenoic acid (EPA, 0.75% of total fatty acids) or α-linolenic acid (ALA, 2.90%). At two weeks of age, gastric content and brain glial cell PE and PS of rat neonates were analyzed for their fatty acid and dimethylacetal (DMA) profile. Data were analyzed by bivariate and multivariate statistics.

Results

In the neonates from the group fed with n-3 LC-PUFA, the DHA level in gastric content (+65%, P < 0.0001) and brain glial cell PE (+18%, P = 0.0001) and PS (+15%, P = 0.0009) were significantly increased compared to the ALA group. The filtered correlation analysis (P < 0.05) underlined that levels of dihomo-γ-linolenic acid (DGLA), DHA and n-3 docosapentaenoic acid (DPA) were negatively correlated with arachidonic acid (ARA) and n-6 DPA in PE of brain glial cells. No significant correlation between n-3 and n-6 LC-PUFA were found in the PS dataset. DMA level in PE was negatively correlated with n-6 DPA. DMA were found to occur in brain glial cell PS fraction; in this class DMA level was correlated negatively with DHA and positively with ARA.

Conclusion

The present study confirms that early supplementation of maternal diet with n-3 fatty acids supplied as LC-PUFA is more efficient in increasing n-3 in brain glial cell PE and PS in the neonate than ALA. Negative correlation between n-6 DPA, a conventional marker of DHA deficiency, and DMA in PE suggests n-6 DPA that potentially be considered as a marker of tissue ethanolamine plasmalogen status. The combination of multivariate and bivariate statistics allowed to underline that the accretion pattern of n-3 LC-PUFA in PE and PS differ.  相似文献   

4.
Ng KF  Innis SM 《The Journal of nutrition》2003,133(10):3222-3227
Docosahexaenoic acid [22:6(n-3)] is required in large amounts for membrane lipid synthesis during brain growth. The functional importance of differences in dietary fatty acid intakes that alter brain 22:6(n-3), however, is not well understood. We used a dietary approach to manipulate 22:6(n-3) in piglet brain and assessed the effects on behavior and change in behavior on an elevated plus maze after administration of L-dihydroxyphenylalanine (L-Dopa) or sulperide, a dopamine D2 receptor blocker. Piglets were fed 1.2% energy 18:2(n-6) and 0.05% energy 18:3(n-3) (low PUFA), or 10.7% energy 18:2(n-6), 1.1% energy 18:3(n-3), 0.3% energy 20:4(n-6) and 0.3% energy 22:6(n-3) (high PUFA) from 1 d of age and behavior assessed at 18-22 d of age. At 30 d of age, frontal cortex dopamine, and phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidyethanolamine (PE) and phosphatidylinositol (PI) fatty acids were quantified. Piglets fed the low PUFA diet had fewer arm entries on the maze than piglets fed the high PUFA diet, P = 0.02. L-Dopa increased the open (P = 0.005) and closed (P = 0.04) arm entries by piglets fed the low PUFA diet. Behavior did not differ between piglets fed the low and high PUFA diets when given L-Dopa. Frontal cortex PC, PS and PE 22:6(n-3) was lower and 22:5(n-6) was higher in piglets fed the low compared with the high PUFA diet, P < 0.01. Our work establishes the neonatal piglet as a model with which to study the behavioral effects of diet-induced changes in brain 22:6(n-3), and provides functional evidence that brain 22:6(n-3) is important in central dopamine metabolism.  相似文献   

5.
The purpose of this paper is to discuss the role of n-6 and n-3 polyunsaturated fatty acids in coronary heart disease (CHD). The level of n-6 and n-3 fatty acids in plasma and cardiac phospholipids was examined in relation to CHD in man. The fatty acid profile of cardiac phospholipids was also examined in relation to various risk factors of CHD, such as the composition of dietary fat, aging and stress. Life expectancy in Iceland is higher than in other Nordic countries, and the cardiovascular diseases mortality is lower in Iceland in the older age groups. There is a positive correlation between the level of arachidonic acid (AA) in plasma phospholipids (PL) in the normal population and cardiovascular disease mortality in Nordic countries. The level of AA in plasma PL is significantly higher in patients with CHD than in normal subjects. Dietary intake of fish or fish oil lowers cellular levels of AA and favorably influences eicosanoid metabolism in platelets and leukocytes. The roles of n-6 and n-3 fatty acids in heart muscle are less well understood. Rats fed diets containing either 10% butter, corn oil or cod liver oil showed markedly different fatty acid composition of individual phospholipids in sarcolemma. Dietary cod liver oil lowered the AA level in sarcolemmal phosphatidyl choline (PC) and phosphatidyl ethanolamine (PE) by 50% compared to butter or corn oil fed rats, replacing AA with docosahexaenoic acid (DHA). Adaptation to moderate to severe stress induced by repeated administration of catecholamines for 15 days resulted in marked but reversible alterations in the fatty acid profile of cardiac phospholipids. During severe stress the level of AA increased by 50% in PC replacing linoleic acid (LA), whereas in PE the DHA increased markedly replacing LA. Aging was accompanied by similar alterations in cardiac phospholipids, increased levels of AA in PC and increased DHA in PE. The incidence of ventricular fibrillation (VF) and sudden cardiac death induced by isoproterenol in adult rats fed different dietary fat was lowest in rats fed cod liver oil, with a low ratio of AA/DHA in cardiac phospholipids. Mortality due to VF was highest in rats fed corn oil with the highest ratio of AA/DHA. Sudden cardiac death in man was frequently associated with a higher ratio of AA/DHA than observed in people of the same age who died in accidents. The balance between n-6 and n-3 fatty acids in cellular phospholipids seems to play an important role in stress tolerance and survival.  相似文献   

6.
The effects of diets high in n-3 polyunsaturated fatty acids (PUFA; provided by fish oil), n-6 PUFA (sunflower oil) or in more-saturated fatty acids (tallow) on the distribution of subclasses of choline phospholipids (PC) and ethanolamine phospholipids (PE) from the breast muscle of broiler chickens were examined. Supplementation with the different fatty acids had no effect on the distribution of phospholipid subclasses. Feeding sunflower oil or tallow gave a molecular-species profile similar in both fatty acid subtype and proportion. In the diacyl PC phospholipids, 16 : 0-18 : 1n-9 and 16 : 0-18 : 2n-6 accounted for approximately 60 % of the total molecular species, whereas for the alkylenyl PC the predominant species were 16 : 0-18 : 1n-9 and 16 : 0-20 : 4n-6. Of the diacyl PE the dominant species was 18 : 0-20 : 4n-6 which accounted for 50 % of the molecular species, and of the alkylenyl PE the dominant species were 16 : 0-18 : 1n-9, 16 : 0-20 : 4n-6 and 18 : 0-20 : 4n-6. Supplementation with fish oil significantly increased levels of both eicosapentaenoic acid (20 : 5n-3) and docosahexaenoic acid (22 : 6n-3) in PC and PE when compared with either sunflower oil or tallow supplementation. The increase in the n-3 PUFA incorporation was associated with a corresponding decrease in the proportion of arachidonic acid (20 : 4n-6) in both PC and PE. Different dietary fats induce different patterns of fatty acid incorporation and substitution in the sn-2 position of the diacyl and alkylenyl PC and PE of avian breast muscle, and this finding is indicative of selective acyl remodelling in these two phospholipids.  相似文献   

7.
High levels of 4,7,10,13,16-docosapentaenoic acid [22:5(n-6)], a fatty acid usually associated with (n-3) fatty acid deficiency, have been reported in the retina of young rabbits. We studied the fatty acid composition of the rabbit retina throughout development, from birth to adult life. We also attempted to modify the fatty acid composition of the retina by the feeding of fish oil, high in docosahexaenoic acid [22:6(n-3), DHA]. Female rabbits were fed either a control or 2% fish oil diet through pregnancy and the nursing period. Weaned rabbits received the mothers' diet. In the retinas of control rabbits, 22:5(n-6) represented 3.7% of total fatty acids at birth, reached 15.1% at 9 wk and declined to 5.6% in adult rabbits. However, 22:6(n-3) increased steadily from birth onwards, from 3.8% of total fatty acids at birth to 19.6% in adults. Dietary fish oil increased the trace concentrations of long-chain (n-3) fatty acids in the milk to 10% of total fatty acids, reduced retinal 22:5(n-6) to less than or equal to 0.5% at all ages, and increased DHA to approximately 30% by 9 wk. Retinal phosphatidylethanolamine was even more sensitive to the impact of the fish oil diet, with DHA levels in newborn rabbits rising from 10% (control diet) to 43% of total fatty acids. These results demonstrated that 22:5(n-6) in the normal rabbit retina remains elevated (compared with other species) at all ages even as retinal DHA increases. The great increase of DHA in newborns whose mothers were fed fish oil suggests placental transfer of DHA and incorporation into retinal lipids.  相似文献   

8.
We investigated the effects of dietary docosahexaenoic acid (DHA, 22:6 n-3) and phosphatidylcholine (PC) on maze behavior and brain fatty acids in mice. Male Crj:CD-1 mice (3 wk old) were fed a diet containing 2% DHA and 3% palm oil (DHA group); 5% PC (PC group); 1% DHA, 2.5% PC and 1.5% palm oil (DHA + PC group); 5% palm oil (Palm oil control group) or MF laboratory chow (MF control group) for 7 mo. After this time maze-learning ability was assessed. The time required to reach the maze exit and the number of times that a mouse strayed into blind alleys in the maze were measured three times every four days. After the last learning test, all mice were sacrificed and plasma and brain were analyzed for fatty acid composition. The DHA and PC groups required less time to reach the maze exit and strayed less into blind alleys than the control group in the third trial. The difference between the DHA or PC groups and control mice was statistically significant (p < 0.05). In the total lipids of plasma and brain of mice fed DHA, there was a significant increase in DHA levels and a concomitant decrease in arachidonic acid (AA, 20:4 n-6). Similar changes in fatty acid composition were observed in brain phosphatidylcholine and phosphatidylethanolamine for this group of mice. However, this pattern of changes in brain fatty acids was not evident in the PC group. Our data suggest that maze-learning ability in mice is enhanced by intakes of DHA and PC. However, the mechanisms by which the DHA and PC diets improved learning ability appear to be different. A synergistic effect of DHA and PC on learning ability is not apparent in the DHA + PC group.  相似文献   

9.
The present study investigated whether fatty acid compositions of testes are affected by the obese condition and dietary n-3 long-chain fatty acid (LCFA) intake. Male lean and obese Zucker rats were fed a 15?% (w/w, total diet) fat diet containing either 0 or 5·0?% (w/w, total fatty acids) n-3 LCFA for 8 weeks. Reproductive organ weights, sperm morphology and fatty acid composition of phosphatidylcholine (PC), and phosphatidylethanolamine (PE) of testes were analysed. The obese rats had significantly (P?相似文献   

10.
The influence of fish oil and safflower oil contained in the common Japanese diet as the main dietary polyunsaturated fatty acid source on plasma fatty acids in ten female student volunteers (21-22 years old) was investigated. The subjects were divided into two groups and fed the experimental diets for five days. The total daily fat intake in the fish diet and safflower oil diet was 54.4 g and 56.2 g, respectively, and the fat derived from fish and safflower oil was 16 g and 23 g, respectively. The proportion of linoleic acid was reduced in the plasma of subjects fed the fish diet and increased in the plasma of subjects fed the safflower oil diet. The plasma levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were significantly elevated in the fish diet group. The ratio of EPA/arachidonic acid (AA) was higher, and those of n-6/n-3 and n-9/n-3 were lower in the plasma of subjects fed the fish diet when compared to the results obtained from plasma of subjects fed the safflower oil diet. From these results, it seems likely that fish oil in the common Japanese diet is a favorable source of plasma EPA and DHA even in such short term supplementation and with such a small amount of daily consumption.  相似文献   

11.
This study examined the effects of diets deficient (D) in linoleic [18:2(n-6)] and linolenic acid [18:3(n-3)] at 0.8 and 0.05% energy, respectively, or adequate (C) in 18:2(n-6) and 18:3(n-3) at 8.3 and 0.8% energy, respectively, without (-) or with (+) 0.2% energy arachidonic [20:4(n-6)] and 0.16% energy docosahexaenoic [22:6(n-3)] acid in piglets fed from birth to 18 d. Frontal cortex dopaminergic and serotoninergic neurotransmitters and phospholipid fatty acids were measured. Piglets fed the D- diet had significantly lower frontal cortex dopamine, 3,4-dihydroxyphenylacetic (DOPAC), homovanillic acid (HVA), serotonin and 5-hydroxyindoleacetic acid (5-HIAA) concentrations than did piglets fed the C- diets. Frontal cortex dopamine, norepinephrine, DOPAC, HVA, serotonin and 5-HIAA were higher in piglets fed the D+ compared to those fed the D- diet (P < 0.05) and not different between piglets fed the D+ and those fed the C- diets or the C- and C+ diets. Piglets fed the D- diet had lower frontal cortex phosphatidylcholine (PC) and phosphatidylinositol (PI) 20:4(n-6) and PC and phosphatidylethanolamine (PE) 22:6(n-3) than did piglets fed the C- diet (P < 0.05). Piglets fed the D+ diet had higher frontal cortex PC and PI 20:4(n-6) and PC, PE, PS and PI 22:6(n-3) than did piglets fed the D- diet. These studies show that dietary essential fatty acid deficiency fed for 18 d from birth affects frontal cortex neurotransmitters in rapidly growing piglets and that these changes are specifically due to 20:4(n-6) and/or 22:6(n-3).  相似文献   

12.
There have been reports that dietary gamma-linolenic acid [18:3(n-6)] and alpha-linolenic acid [18:3(n-3)] are capable of regulating cellular eicosanoid biosynthesis and inflammation. Because the eicosanoid cascade is regulated in part by the distribution of arachidonic acid [20:4(n-6)] among phospholipid subclasses, the effects of feeding blackcurrant seed oil [containing 18:3(n-6) and 18:3(n-3)] on the fatty acid composition of diacyl, alkylacyl and alkenylacyl subclasses of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were studied in mouse peritoneal macrophages. After 4 wk of dietary treatment, the relative distribution (mol %) of macrophage phospholipid classes and subclasses was not altered in animals fed blackcurrant seed oil relative to those fed corn oil [containing linoleic acid, 18:2(n-6)]. Macrophages from blackcurrant seed oil-fed animals had reduced levels of PC diacyl 18:3(n-6), 18:3(n-3), 20:3(n-6), 22:5(n-3), and alkylacyl 20:3(n-6), 22:5(n-3) and 22:6(n-3). In general, dietary blackcurrant treatment produced fatty acid alterations in PE subclasses that were similar to those in PC. A major exception, however, was the reduction in 20:4(n-6) levels in all PE subclasses, whereas no effect in PC subclass 20:4(n-6) levels was noted. These findings indicate i) that pronounced differences in the polyunsaturated fatty acid (PUFA) compositions of macrophage PC and PE subclasses exist following dietary fat manipulation and ii) that 18:3(n-6) and 18:3(n-3) feeding can increase potential anti-flammatory precursor levels of 20:3(n-6) and (n-3) PUFA in the macrophage.  相似文献   

13.
The effect of feeding redfish (Sebastes marinus or mantella) oil or a derived n-3 fatty acid concentrate containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the fatty acid compositions of individual phospholipids in selected neural tissues was studied in growing male rats. Control animals were given sunflower oil in the diet for the 5-wk feeding trial. Lipid analyses revealed that EPA (20:5n-3) became significantly enriched in all phospholipid fractions (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol) in the tissues studied (brain, retina and sciatic nerve) in the two n-3 fatty acid dietary groups relative to controls. Corresponding changes were also found in the 22:5n-3 contents of these tissues, whereas little or no significant elevation in DHA (22:6n-3) was found. In contrast, the percentages by weight of the n-6 fatty acids including 18:2n-6, 20:4n-6 (arachidonic acid, AA), 22:4n-6 and 22:5n-6 were generally lower in the various phospholipids/tissues of the animals given fish oil or the n-3 fatty acid concentrate; the levels of 22:5n-6 and 22:4n-6 were markedly affected in this regard. These results indicate that dietary n-3 fatty acids (as EPA plus DHA) can greatly affect the fatty acid compositions of the various membrane phospholipids in nervous tissues within a relatively short time. These biochemical alterations may be important for functional changes including altered membrane fluidity, cellular responses, ion transport and the biosyntheses of AA- and EPA-derived prostaglandins and leukotrienes.  相似文献   

14.
Low tissue levels of (n-3) polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid [DHA, 22:6(n-3)], are implicated in postpartum depression. The effects of 1-4 sequential reproductive cycles on maternal brain phospholipid fatty acid composition were determined in female rats fed diets containing alpha-linolenic acid (ALA), containing ALA and pre-formed DHA (ALA+DHA), or lacking ALA (low-ALA). Virgin females, fed the diets for commensurate durations served as a control for reproduction. Whole-brain total phospholipid composition was determined at weaning by TLC/GC. A single reproductive cycle on the low-ALA diet decreased brain DHA content by 18% compared to ALA primiparas (P < 0.05), accompanied by incorporation of docosapentaenoic acid ((n-6) DPA, 22:5(n-6)) to 280% of ALA primiparas (P < 0.05). DHA was not further decreased after subsequent cycles; however, there was an additional increase in (n-6) DPA after the second cycle (P < 0.05). Brain DHA of virgin females fed the low-ALA diet for 27 wk decreased 15% (P < 0.05), but was accompanied by a more modest increase in (n-6) DPA than in parous low-ALA dams (P < 0.05). Virgin females and parous dams fed the diet containing ALA+DHA exhibited only minor changes in brain fatty acid composition. These observations demonstrate that brain DHA content of adult animals is vulnerable to depletion under dietary conditions that supply inadequate (n-3) PUFAs, that this effect is augmented by the physiological demands of pregnancy and lactation, and that maternal diet and parity interact to affect maternal brain PUFA status.  相似文献   

15.
Semipurified diets incorporating either perilla oil [high in alpha-linolenate, 18:3(n-3)] or safflower oil [high in linoleate, 18:2(n-6)] were fed to senescence-resistant SAMR1 mouse dams and their pups. Male offspring at 15 mo were examined using behavioral tests. In the open field test, locomotor activity during a 5-min period was significantly higher in the safflower oil group than in the perilla oil group. Observations of the circadian rhythm (48 h) of spontaneous motor activity indicated that the safflower oil group was more active than the perilla oil group during the first and second dark periods. The total number of responses to positive and negative stimuli was higher in the safflower oil group than in the perilla oil group in the light and dark discrimination learning test, but the correct response ratio was lower in the safflower oil group. The difference in the (n-6)/(n-3) ratios of the diets reflected the proportions of (n-6) polyunsaturated fatty acids, rather than those of (n-3) polyunsaturated fatty acids in the brain total fatty acids, and in the proportions of (n-6) and (n-3) polyunsaturated fatty acids in the total polyunsaturated fatty acids of the brain phospholipids. These results suggest that in SAMR1 mice, the dietary alpha-linolenate/linoleate balance affects the (n-6)/(n-3) ratio of brain phospholipids, and this may modify emotional reactivity and learning ability.  相似文献   

16.
The objective of this study was to investigate whether short-term zinc deficiency in the early neonatal period would exacerbate the effects of essential fatty acid (EFA) deficiency on liver and brain long-chain polyunsaturated fatty acid (LCPUFA) composition, as well as on behavioral development in artificially reared rat pups. Using a 2 x 2 factorial design, male Long-Evans rat pups were reared artificially from postnatal d 5 to 16; pups were fed through gastrostomy tubes with rat formula deficient in zinc and/or EFA. As expected, EFA deficiency significantly reduced levels of arachidonic acid [AA, 20:4(n-6)] and docosahexanoic acid [DHA, 22:6(n-3)] in liver phosphatidylcholine (PC) and brain phosphaditylethanolamine (PE), and increased 22:5(n-6) levels in liver and brain PC and PE. There were significant interactions between zinc and EFA in liver such that zinc deficiency reduced AA and DHA in the EFA-adequate groups, but significantly increased AA in the EFA-deficient groups. Contrary to the hypothesis, short-term zinc deficiency did not exacerbate the effects of EFA deficiency in liver phospholipids. In brain PE, a significant interaction between EFA and zinc was observed such that zinc deficiency increased 22:5(n-6) concentrations in EFA-adequate but not in EFA-deficient groups. Regardless of their EFA status, zinc-deficient rats were growth retarded and demonstrated deficits in locomotor skills. Possible effects of long-term zinc and EFA deficiency on brain function should be investigated in future studies.  相似文献   

17.
To examine the incorporation of n-3 polyunsaturated fatty acids (PUFAs) into erythrocyte membranes during and after moderate n-3 PUFA intake, 12 healthy men were fed three diets for 6-wk periods in a 3 x 3 crossover design, supplying different amounts of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3): a control diet, a fish diet (0.15 g EPA/d, 0.41 g DHA/d), and a fish + oil diet (5 g fish oil/d; 0.99 g EPA/d and 0.99 g DHA/d). A 6-wk washout period was allowed between diets. Between 6 and 12 wk after the fish + oil diet, erythrocyte EPA and DHA were still declining and it was only after 18 wk that erythrocyte EPA had returned to baseline whereas DHA had not. Investigators examining variables that are influenced by altered membrane fatty acid composition should be aware of these prolonged effects when designing studies. Protracted washout periods (greater than 18 wk) make the classic crossover design prohibitive and a parallel design becomes essential.  相似文献   

18.
Rats were fed a purified diet containing either 1.5% sunflower oil [940 mg linoleic acid [18:2(n-6)]/100 g diet; 6 mg alpha-linolenic acid [18:3(n-3)]/300 g diet] or 1.9% soybean oil [940 mg 18:2(n-6)/100 g diet; 130 mg 18:3(n-3)/100 g diet]. In all cases and tissues examined 22:6(n-3) was lower and 22:5(n-6) was higher in rats fed sunflower oil than in rats fed soybean oil. Levels of 22:4(n-6) and 20:4(n-6) were largely unaffected. Expressed as a percentage of that in soybean oil-fed rats, 22:6(n-3) in sunflower oil-fed rats was as follows: neurons, 49; astrocytes, 47; oligodendrocytes, 10; lung, 27; testes, 32; retina, 36; liver, 35 and kidneys, 45. Ten wk after the change in diet of 60-d-old rats from one containing sunflower oil to one containing soybean oil, the fatty acid composition of the brain cells had not reached control values, e.g., that obtained in animals continuously fed soybean oil; 22:6(n-3) was 77, 65 and 80% of control levels for astrocytes, oligodendrocytes and neurons, respectively. In contrast, the recovery measured by the decay of 22:5(n-6) was complete within 10 wk. For 22:6(n-3), it took approximately 2 wk for liver and kidney to recover to the control value, 3 wk for lung, 6 wk for retina and 10 wk for testes. The decrease of 22:5(n-6) was rapid: the control values were reached within 2 wk for kidney, liver and lung and within 6 wk for retina.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
For 16 wk Atlantic salmon (Salmo salar) post-smolts were fed practical-type diets that contained either fish oil (FO) or sunflower oil (SO) as the lipid component. Both diets contained adequate (n-3) polyunsaturated fatty acids (PUFA). All the phospholipids of heart and liver from SO-fed fish had increased levels of 18:2(n-6), 20:2(n-6) and 20:3(n-6); phosphatidyl choline (PC) and phosphatidyl ethanolamine (PE) also had increased 20:4(n-6). There was a general decrease in 20:5(n-3) in the phospholipids, reflected in an increase in the 20:4(n-6)/20:5(n-3) ratio, especially in PC and PE. The fatty acid compositions of phospholipids from brain and retina were much less affected by dietary linoleate than those of heart and liver. Fish fed SO developed severe heart lesions that caused thinning of the ventricular wall and muscle necrosis. The fish fed SO also were susceptible to a transportation-induced shock syndrome that caused 30% mortality. These results establish that a diet with a low (n-3)/(n-6) ratio can cause changes in fatty acid metabolism that are deleterious to the health of salmonid fish, especially when subjected to stress.  相似文献   

20.
The objective of this study was to determine the efficacy of linolenic acid [18:3(n-3)], compared with the long-chain (n-3) fatty acids in fish oil, in suppressing arachidonic acid [20:4(n-6)] metabolism in rat testis. Six groups of rats were fed three levels of 18:3(n-3) or fish oil, and the fatty acid composition of testis parenchyma lipids and prostaglandin (PG) I2 synthesis by tunica were determined after 12 wk. Levels of docosapentaenoic acid [22:5(n-6)], the major 22-carbon fatty acid in rat testis lipids, were significantly depressed compared with the control by both linolenic acid and fish oil; however, testis weights were not affected significantly. Arachidonic acid levels also were depressed significantly in testis lipids by dietary (n-3) fatty acids, but the decreases were not as pronounced as those observed in other tissues. The synthesis of PGI2 was significantly reduced compared with the control by (n-3) fatty acid feeding, but there were no differences among the experimental groups. Both 18:3(n-3) and the longer-chain (n-3) fatty acids from fish oil reduce levels of 20:4(n-6) and 22:5(n-6) in testis lipids and the capacity of the tunica to synthesize PGI2, but these fatty acids seem to cause no defect in testicular development as indicated by weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号