首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human T-cell leukemia virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) represents one of the most devastating diseases associated with HTLV-I infection. Despite the delineation of clinical features associated with this neurologic disease, more progress needs to be made with respect to understanding the molecular mechanisms relating to the genesis of HAM/TSP. Several factors have been hypothesized to contribute to whether an HTLV-I-infected individual remains asymptomatic, develops adult T-cell leukemia (ATL), or progresses to HAM/TSP. Among the most intriguing of these factors is the immune response mounted by the host against HTLV-I. Several cell populations are crucial with respect to generating an efficient immune response against the virus. This includes CD4(+) T cells, CD8(+) T cells, dendritic cells (DCs), monocytes/macrophages, and HTLV-I-infected cells that interact with immune cells to stimulate their effector functions. Although all of these cell types likely play important roles in the etiology of HAM/TSP, this review focuses specifically on the potential function of the CD8(+) T-cell population during the progression of HTLV-I-induced neurologic disease. The immune response in HAM/TSP patients may transition from a beneficial response aimed at controlling the viral infection, to a detrimental response that ultimately participates in mediating the pathology observed in HAM/TSP. In this respect, the generation of a hyperactive CD8(+) cytotoxic T lymphocyte (CTL) response primarily targeting the HTLV-I Tax protein likely plays a key role in the genesis of pathologic abnormalities associated with HAM/TSP. The efficiency and activity of Tax-specific CD8(+) CTLs may be regulated at a number of levels, and deregulation of Tax-specific CTL activation may contribute to HAM/TSP. This review focuses on potential mechanisms of central nervous system (CNS) damage associated with the genesis of HAM/TSP following HTLV-I infection, focusing on the role of the Tax-specific CTL compartment.  相似文献   

2.
To investigate the cellular immune surveillance against HTLV-I infected T lymphocytes in HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP), we studied the cytotoxic T lymphocytes (CTL) activity against an HTLV-I infected human T cell line (MT-2) and the natural killer (NK) cell activity in 15 HAM patients, 6 HTLV-I carriers, and 15 controls. The activity of CTL against MT-2 cells was found to be significantly elevated in HAM compared with that in the controls. This cytotoxicity in HAM was higher than in HTLV-I carriers, although the difference was not statistically significant. There was an HLA class I restriction in this CTL activity against MT-2 cells in HAM. On the other hand, NK cell activity was significantly lower in HAM than in controls. Cold target inhibition studies suggested that NK cells could not lyse MT-2 cells effectively. There was a positive correlation between the CTL activity against MT-2 cells and the serum antibody titers to HTLV-I in HAM.  相似文献   

3.
To investigate whether fractalkine receptor CX3CR1 polymorphisms that have been associated with rapid progression to AIDS among HIV-1 positive individuals also affects the risk of human T cell lymphotropic virus type 1 (HTLV-1) associated myelopathy/tropical spastic paraparesis (HAM/TSP), we compared the allele frequencies of V249I and T280M between 233 HAM/TSP patients and 213 HTLV-1 seropositive asymptomatic carriers (HCs). Although the frequency and absolute number of peripheral blood CX3CR1+CD4+T cells were significantly increased in HAM/TSP patients compared to HCs and uninfected controls independent of HTLV-1 trans-activator protein Tax, we could not observe any association between the two polymorphisms and the risk of HAM/TSP in our cohort.  相似文献   

4.
5.
HTLV-I proviral DNA load is significantly increased in HTLV-I associated myelopathy (HAM) compared with asymptomatic HTLV-I seropositive carriers (SPC), and this spread of HTLV-I infection seems to be critically important in the pathogenesis of HAM. Thus, in this report, cellular immune surveillance against HTLV-I was reviewed. (1) MHC class I-restricted cytotoxic T lymphocytes (CTL) activities are detected in peripheral blood mononuclear cells (PBMC) of HAM. CTL release various proinflammatory and cytotoxic cytokines, chemokines, and proteases. Since CTL are also found in the spinal lesions of HAM, CTL may contribute to the tissue damage. In spontaneous proliferation of PBMC in HAM, CD 4/CD 8 is decreased due to the proliferation of CD 8 + CTL. CD 4/CD 8 is inversely correlated with the clinical severity of HAM. Collectively, CTL may be involved in the pathogenesis of HAM. (2) Activity and subsets of natural killer (NK) cells are lower in HTLV-I-seropositive individuals. Moreover, NK have only a weak cytotoxicity against HTLV-I infected cells. (3) Antibody-dependent cell-mediated cytotoxicity (ADCC) are impaired in HAM compared with SPC due to the suppressed effector cell activity. Since ADCC effectively lyse HTLV-I infected cells in vitro, the impaired ADCC may in part allow the spread of HTLV-I infection in HAM, and potentiation of ADCC may have an anti-HTLV-I therapeutic effect.  相似文献   

6.
In order to clarify pathogenesis of human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) a detailed neuropathological analysis of eight autopsy patients with HAM/TSP was performed. Inflammatory infiltrates of mononuclear cells and degeneration of myelin and axons were noted in the middle to lower thoracic spinal cords and were extended continuously to the entire spinal cord. Horizontal distribution of inflammatory lesions was symmetric at any spinal levels. Immunohistochemical analysis demonstrated T cell dominance. The numbers of CD4+ T cells and CD8+ T cells were present in equal numbers in patients with shorter clinical course. Apoptosis of helper/inducer T cells were observed in the presence of TIA1+ cytotoxic T cells in these active inflammatory lesions. Inflammatory infiltrates were markedly decreased and CD8+/TIA1- T cells were predominated over CD4+ cells in patients with prolonged clinical course. HTLV-I proviral deoxyribonucleic acid (DNA) amounts in the freshly frozen spinal cord measured by quantitative polymerase chain reaction (PCR) were well correlated with the numbers of infiltrated CD4+ cells. In situ PCR of HTLV-I provial DNA using multi-primar pairs demonstrated the presence of HTLV-I infected cells exclusively in the mononuclear infiltrates of perivascular areas. From these findings, it is suggested that the target of the inflammatory process seen in HAM/TSP lesions may be HTLV-I infected CD4+ T cells infiltrating the spinal cord.  相似文献   

7.
Human T-cell lymphotropic virus type I (HTLV-I) infection is associated with a variety of human diseases. In particular, there are two major diseases caused by HTLV-I infection. One is an aggressive neoplastic disease called adult T-cell leukemia (ATL), and another is a chronic progressive inflammatory neurological disease called HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is still unknown why one virus causes these different diseases. With regard to HAM/TSP, virus-host immunological interactions are an considered to be important cause of this disease. Coexisting high HTLV-I proviral load and HTLV-I-specific T cells (CD4+ T cells and CD8+ T cells) is an important feature of HAM/TSP. Histopathological studies indicate the existence of an inflammatory reaction and HTLV-I-infected cells in the affected lesions of HAM/TSP. Therefore, the immune response to HTLV-I probably contributes to the inflammatory process of the central nervous system lesions in HAM/TSP patients.  相似文献   

8.
In order to detect activated T lymphocytes in the cerebrospinal fluid (CSF) of patients with human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP), we studied CSF lymphocytes in untreated patients with HAM/TSP and other neurological diseases (OND). Dual-immunofluorescence staining technique was performed using fluorescence microscopy. No significant difference in the CD4+/CD8+ ratio of CSF lymphocytes was observed between HAM/TSP patients and patients with OND. However, both CD4+ and CD8+ CSF lymphocytes of HAM/TSP patients contained higher percentages of HLA-DR-positive cells than those of patients with OND (P less than 0.05), suggesting that the activated CSF T lymphocytes were composed of both CD4+ and CD8+ subsets in patients with HAM/TSP.  相似文献   

9.
Molecular mimicry is implicated in the pathogenesis of autoimmune diseases such as diabetes mellitus, rheumatoid arthritis, and multiple sclerosis (MS). Cellular and antibody-mediated immune responses to shared viral-host antigens have been associated with the development of disease in these patients. Patients infected with human T-lymphotropic virus type I (HTLV-I) develop HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), an immunemediated disorder of the central nervous system (CNS) that resembles some forms of MS. Damage to neuronal processes in the CNS of HAM/TSP patients is associated with an activated cellular and antibody-mediated immune response. In this study, IgG isolated from HAM/TSP patients was immunoreactive with uninfected neurons and this reactivity was HTLV-I specific. HAM/TSP IgG stained uninfected neurons in human CNS and cell lines but not nonneuronal cells. Neuronal western blots showed IgG reactivity with a single 33-kd band in all HAM/TSP patients tested. By contrast, no neuron-specific IgG reactivity could be demonstrated from HTLV-I seronegative controls and, more important, from HTLV-I seropositive, neurologically asymptomatic individuals. Both immunocytochemical staining and western blot reactivity were abolished by preincubating HAM/TSP IgG with HTLV-I protein lysate but not by control proteins. Staining of CNS tissue by a monoclonal antibody to HTLV-I tax (an immunodominant HTLV-I antigen) mimicked HAM/TSP IgG immunoreactivity. There was no staining by control antibodies. Absorption of HAM/TSP IgG with recombinant HTLV-I tax protein or preincubation of CNS tissue with the monoclonal antibody to HTLV-I tax abrogated the immunocytochemical and western blot reactivity of HAM/TSP IgG. Furthermore, in situ human IgG localized to neurons in HAM/TSP brain but not in normal brain. These data indicate that HAM/TSP patients develop an antibody response that targets uninfected neurons, yet reactivity is blocked by HTLV-I, suggesting viral-specific autoimmune reactivity to the CNS, the damaged target organ in HAM/TSP.  相似文献   

10.
We examined natural killer (NK) cell activity and NK cell subset populations in 18 patients with HTLV-I associated myelopathy (HAM)/tropical spastic paraparesis (TSP), ten HTLV-I seropositive asymptomatic carriers and 20 seronegative healthy controls. The NK cell activity was significantly decreased in HAM/TSP, compared with that in controls. The percentages of NK cell subsets, such as CD16+, CD11b+, CD56+, CD16+ CD56-, CD16-CD56+, CD16+CD8-, or CD16+CD3+ cells were significantly decreased in HAM/TSP patients. Of particular interest is that the percentage of CD16+CD3+ cells, which have a wide spectrum of cytotoxic properties commonly seen in NK, lymphokine activated killer (LAK) and antibody-dependent cellular-cytotoxic (ADCC) effector cells, was significantly decreased in HAM/TSP as compared to asymptomatic carriers as well as controls. The percentage of CD16+CD3+ cells correlated inversely with the value of spontaneous proliferation of peripheral blood lymphocytes (SPP), which is a characteristic change observed in HAM/TSP.  相似文献   

11.
Human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic inflammatory disease of the spinal cord in which HTLV-I Tax-specific cytotoxic T lymphocytes (CTL) have been suggested to be immunopathogenic. However, it is unknown whether the HTLV-I-specific CTL in the central nervous system differ from those in the periphery. We investigated functional T-cell receptor diversity in HTLV-I Tax11-19-specific CTL clones derived from peripheral blood and cerebrospinal fluid (CSF) of a HAM/TSP patient using analogue peptides of the viral antigen. CTL responses to the analogue peptides varied between T-cell clones, however, CTL clones from CSF showed limited recognition of the peptides when compared to those from peripheral blood. This suggests that CTL with highly focused specificity for HTLV-I Tax accumulate in the CSF and may contribute to the pathogenesis of HAM/TSP. Furthermore, this study provides a rationale for analogue peptide-based immunotherapeutic strategies focusing on the immunopathogenic T-cells in HTLV-I-associated neurologic disease.  相似文献   

12.
13.
HTLV-I- associated myelopathy/tropical spastic paraparesis (HAM/TSP) is one outcome of human T-cell lymphotropic virus type I (HTLV-I) infection. It remains unknown why the majority of infected people remain healthy whereas only approximately 2-3% of infected individuals develop the disease. Recently, it has been reported that increased plasma concentrations of VEGF were significantly related to high ATL cell infiltration, and the viral transactivator Tax activates the VEGF promoter, linking the induction of angiogenesis to viral gene expression. To investigate whether VEGF promoter -634C/G single nucleotide polymorphism (SNP) and serum concentration of VEGF are associated with the development of HAM/TSP, we studied a group of 202 HAM/TSP patients, 202 asymptomatic HTLV-I seropositive carriers (HCs) and 108 seronegative healthy controls (NCs) in Kagoshima, Japan by using PCR-RFLP analysis. The serum concentration of VEGF was also compared among patients with HAM/TSP, ATL, HCs as well as with NCs. Our results indicate that both VEGF gene polymorphism and serum VEGF levels are not specifically associated with the risk of HAM/TSP in our cohort.  相似文献   

14.
Human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is an inflammatory neurological disease caused by HTLV-I infection. It has been shown that HAM/TSP patients have high proviral loads and an extraordinarily high frequency of circulating CD8 + cytotoxic T lymphocytes specific for HTLV-I in their peripheral blood when compared to asymptomatic HTLV-I carriers (AC). We have previously described an intracellular cytokine detection assay, in which interferon-gamma (IFN-gamma) + CD8 + lymphocytes are specific for HTLV-I in infected individuals. Here, we have established a competitive polymerase chain reaction assay to measure the proviral load of patients and investigate a potential relationship between proviral load and virus-specific CD8 + lymphocytes. Genomic DNA was extracted from peripheral blood lymphocytes (PBL) from eight HAM/TSP patients and seven AC for the measurement of HTLV-I measuring proviral loads. The same PBL were analyzed for intracellular IFN-gamma expression by flow cytometry. In the HAM/TSP patients and AC, the average proviral loads were 34,482 and 9784 copy/microg DNA (P = 0.021), and the average of IFN-gamma + CD8 + lymphocytes in total PBL were 1.47 and 0.08% (P = 0.001), respectively. It was confirmed that HAM/TSP patients have both high proviral loads and increased HTLV-I-specific CD8 + lymphocytes. Furthermore, we found a positive correlation between both factors in the patients with HAM/TSP (P = 0.044) but not in the AC (P = 0.508). These findings suggest that the high number of HTLV-I-specific lymphocytes may result from the increased proviral load in HAM/TSP patients.  相似文献   

15.
16.
We studied the immunological and virological effects of interferon-alpha (IFN-alpha) therapy in nine patients with HTLV-I-associated myelopathy (HAM/TSP). After therapy, the percentages of CCR5+ cells in CD4+ cells significantly decreased in the cerebrospinal fluid as well as blood. The therapy also significantly lowered the intracellular IFN-gamma+/interleukin-4+ T-cell ratio in blood. Those helper T-cell type 1 (Th1)-related responses tended to be higher and reduce more evidently following therapy in three patients who clinically improved. Also, all the three patients had one or more HTLV-I copies in five blood mononuclear cells. These results suggest that IFN-alpha suppresses Th1 responses in HAM/TSP and that the patients with higher Th1 immunity and proviral loads may be responders of the therapy. Larger-scale studies are needed to confirm the findings.  相似文献   

17.
Human T-lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is an immune-mediated inflammatory disorder of the central nervous system. Immune activation in the host, which results from high levels of persistent antigenic stimulation and from transactivation of host immunoregulatory genes by HTLV-I, appears important in the pathogenesis of HAM/TSP. In a single-center, open-label trial, 12 patients with HAM/TSP were treated with doses of interferon-beta1a of up to 60mug twice weekly, based on its antiviral and immunomodulatory effects. Primary end points were immunological and virological measures that are potential biomarkers for HAM/TSP. Interferon-beta1a therapy reduced the HTLV-I tax messenger RNA load and the frequency of potentially pathogenic HTLV-I-specific CD8(+) cells. The HTLV-I proviral DNA load remained unchanged. Spontaneous lymphoproliferation, a marker of T-cell activation in HAM/TSP, also was reduced. Some measures of motor function were improved, and no significant clinical progression occurred during therapy. These results indicate that interferon-beta1a may beneficially affect the immune mechanisms central to the pathogenesis of HAM/TSP.  相似文献   

18.
To clarify clinical and laboratory findings that may be related to the pathomechanism of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), we analyzed these findings in 239 patients with HAM/TSP, including 64 patients followed up for 10 years after their first examinations, with special interest in the HTLV-I proviral load in peripheral blood mononuclear cells (PBMCs). The proviral load in PBMCs did not differ in terms of modes of HTLV-I transmission. However, the proviral load in patients with age of disease onset greater than 65 years tended to be higher than those with a younger age of onset. In the 64 patients followed up for 10 years, the clinical symptoms deteriorated in 36 patients (56%), unchanged in 26 patients (41%), and improved in 2 patients (3%). HTLV-I proviral load also appeared to be related to the deterioration of motor disability in these patients. To our knowledge, the present study is the first longitudinal study concerning the relationship between the clinical course of HAM/TSP and HTLV-I proviral load. It is suggested that HTLV-I proviral load is related to the progression of motor disability and is an important factor to predict prognosis of patients with HAM/TSP.  相似文献   

19.
We studied the relationship between antibody titers to recombinant HTLV-I p40tax protein and gag-env hybrid protein in serum (by an enzyme-linked immunosorbent assay) and HTLV-I proviral DNA load in peripheral blood mononuclear cells (by a quantitative polymerase chain reaction method) in 18 patients with HTLV-I-associated myelopathy (HAM)/tropical spastic paraparesis (TSP), 17 HTLV-I carriers without HAM/TSP and 16 HTLV-I uninfected controls. The IgG and IgA antibody titers to either of the proteins correlated significantly with the HTLV-I pX (coding p40tax protein) and pol DNA amounts in HTLV-I infected subjects. HAM/TSP patients had significantly higher titers of IgG and IgA antibodies to the HTLV-I proteins than did the HTLV-I carriers without HAM/TSP. While the IgM antibodies to the HTLV-I proteins were found in only 6% of HTLV-I carriers without HAM/TSP, they were found in 40% of HAM/TSP patients, especially those having both a high HTLV-I proviral DNA load and high titers of the IgG and IgA antibodies. HAM/TSP patients with the IgM antibodies had a tendency to deteriorate more frequently on the Kurtzke's disability status scale and magnetic resonance imaging of the brain (leukoencephalopathy) than did those without in the two-year follow-up. Thus, the presence of IgM antibody and high titers of IgG and IgA antibodies to the HTLV-I proteins, together with the increased HTLV-I proviral DNA load, appears to distinguish HAM/TSP patients from HTLV-I carriers without HAM/TSP.  相似文献   

20.
The in vitro proliferation of peripheral blood lymphocytes (PBLs) without any mitogenic stimulation is one of the hallmarks of human T lymphotropic virus type I (HTLV-I) infection. Recent evidence suggests a difference in the degree of the phenomenon between HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and asymptomatic HTLV-I carriers (AC). In this article, we demonstrated several alterations in the features of the in vitro transformed lymphocytes between patients with HAM/TSP (n = 16) and AC (n = 8). The percentages of total CD8+ and CD8+CD28+ cells were significantly increased in the in vitro proliferating T lymphocytes derived from the patients with HAM/TSP when compared to those from AC. HAM/TSP was segregated from AC by the high degree of the proliferation of CD8+CD28+ cells. The expression of HTLV-I-specific antigens on the cultured PBLs was detected only in the subjects which showed low CD8+CD28+/CD4+ ratio of the in vitro proliferating lymphocytes. These findings suggest that this phenomenon distinguishes HAM/TSP from AC, not only in quantity but also in quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号