首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of controversy about the role of the p75 neurotrophin receptor (p75(NTR) ) in the cholinergic basal forebrain (CBF), we investigated this region in p75(NTR) third exon knockout mice that were congenic with 129/Sv controls. They express a shortened intracellular form of p75(NTR) , permitting detection of p75(NTR) -expressing cells. We performed separate counts of choline acetyltransferase (ChAT)-expressing and p75(NTR) -expressing neurons. In agreement with past reports, the number of ChAT-immunoreactive neurons in knockout mice was greater than in wild-type mice, and this was evident in each of the main anatomical divisions of the CBF. In contrast, the number of p75(NTR) -immunoreactive neurons did not differ between genotypes. The biggest increase in ChAT neurons (27%) was in the horizontal limb of the diagonal band of Broca (HDB), in which region the number of p75(NTR) -positive neurons was unchanged. Double staining revealed that some neurons in wild-type mice expressed p75(NTR) but not ChAT. In the knockout mice, all p75(NTR) -expressing neurons expressed ChAT. The increase in cholinergic neurons, therefore, was at least partially attributable to a higher proportion of ChAT immunoreactivity within the population of p75(NTR) -expressing neurons. Cholinergic neurons were also larger in knockout mice than in controls. In the hippocampal CA1 region, knockout mice had a greater number of cholinergic fibers. There was a 77% increase in hippocampal ChAT activity in knockout mice and a 38% increase in heterozygotes. The data do not support an apoptotic role but indicate a broad antineurotrophic role of p75(NTR) in the cholinergic basal forebrain.  相似文献   

2.
The neurotrophin receptor p75 is a low-affinity receptor that binds neurotrophins. To investigate the role of p75 in the survival and function of central neurons, p75 null-mutant and wild type litter mate mice were tested on behavioral tasks. Null mutants showed significant performance deficits on water maze, inhibitory avoidance, motor activity, and habituation tasks that may be attributed to cognitive dysfunction or may represent a global sensorimotor impairment. The p75 null-mutant and wild type litter mate mice were assessed for central cholinergic deficit by using quantitative stereology to estimate the total neuronal number in basal forebrain and striatum and for subpopulations expressing the high-affinity tyrosine receptor kinase A (trkA) neurotrophin receptor and choline acetyltransferase (ChAT). In the adult brain, cholinergic neurons of the basal forebrain receive target-derived trophic support, whereas cholinergic striatal neurons do not. Adult p75 null-mutant mice had significant reduction of basal forebrain volume by 25% and had a corresponding significant loss of 37% of total basal forebrain neurons. The basal forebrain population of ChAT-positive neurons in p75-deficient mice declined significantly by 27%, whereas the trkA-positive population did not change significantly. There was no significant change in striatal volume or in striatal neuronal number either in total or by cholinergic subpopulation. These results demonstrate vulnerability to the lack of p75 in adult central neurons that are neurotrophin dependent. In addition, the loss of noncholinergic central neurons in mice lacking p75 suggests a role for p75 in cell survival by an as yet undetermined mechanism. Possible direct and indirect effects of p75 loss on neuronal survival are discussed. J. Comp. Neurol. 404:1–20, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

3.
The prenatal development of the neurons immunoreactive for high-affinity tropomycin-related kinase (trk) receptor (pan trk which recognizes trkA, trkB, and trkC) and low-affinity p75 neurotrophin receptor (p75NTR) was examined in the human brain from embryonic weeks 10 to 34 of gestation. In the embryonic week 10 specimen in which only brainstem regions were available for evaluation, trk immunoreactivity (trk-ir) was observed in the ventral cochlear, solitary, raphe, spinal trigeminal, and hypoglossal nuclei, as well as the vestibular complex and medullary reticular formation. At this time point of gestation, p75NTR-immunoreactive (p75NTR-ir) staining was observed within these same regions plus the inferior olivary and ambiguus nuclei. At embryonic week 14, trk-ir neurons were seen within the subplate zone of the entorhinal cortex, basal forebrain, caudate nucleus, putamen, external segment of the globus pallidus, specific thalamic nuclei, lateral mammillary nucleus, habenula nucleus, select brainstem nuclei, and the dentate nucleus of cerebellum. At this gestational time point, p75NTR-ir neurons were observed in each of these structures, with the exception of the caudate nucleus, specific thalamic nuclei, lateral mammillary nucleus, and habenula nucleus. Additionally, p75NTR-ir neurons were observed within the corpus callosum. The staining pattern for both trk and p75NTR remained unchanged at embryonic weeks 15 to 16 except for the addition of trk-ir and p75NTR-ir within the cortical subplate zone, hippocampus, and subthalamic nucleus. By embryonic week 18, trk-ir neurons were widely expressed within mostly all thalamic nuclei. In contrast, trk-ir was no longer seen within the hypoglossal, cuneate, and gracile nuclei at this time point. This staining pattern for trk and p75NTR remained virtually unchanged from embryonic weeks 19 to 20 and embryonic weeks 16 to 20, respectively. From embryonic weeks 22 to 34, the distribution of both trk-ir and p75NTR-ir neurons changed gradually. During this period, neurons in most thalamic and some brainstem nuclei became progressively immunonegative for trk, whereas neurons in the neocortical subplate zone, corpus callosum, and hilar region of dentate gyrus gradually lost immunoreactivity for p75NTR. These data demonstrate an important and complex role for both the high- (trk) and low-(p75) affinity neurotrophin receptors during the development of multiple neuronal systems in the human brain. © 1996 Wiley-Liss, Inc.  相似文献   

4.
There is increasing evidence that estrogen has beneficial effects on cognition, both in humans and in rodents, and may delay Alzheimer's disease onset in postmenopausal women. Several rodent studies have utilised the ovariectomy model to show estrogen regulation of the p75 neurotrophin receptor, TrkA, and markers of acetylcholine synthesis in the cholinergic basal forebrain. We studied estrogenic effects in aged (16-17-month-old), noncycling rats. Estrogen treatment for 10 days drastically reduced p75(NTR) immunoreactivity in the rostral parts of the basal forebrain. The number of p75(NTR)-immunoreactive neurons was decreased, and those neurons remaining positive for p75(NTR) showed reduced p75(NTR) staining intensity. In vehicle-treated rats, almost all choline acetyltransferase-immunoreactive neurons were p75(NTR) positive (and vice versa), but, in estrogen treated rats, large numbers of choline acetyltransferase-immunoreactive cells were negative for p75(NTR). Similar levels of p75(NTR) down-regulation in the rostral basal forebrain were found when estrogen treatment was extended to 6 weeks. There was no reduction in the number of p75(NTR)-immunoreactive neurons in the caudal basal forebrain after 10 days of treatment. After 6 weeks of treatment, however, there was evidence of p75(NTR) down-regulation in the caudal basal forebrain. There was no evidence of hypertrophy or atrophy of cholinergic neurons even after 6 weeks of estrogen treatment. Considering the evidence for the role of p75(NTR) in regulating survival, growth and nerve growth factor responsiveness of cholinergic basal forebrain neurons, the results indicate an important aspect of estrogen's effects on the nervous system.  相似文献   

5.
Olfactory neuroblastoma (ON, esthesioneuroblastoma) is a high-grade malignant tumour of neuronal origin. Little is known about the neurobiological behaviour of this tumour. Ten cases of ON and five cases of nasopharyngeal carcinoma were examined for expression of trkA and p75 neurotrophin receptor (p75NTR) using immunohistochemistry and double labelling fluorescence. We found that all ON tissues from 10 cases expressed both trkA and p75NTR at different levels. Double staining revealed that almost all trkA-immunoreactive ON cells also contained p75NTR immunoreactivity. By contrast, no trkA or p75NTR immunoreactivity was detected in nasopharyngeal carcinoma cells from five patients. These results suggest that nerve growth factor may play a role in the generation of ON and staining of trkA and p75NTR may assist in the diagnosis of ON.  相似文献   

6.
Elevating levels of nerve growth factor (NGF) can have pronounced effects on the survival and maintenance of distinct populations of neurons. We have generated a line of transgenic mice in which NGF is expressed under the control of the smooth muscle α‐actin promoter. These transgenic mice have augmented levels of NGF protein in the descending colon and urinary bladder, so these tissues display increased densities of NGF‐sensitive sympathetic efferents and sensory afferents. Here we provide a thorough examination of sympathetic and sensory axonal densities in the descending colon and urinary bladder of NGF transgenic mice with and without the expression of the p75 neurotrophin receptor (p75NTR). In response to elevated NGF levels, sympathetic axons (immunostained for tyrosine hydroxylase) undergo robust collateral sprouting in the descending colon and urinary bladder of adult transgenic mice (i.e., those tissues having smooth muscle cells); this sprouting is not augmented in the absence of p75NTR expression. As for sensory axons (immunostained for calcitonin gene‐related peptide) in the urinary bladders of transgenic mice, fibers undergo sprouting that is further increased in the absence of p75NTR expression. Sympathetic axons are also seen invading the sensory ganglia of transgenic mice; these fibers form perineuronal plexi around a subpopulation of sensory somata. Our results reveal that elevated levels of NGF in target tissues stimulate sympathetic and sensory axonal sprouting and that an absence of p75NTR by sensory afferents (but not by sympathetic efferents) leads to a further increase of terminal arborization in certain NGF‐rich peripheral tissues. J. Comp. Neurol. 521:2621–2643, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
This study seeks to determine whether knockdown of basal forebrain p75 neurotrophin receptor (p75NTR) expression elicits increased hippocampal choline acetyltransferase (ChAT) activity in mature animals. Antisense (AS) oligonucleotides (oligos) targeting p75NTR were infused into the medial septal area of mature rats continuously for 4 weeks. In all rats, the cannula outlet was placed equidistant between the left and the right sides of the vertical diagonal band of Broca. We tested phosphorothioate (PS), morpholino (Mo), and gapmer (mixed PS/RNA) oligos. Gapmer AS infusions of 7.5 and 22 μg/day decreased septal p75NTR mRNA by 34% and 48%, respectively. The same infusions increased hippocampal ChAT activity by 41% and 55%. Increased hippocampal ChAT activity correlated strongly with septal p75NTR downregulation in individual rats. Infusions of PS and Mo AS oligos did not downregulate p75NTR mRNA or stimulate ChAT activity. These results demonstrate that p75NTR can dynamically regulate hippocampal ChAT activity in the mature CNS. They also reveal the different efficacies of three diverse AS oligo chemistries when infused intracerebrally. Among the three types, gapmer oligos worked best. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
9.
To understand the functional interactions between the TrkA and p75 nerve growth factor (NGF) receptors, we stably transfected LAN5 neuroblastoma cells with an expression vector for ET-R, a chimeric receptor with the extracellular domain of the epidermal growth factor receptor (EGFR), and the TrkA transmembrane and intracellular domains. EGF activated the ET-R kinase and induced partial differentiation. NGF, which can bind to endogenous p75, did not induce differentiation but enhanced the EGF-induced response, leading to differentiation of almost all cells. A mutated NGF, 3T-NGF, that binds to TrkA but not to p75 did not synergize with EGF. Enhancement of EGF-induced differentiation required at least nanomolar concentrations of NGF, consistent with the low-affinity p75 binding site. EGF may induce a limited number of neuronal cells because it also enhanced apoptosis. Both NGF and a caspase inhibitor reduced apoptosis and, thereby, enhanced differentiation. NGF seems to enhance survival through the phosphatidylinositol-3 kinase (PI3K) pathway. Consistent with this hypothesis, Akt, a downstream effector of the PI3K pathway, was hyperphosphorylated in the presence of EGF+NGF. These results demonstrate that TrkA kinase initiates differentiation, and p75 enhances differentiation by rescuing differentiating cells from apoptosis via the PI3K pathway. Even though both EGF and NGF are required for differentiation of LAN5/ET-R cells, only NGF is required for survival of the differentiated cells. In the absence of NGF, the cells die by an apoptotic mechanism, involving caspase-3. An anti-p75 antibody blocked the survival effect of NGF. Brain-derived neurotrophic factor also enhanced cell survival, indicating that in differentiated cells, NGF acts through the p75 receptor to prevent apoptosis.  相似文献   

10.
Previous reports have described increases in the size and number of cholinergic neurons in the basal forebrain in p75 neurotrophin receptor (p75NTR) knockout mice. In an earlier study, we also found improved spatial memory in these mice, raising the possibility that p75NTR regulates hippocampal function by its effects on the cholinergic basal forebrain. We therefore investigated hippocampal long‐term potentiation in p75NTR knockout mice that shared the same genetic background as control 129/Sv mice. We also investigated heterozygous mice, carrying just one functional p75NTR allele. The p75NTR knockout mice had enhanced long‐term potentiation in the Schafer collateral fiber synapses of the hippocampus. Heterozygous mice had an intermediate level, greater than controls but less than knockout mice. Hippocampal choline acetyltransferase activity was also markedly elevated in p75NTR knockout mice, with a smaller increase in heterozygous mice. In the Barnes maze, p75NTR knockout mice displayed markedly superior learning to controls, and this was evident over the three age brackets tested. At each age, the performance of heterozygous mice was intermediate to the other groups. In the open field test, p75NTR knockout mice exhibited greater stress‐related behavioral responses, including freezing, than did control animals. There were no differences between the three groups in a test of olfactory function. The dose‐dependent effects of p75NTR gene copy number on hippocampal plasticity and spatial memory indicate that p75NTR has profound effects on hippocampal function. Bearing in mind that p75NTR is very sparsely expressed in the adult hippocampus and has a potent effect on hippocampal choline acetyltransferase activity, the effects of p75NTR on hippocampal function are likely to be mediated indirectly, by its actions on basal forebrain cholinergic neurons. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
This study examined the roles of nerve growth factor (NGF) and the p75 neurotrophin receptor (p75NTR) in the growth of dorsal root ganglion (DRG) central processes in the dorsal horn. Two genetically modified mouse strains were used: transgenic mice that overexpress NGF in the CNS under the control of the glial fibrillary acidic protein promoter, and p75NTR exon III null mutant mice that express a hypomorphic form of this receptor. In both NGF transgenic and nontransgenic mice with hypomorphic expression of p75NTR, there is a significant loss of DRG neurons compared to mice with normal p75NTR expression. This reduction in neuron number has been shown to underlie a corresponding decrease in peripheral nociceptive sensory innervation. Within the CNS, however, nociceptive innervation of the dorsal horn appears to be unaffected by hypomorphic expression of p75NTR. Comparisons of calcitonin gene-related peptide immunoreactivity in the dorsal horn revealed that the area occupied by DRG central processes was not significantly different between p75NTR hypomorphic mice and wild-type siblings, or between NGF transgenic mice with either hypomorphic or normal expression of p75NTR. We propose that DRG central processes arborize extensively in both NGF-transgenic and nontransgenic p75NTR hypomorphic mice in order to compensate for the loss of DRG neurons and restore dorsal horn innervation to normal levels. We also present evidence suggesting that NGF plays only a minor role in the growth of DRG central processes.  相似文献   

13.
Neurotrophins exert their biological functions on neuronal cells through two types of receptors, the trk tyrosine kinases and the low-affinity neurotrophin receptor (p75NTR), which can bind all neurotrophins with similar affinity. The p75NTR is highly expressed in developing motoneurons and in adult motoneurons after axotomy, suggestive of a physiological role in mediating neurotrophin responses under such conditions. In order to characterize this specific function of p75NTR, we have tested the effects of nerve growth factor (NGF) on embryonic motoneurons from control and p75NTR-deficient mice. NGF antagonizes brain-derived neurotrophic factor (BDNF)- and neurotrophin-3 (NT-3)-mediated survival in control but not p75NTR-deficient motoneurons. Survival of cultured motoneurons in the presence of 0.5 ng/mL of either ciliary neurotrophic factor (CNTF) or glial-derived neurotrophic factor (GDNF) was not reduced by 20 ng/mL NGF. Dose-response investigations revealed that five times higher concentrations of BDNF are required for half-maximal survival of p75NTR-deficient motoneurons in comparison to motoneurons from wild-type controls. After facial nerve lesion in newborn wild-type mice, local administration of NGF reduced survival of corresponding motoneurons to less than 2% compared to the unlesioned control side. In p75NTR-deficient mice, the same treatment did not enhance facial motoneuron death on the lesioned side. In the facial nucleus of 1-week-old p75NTR -/- mice, a significant reduction of motoneurons was observed at the unlesioned side in comparison to p75NTR +/+ mice. The observation that motoneuron cell numbers are reduced in the facial nucleus of newborn p75NTR-deficient mice suggests that p75NTR might not function as a physiological cell death receptor in developing motoneurons.  相似文献   

14.
The p75 neurotrophin receptor,which is a member of the tumor necrosis factor receptor superfamily,facilitates apoptosis during development and following central nervous system injury.Previous studies have shown that programmed cell death is likely involved in the neurotoxic effects of 3,4-methylenedioxy-N-methylamphetamine (MDMA),because MDMA induces apoptosis of immortalized neurons through regulation of proteins belonging to the Bcl-2 family.In the present study,intraperitoneal injection of different doses of MDMA (20,50,and 100 mg/kg) induced significant behavioral changes,such as increased excitability,increased activity,and irritability in rats.Moreover,changes exhibited dose-dependent adaptation.Following MDMA injection in rat brain tissue,the number of apoptotic cells dose-dependently increased and p75 neurotrophin receptor expression significantly increased in the prefrontal cortex,cerebellum,and hippocampus.These findings confirmed that MDMA induced neuronal apoptosis,and results suggested that this effect was related by upregulated protein expression of the p75 neurotrophin receptor.  相似文献   

15.
The myelin and lymphocyte protein (MAL) is a raft-associated membrane protein predominantly expressed by oligodendrocytes and Schwann cells. Here we show that MAL regulates myelination in the peripheral nervous system. In mice overexpressing MAL, myelination was retarded and fibers were hypomyelinated, whereas myelination in MAL knockout mice was accelerated. This was not due to impaired Schwann cell proliferation, differentiation or axonal sorting. We found that the expression level of p75 neurotrophin receptor mRNA and protein was strongly reduced in developing sciatic nerves in MAL-overexpressing mice. This reduction is well correlated with the observed alterations in myelination initiation, speed of myelination and alterations in Remak bundle development. Our results suggest a functional role for MAL in peripheral myelination by influencing the expression of membrane components that mediate axon-glia interaction during ensheathment and myelin wrapping.  相似文献   

16.
Although changes to neural circuitry are believed to underlie behavioural characteristics mediated by the hippocampus, the contribution of neurogenesis to this process remains controversial. This is partially because the molecular regulators of neurogenesis remain to be fully elucidated, and experiments generically preventing neurogenesis have, for the most part, depended on paradigms involving irradiation. Here we show that mice lacking the p75 neurotrophin receptor (p75NTR−/−) have 25% fewer neuroblasts and 50% fewer newborn neurons in the dentate gyrus, coincident with increased rates of cell death of newly born cells and a significantly smaller granular cell layer and dentate gyrus, than those of p75NTR+/+ mice. Whereas p75NTR−/− mice had increased latency to feed in a novelty-suppressed feeding paradigm they had increased mobility in another test of "depression", the tail-suspension test. p75NTR−/− mice also had subtle behavioural impairment in Morris water maze tasks compared to wild-type animals. No difference between genotypes was found in relation to anxiety or exploration behaviour based on the elevated-plus maze, light-dark, hole-board, T-maze or forced-swim tests. Overall, this study demonstrates that p75NTR is an important regulator of hippocampal neurogenesis, with concomitant effects on associated behaviours. However, the behavioural attributes of the p75NTR−/− mice may be better explained by altered circuitry driven by the loss of p75NTR in the basal forebrain, rather than direct changes to neurogenesis.  相似文献   

17.
Myosin light chain kinase (MLCK) plays an important role in the reorganization of the cytoskeleton, leading to disruption of vascular barrier integrity in multiple organs, including the blood-brain barrier (BBB), after traumatic brain injury (TBI). MLCK has been linked to transforming growth factor (TGF) and rho kinase signaling pathways, but the mechanisms regulating MLCK expression following TBI are not well understood. Albumin leaks into the brain parenchyma following TBI, activates glia, and has been linked to TGF-β receptor signaling. We investigated the role of albumin in the increase of MLCK in astrocytes and the signaling pathways involved in this increase. After midline closed-skull TBI in mice, there was a significant increase in MLCK-immunoreactive (IR) cells and albumin extravasation, which was prevented by treatment with the MLCK inhibitor ML-7. Using immunohistochemical methods, we identified the MLCK-IR cells as astrocytes. In primary astrocytes, exposure to albumin increased both isoforms of MLCK, 130 and 210. Inhibition of the TGF-β receptor partially prevented the albumin-induced increase in both isoforms, which was not prevented by inhibition of smad3. Inhibition of p38 MAPK, but not ERK, JNK, or rho kinase, also prevented this increase. These results are further evidence of a role of MLCK in the mechanisms of BBB compromise following TBI and identify astrocytes as a cell type, in addition to endothelium in the BBB, that expresses MLCK. These findings implicate albumin, acting through p38 MAPK, in a novel mechanism by which activation of MLCK following TBI may lead to compromise of the BBB.  相似文献   

18.
It has been hypothesized that the main olfactory bulb, with its relatively rich source of neurotrophins, may provide trophic support for neurons that project to the bulb. We monitored expression of the common, low affinity receptor for neurotrophins, p75NGFR, in the olfactory bulb and basal forebrain of unilaterally bulbectomized and sham-treated rats, 1–16 weeks post-surgery, using the monoclonal antibody MAb192. An induction of p75NGFR-immunoreactivity was observed in both the glomerular and olfactory nerve layers of the right, contralateral main olfactory bulb of lesioned animals. The naturally occurring regeneration taking place in the olfactory neuroepithelium is known to be altered by olfactory bulbectomy, with subsequent changes in the sensory input to the remaining bulb. These changes in expression of p75NGFR in the olfactory bulb support the hypothesis we have developed in previous papers, that changes in the extent of the peripheral input from the olfactory neuroepithelium to the main olfactory bulb regulate p75NGFR expression in both the glomerular and the olfactory nerve layers. Expression of p75NGFR in the basal forebrain of bulbectomized animals was found to be no different than sham-treated controls and does not support the hypothesis that the olfactory bulb provides trophic support to this region of the central nervous system.  相似文献   

19.
Nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3, designated neurotrophins, are a family of neurotrophic factors, having important functions in the survival of embryonic and adult neuronal subpopulations. Through the trk family of receptors, these neurotrophins utilize phosphotyrosine-mediated signal transduction. We have used RT-PCR to detect the expression of mRNA for the above neurotrophins and their respective receptors, namely trkA, trkB and trkC in embryonic stages 1–8 of chicken development. While trkA and trkC mRNAs were expressed from stage 1 onwards, NGF and NT-3 mRNAs were expressed only at stages 3 and 5, respectively. In contrast, BDNF mRNA was expressed at stage 1, being the only neurotrophin expressed prior to expression of its respective receptor trkB. However, the latter was not expressed until stage 8. These results indicate an earlier expression of some but not all trk proto-oncogenes, suggesting that the two different receptor mRNAs expressed i.e. trkA and trkC in conjunction with BDNF, at stage 1, may act in aspects of very early embryonic development, such as gastrulation. Thereafter, mRNAs for trkB, NGF and NT-3 are expressed reflecting their later action in early embryonic development.  相似文献   

20.
Neurotrophins interact with two distinct classes of cell-surface receptors, the Trk receptor tyrosine kinase family and the common neurotrophin receptor p75(NTR). For many years, the biological role of p75(NTR) remained obscure, being relegated to modulating Trk binding of neurotrophins. Recently, the importance of p75(NTR) as a signaling receptor in itself has become increasingly clear. The signals initiated by p75(NTR) are likely to be as complex as those for the Trk family and probably depend on the cell system in which such signaling is being studied. In this study, all members of the neurotrophin family were demonstrated to be capable of stimulating p75(NTR)-mediated activation of the mitogen-activated protein kinase (MAPK) family (ERK1,2). This activation is rapid and transient, peaking at 5-15 min, depending on the cell system. The classical MAPK cascade consists of the reaction series Ras-Raf-MEK-MAPK. The p75(NTR)-induced MAPK activation is MEK dependent but Raf independent. This result implies that neurotrophin activation of p75(NTR) results in some cascade (as yet unknown) that bypasses Raf and converges on MEK to result in activation of MAPK. This activated MAPK is then able to translocate to the nucleus. The effect of this MAPK activation on cell survival is dependent on cell type. These results support the concept that signaling from the p75(NTR) receptor is more diverse and extensive than previously believed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号