首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several 2,5'-anhydro analogues of 3'-azido-3'-deoxythymidine (AZT), 3'-azido-2'3'-dideoxyuridine (AZU), 3'-azido-2'3'-dideoxy-5-bromouridine, 3'-azido-2',3'-dideoxy-5-iodouridine, and 3'-deoxythymidine and the 3'-azido derivative of 5-methyl-2'-deoxyisocytidine have been synthesized for evaluation as potential anti-HIV (human immunodeficiency virus) agents. These 2,5'-anhydro derivatives, compounds 13-17, demonstrated significant anti-HIV-1 activity with IC50 values of 0.56, 4.95, 26.5, 27.1, and 48 microM, respectively. Compared to that of the parent compounds AZT and AZU, the respective 2,5'-anhydro analogues, compounds 13 and 14, were somewhat less active. Whereas AZT was cytotoxic with a TCID50 of 29 microM, the toxicity of the 2,5'-anhydro derivative of AZT, compound 13, was reduced considerably to a TCID50 value of greater than 100 microM. The 2,5'-anhydro analogue of 5-methyl-2'-deoxyisocytidine also demonstrated anti-HIV-1 activity with an IC50 value of 12 microM. These compounds were also evaluated against Rauscher-Murine leukemia virus (R-MuLV) in cell culture. Among them, AZT, 3'-azido-2',3'-dideoxy-5-iodouridine, 3'-azido-2',3'-dideoxy-5-bromouridine, and 2,5'-anhydro-3'-azido-3'-deoxythymidine (13) were found to be most active, with IC50 values of 0.023, 0.21, 0.23, and 0.27 microM, respectively.  相似文献   

2.
The 5'----5' dinucleoside methylphosphonates of 3'-azido-3'-deoxythymidine (AZT) and 2',3'-dideoxycytidine (DDC) were prepared and evaluated for their inhibitory properties against different viruses, including human immunodeficiency virus (HIV). The synthesis of the compounds was achieved by reaction of AZT or N4-(4-monomethoxytrityl)-2',3'-dideoxycytidine with in situ prepared methylphosphonic bis (triazolide), followed in the latter case by an acidic treatment. The two title compounds showed in vitro anti-HIV activity, that was 200- to 450-fold less pronounced that that shown by the corresponding monomeric nucleosides AZT and DDC. The decreased antiviral activity may be ascribed to nuclease resistance of the methylphosphonate linkage.  相似文献   

3.
3'-Azido-2',3'-dideoxyuridine (AzddU, CS-87) is a potent inhibitor of human immunodeficiency virus replication in vitro with low bone marrow toxicity. Although AzddU is currently being evaluated in clinical trials, its catabolic disposition is unknown. Pharmacokinetic studies in rhesus monkeys have demonstrated that a 5'-O-glucuronide is excreted in urine. The present study examined the catabolic disposition of AzddU is isolated rat hepatocytes, a model for the study at the cellular level of biosynthetic, catabolic and transport phenomena in the liver. Following exposure of cells to 10 microM [3H]AzddU, low intracellular levels of two catabolites, identified as 3'-azido-2',3'-dideoxy-5'-beta-D-glucopyranosyluridine (GAzddU) and 3'-amino-2',3'-dideoxyuridine (AMddU), were detected. Studies using rat microsomes demonstrated that GAzddU formation was only detected in the presence of uridine 5'-diphosphoglucuronic acid, and that the rate of AMddU formation increased significantly in the presence of NADPH. Under similar conditions, reduction of the 3'-azido function was also demonstrated herein with 3'-azido-2',3'-dideoxycytidine (AzddC), 3'-azido-2',3'-dideoxy-5-methylcytidine (AzddMeC) and 3'-azido-2',3'-dideoxyguanine (AzddG), suggesting that enzymatic reduction to a 3'-amino derivative is a general catabolic pathway of 3'-azido-2',3'-dideoxynucleosides at the hepatic site.  相似文献   

4.
A series of four 2'-azido-2',3'-dideoxypyrimidine nucleosides were synthesized and their activity against human immunodeficiency virus was explored. 2,2'-Anhydro-5-O-benzoyluridine (6a) was prepared from 5-O-benzoyluridine (5a) and converted into 3'-deoxy analogue 8a by imidazolylthiocarbonylation followed by Bu3SnH reduction. Treatment of 8a with LiN3 in DMF followed by saponification afforded 2'-azido-2',3'-dideoxyuridine (1a). The 5'-O-benzoylated nucleoside 9a was further converted into the 5-bromo and 5-iodo analogues (1b and 1c) by halogenation and debenzoylation. 2',3'-O-Isopropylideneuridine (3) was converted in two steps into the thymine nucleoside, which was benzoylated and de-O-isopropylidenated to afford 5'-O-benzoyl-5-methyluridine (5d). 2'-Azido-2',3'-dideoxy-5-methyluridine (1d) was synthesized from 5d in a similar manner as that used for the synthesis of 1a from 5a. These new nucleosides, closely related to AZT, however, did not exhibit any significant anti-HIV activity in tissue culture using H9 cells.  相似文献   

5.
3'-Amino-2',3'-dideoxyribonucleosides of thymine, uracil, and 5-iodouracil (1-3) were synthesized from the corresponding 2'-deoxyribonucleosides via the threo-3'-chloro and the erythro-3'-azido derivatives. Corresponding aminonucleosides of 5-bromouracil, 5-chlorouracil, and 5-fluorouracil (4-6) were synthesized enzymatically with 3'-amino-2',3'-dideoxythymidine as the aminopentosyl donor and thymidine phosphorylase (EC 2.4.2.4) as the catalyst. 3'-Amino-2',3'-dideoxycytidine (7) was synthesized by amination of the 3'-azido precursor of 3'-amino-2',3'-dideoxyuridine. The biological activity of 3'-amino-2',3'-dideoxy-5-fluorouridine (6) was notable among this group of aminonucleosides. It had an ED50 of 10 microM against adenovirus and was not appreciably cytotoxic to mammalian cells in culture. It also had activity against some Gram-positive bacteria but not against a variety of Gram-negative bacteria. The other aminonucleosides (1-5 and 7) lacked or exhibited weak antiviral and antibacterial activities. The only compounds in this group that were appreciably toxic to mammalian cells in culture were the thymidine and deoxycytidine analogues (1 and 7).  相似文献   

6.
The 5'-O-p-tolylsulfonyl derivatives of 5-chloro-, 5-bromo-, and 5-iodo-2'-deoxyuridine were synthesized and converted into the corresponding 5-halo-5'-azido-2',5'-dideoxyuridines (5-7). Reduction of 5-chloro-5'-azido-2',5'-dideoxyuridine (5) afforded 5-chloro-5'-amino-2',5'-dideoxyuridine (10, ACIU); however, similar efforts to prepare 5-bromo-5'-amino-2',5'-dideoxyuridine (11) and 5-iodo-5'-amino-2',5'-dideoxyuridine (12) by reduction of the corresponding 5'-azido precursor resulted in the formation of 5'-amino-2',5'-dideoxyuridine (9). 5-Bromo-5'-amino-2',5'-dideoxyuridine (11, ABrU) and 5-iodo-5'-amino-2',5'-dideoxyuridine (12, AIU) were prepared by halogenation of the 5-mercuriacetate of 5'-amino-2',5'-dideoxyuridine. The 5'-amino-2',5'-dideoxy analogs of 5-methyl-, 5-chloro-, 5-bromo-, and 5-iodo-2'-deoxyuridine possess antiviral activity against herpes simplex virus but exhibit no inhibitory activity against sarcoma 180 (murine) or Vero (monkey) cells in culture.  相似文献   

7.
A series of nucleosides were synthesized in which the 4'-hydrogen was substituted with either an azido or a methoxy group. The key steps in the syntheses of the 4'-azido analogues were the stereo- and regioselective addition of iodine azide to a 4'-unsaturated nucleoside precursor followed by an oxidatively assisted displacement of the 5'-iodo group. The 4'-methoxynucleosides were made via epoxidation of 4'-unsaturated nucleosides with in suit epoxide opening by methanol. Reaction-mechanism considerations, empirical conformation rules, NMR-based conformational calculations, and NOE experiments suggest that the 4'-azidonucleosides prefer a 3'-endo (N-type) conformation of the furanose moiety. When evaluated for their inhibitory effect on HIV in A3.01 cell culture, all the 4'-azido-2'-deoxy-beta-D-nucleosides exhibited potent activity. IC50's ranged from 0.80 microM for 4'-azido-2'-deoxyuridine (6c) to 0.003 microM for 4'-azido-2'-deoxyguanosine (6e). Cytotoxicity was detected at 50-1500 times the IC50's in this series. The 4'-methoxy-2'-deoxy-beta-D-nucleosides were 2-3 orders of magnitude less active and less toxic than their azido counterparts. Modifications at the 2'- or 3'-position of the 4'-substituted-2'-deoxynucleosides tended to diminish activity. Further evaluation of 4'-azidothymidine (6a) in H9, PBL, and MT-2 cells infected with HIV demonstrated a similar inhibitory profile to that of AZT. However, 4'-azidothymidine (6a) retained its activity against HIV mutants which were resistant to AZT.  相似文献   

8.
A series of base-modified pyrimidine 3'-azido-2',3'-dideoxynucleosides and 3'-substituted purine and pyrimidine 2',3'-dideoxynucleosides have been synthesized and evaluated for their inhibitory activity against human immunodeficiency virus (HIV) replication in MT-4 cells. The following pyrimidine derivatives emerged as the most potent and/or selective inhibitors of HIV-induced cytopathogenicity (in order of decreasing selectivity: 3'-azido-3'-deoxythymidine (AZT), 3'-azido-2',3'-dideoxyuridine (AzddUrd), 3'-azido-2',3'-dideoxy-5-methylcytidine (AzddMeCyd), 3'-fluoro-ddUrd (FddUrd), 3'-fluoro-ddThd (FddThd), the N4-hydroxylated derivative of AzddMeCyd and the N4-methylated derivative of AzddMeCyd. Among the purine 2',3'-dideoxynucleosides, 3'-azido-2',3'-dideoxyguanosine (AzddGuo), 3'-fluoro-ddGuo (FddGuo), and 3'-fluoro-2,6-diaminopurine 2',3'-dideoxynucleoside (FddDAPR) were the most selective inhibitors of HIV replication.  相似文献   

9.
1-Methyl-5-(3-azido-2,3-dideoxy-beta-D-erythro-pentofuranosyl)uracil (C-AZT), a C-nucleoside isostere of the potent anti-AIDS nucleoside 3'-azido-3'-deoxythymidine (AZT), was synthesized. 1-Methyl-2'-deoxy-5'-O-tritylpseudouridine (2a) was oxidized with CrO3/pyridine/Ac2O complex to 1-methyl-5-(5-O-trityl-beta-D-glycero-pentofuranos-3-ulosyl) uracil (12a), which was selectively reduced to 1-methyl-5-(5-O-trityl-beta-D-threo-pentofuranosyl)uracil (13a). Mesylation of 13a to 14a followed by nucleophilic displacement of the mesyloxy group with azide afforded 3'-azido-2',3'-dideoxy-5'-O-trityl-1-methylpseudoridine (15a), which was detritylated to C-AZT. In a similar manner, 1-methyl-5-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)uracil (C-FMAU, a potent antiherpetic nucleoside) was converted into the 3'-azido analogue (3'-azido-C-FMAU). Both C-AZT and 3'-azido-C-FMAU, however, did not exhibit any significant inhibitory activity against HIV in H9 cells.  相似文献   

10.
Oxygen-sulfur exchange at the C-4 carbonyl of several modified pyrimidine nucleosides, including 3'-azido-3'-deoxythymidine (AZT), is described in an effort to enhance the lipophilicity and, thereby, the delivery to the central nervous system of the sulfur analogues without compromising the anti-HIV activities of the parental structures. Preparation of 3'-azido-3'-deoxy-4-thiothymidine (3) proceeded from 4-thiothymidine (1) and utilized the same methodology developed for the initial synthesis of AZT. Thiation of 2',3'-didehydro-3'-deoxythymidine (4a) and 2',3'-didehydro-2',3'-dideoxyuridine (4c) was carried out with Lawesson's reagent on the corresponding 5'-O-benzoate esters, 4b and 4d, to give 5a and 5c, respectively. The latter, on alkaline hydrolysis, gave 2',3'-didehydro-3'-deoxy-4-thiothymidine (5b) and 2',3'-didehydro-2',3'-dideoxyuridine (5d), respectively. The same series of reactions were applied to the 5'-O-benzoate esters of 2',3'-dideoxyuridine (6a) and 3'-deoxythymidine (6b) to give 2',3'-dideoxy-4-thiouridine (7d) and 3'-deoxy-4-thiothymidine (7b), respectively. Characterization of the saturated and unsaturated thionucleosides included mass spectrometric studies. Under electron impact conditions, the thiated analogues gave more intense parent ions than the corresponding oxygen precursors. The lipophilicity of thymidine and the 3'-deoxythymidine derivatives are enhanced significantly, as indicated, by increases in corresponding P values (1-octanol-0.1 M sodium phosphate) upon replacement of the 4-carbonyl oxygens by sulfur. Compounds 5b, 5d, 7b, and 7d were evaluated for their effects on HIV-induced cytopathogenicity of MT-2 and CEM cells. Only 5b and 7b were moderately active in protecting both cell lines against the cytolytic effect of HIV. The inhibitory effects of analogues 5b, 5d, 7b, and 7d on thymidine phosphorylation by rabbit thymus thymidine kinase were evaluated. Only 3 showed moderate affinity (Ki = 54 microM) for the enzyme. The generally weak anti-HIV activities of the remaining thio analogues are consistent with correspondingly low susceptibilities to thymidine kinase phosphorylation as estimated from the respective Ki values of the synthetic nucleosides. However, the phosphorylation of the 5'-monophosphate derivatives to their respective 5'-triphosphates must also be considered in connection with the weak in vitro anti-HIV effects of these thiated compounds.  相似文献   

11.
The prevalence of tuberculosis (TB) and mutidrug-resistant tuberculosis (MDR-TB) has been increasing, leading to serious infections, high mortality, and a global health threat. Here, we report the identification of a novel class of dideoxy nucleosides as potent and selective inhibitors of Mycobacterium bovis, Mycobacterium tuberculosis, and drug-resistant Mycobacterium tuberculosis. A series of 5-acetylenic derivatives of 2',3'-dideoxyuridine (3-8) and 3'-fluoro-2',3'-dideoxyuridine (22-27) were synthesized and tested for their antimycobacterial activity against M. bovis, M. tuberculosis, and M. avium. 2',3'-Dideoxyuridine possessing 5-decynyl, 5-dodecynyl, 5-tridecynyl, and 5-tetradecynyl substituents (4-7) exhibited the highest antimycobacterial activity against all three mycobacteria. In contrast, in the 3'-fluoro-2',3'-dideoxyuridine series, a 5-tetradecynyl analogue (26) displayed the most potent activity against these mycobacteria. Among other derivatives, 5-bromo-2',3'-dideoxycytidine (11), 5-methyl-2',3'-dideoxycytidine (12), and 5-chloro-4-thio-2',3'-dideoxyuridine (19) exhibited modest inhibition of M. bovis and M. tuberculosis. In the series of dideoxy derivatives of adenosine, guanosine, and purines, 2-amino-6-mercaptoethyl-9-(2,3-dideoxy-beta-d-glyceropentofuranosyl)purine (32) and 2-amino-4-fluoro-7-(2,3-dideoxy-beta-d-glyceropentofuranosyl)pyrrolo[2,3-d]pyrimidine (35) were the most efficacious against M. bovis and M. tuberculosis, and M. avium, respectively.  相似文献   

12.
In view of the selective anti-HIV activity of 2',3'-dideoxy-3'-fluoro-5-chlorouridine (11), a series of eight 2',3'-dideoxy-5-chloropyrimidines were synthesized and evaluated for their inhibitory activity against human immunodeficiency virus type 1 (HIV-1) replication in MT-4 cells. A marked improvement in selectivity was noted for the 5-chlorouracil derivatives of 2,3-dideoxyribofuranose, 3-azido-2,3-dideoxyribofuranose, and 3-fluoro-2,3-dideoxyribofuranose, mainly due to decreased toxicity of the compounds for the host cells. While chlorination of 2',3'-dideoxycytidine removed the anti-HIV activity, introduction of a chlorine at the C-5 position of 3'-fluoro-, 3'-azido- or 2',3'-didehydro-2',3'-dideoxycytidine led to reduced cytotoxicity with only slightly reduced anti-HIV activity. X-ray analysis showed compound 11 to have two molecules in the asymmetric unit with chi = -168.8 (3) degrees and -131.3 (3) degrees and P = 179 (1) degree and 163 (1) degree, respectively; thus revealing no close resemblance to 3'-azido-3'-deoxythymidine (AZT).  相似文献   

13.
The enzymatic glucuronidation of 3'-azido-3'-deoxythymidine (AZT) catalyzed by human liver microsomal UDP-glucuronosyltransferase (EC 2.4.1.17, UDPGT) was inhibited by a number of nucleoside analogs. The inhibitory potency of these nucleoside analogs correlated with their hydrophobicity (r2 = 0.90, N = 13). Since similar results were obtained with solubilized UDPGT (r2 = 0.87, N = 7), the affinity of the nucleosides for UDPGT was probably being assessed rather than the ability of the compounds to access the membrane-bound enzyme. Three homologous inhibitors, 3'-azido-2',3'-dideoxyuridine (AzddU), 5-ethyl-AzddU, and 5-propyl-AzddU, were also studied as substrates of UDPGT. The substrate efficiency (Vmax/Km) of these three compounds and AZT also correlated with their hydrophobicity (r2 = 0.94). Sixteen drugs that are structurally unrelated to nucleosides also inhibited the glucuronidation of AZT. The mechanism of inhibition was competitive for seven compounds tested. Ki values were estimated from Dixon plots for nine other less soluble inhibitors; their mechanism of inhibition was assumed to be competitive. Since the peak physiological drug concentrations of the tested inhibitors are considerably less than their Ki values, none of these compounds are expected to strongly inhibit AZT glucuronidation in humans. However, the rank order of these drugs with respect to their inhibitory potential is probenecid greater than chrloramphenicol greater than naproxen greater than phenylbutazone much greater than other drugs tested.  相似文献   

14.
Fluorinated sugar analogues of potential anti-HIV-1 nucleosides   总被引:1,自引:0,他引:1  
In order to obtain agents with therapeutic indices superior to those of AZT, FLT, or D4T, several analogues of anti-HIV-1 nucleosides were synthesized. These include 2',3'-dideoxy-2',3' -difluoro-5-methyluridine (13), its arabino analogue 19, arabino-5-methylcytosine analogue 21, 3'-deoxy-2',3'-didehydro-2' -fluorothymidine (25), 3'-azido-2',3'-dideoxy-2'-fluoro-5-methyluridine (29), 2'-azido-3'-fluoro-2',3'-dideoxy-5-methyluridine (31), and 2'3'-dideoxy-2' -fluoro-5-methyluridine (37). These new nucleosides were screened for their activity against HIV and feline TLV in vitro. None of the compounds showed significant activity. It is interesting to note that such a small modification in the sugar moiety of active anti-HIV nucleosides (i.e., displacement of hydrogen by fluorine) almost completely inactivate the agents.  相似文献   

15.
The 3'-fluoro-and 3'-azido-substituted derivatives of 2',3'-dideoxythymidine (ddThd), 2',3'-dideoxyuridine (ddUrd), 2',3'-dideoxy-5-ethyluridine (ddEtUrd) and 2',3'-dideoxycytidine (ddCyd) have been synthesized and evaluated for their anti-retrovirus activity [against human immunodeficiency virus (HIV) and murine Moloney sarcoma virus (MSV)]. Based on their 50% effective doses the most potent inhibitors of HIV replication in human MT4 lymphocytes were: FddThd (0.001 microM), AzddThd (0.004 microM), FddUrd (0.04 microM) and AzddUrd (0.36 microM). Their selectivity indexes were 197, 5000, 500 and 677, respectively. In contrast, none of the 3'-substituted ddEtUrd derivatives had a marked antiviral effect. The 2',3'-dideoxynucleoside analogues showed poor, if any, substrate affinity for (bacterial) dThd phosphorylase. AzddThd and FddThd inhibited human dThd kinase to a much greater extent (Ki/Km: 0.66 and 3.4, respectively) than did AzddUrd or FddUrd (Ki/Km: 71 and 171, respectively). The Ki/Km values of FddCyd and AzddCyd for human dCyd kinase were about 60. Although phosphorylation is a prerequisite for the anti-retrovirus activity of the 2',3'-dideoxynucleoside derivatives, there is no close correlation between the anti-retrovirus potency of the 3'-fluoro- and 3'-azido-substituted ddUrd, ddThd, ddEtUrd and ddCyd derivatives and their affinity for dThd kinase or dCyd kinase.  相似文献   

16.
A series of 2',3'-unsaturated and 3'-substituted 2',3'-dideoxynucleoside analogues of purines and pyrimidines have been synthesized and evaluated for their inhibitory activity against human immunodeficiency virus (HIV). The 2',3'-unsaturated analogues of 2',3'-dideoxycytidine (ddeCyd) and 2',3'-dideoxythymidine (ddeThd), 3'-azido-2',3'-dideoxythymidine (AzddThd), 3'-fluoro-2',3'-dideoxythymidine, 2',3'-dideoxycytidine (ddCyd), and 2',3'-dideoxyadenosine (ddAdo) emerged as the most potent inhibitors of HIV-induced cytopathogenicity in the human T lymphocyte cell lines ATH8 and MT4. In ATH8 cells ddCyd, ddeCyd, and ddAdo had the highest therapeutic index whereas in MT4 cells AzddThd, ddThd, ddCyd, and ddAdo were the most selective. Derivatives from ddThd in which the substituent group was linked to the 3'-carbon atom via a thio, sulfonyl, or oxygen bridge were far less inhibitory to HIV than was AzddThd.  相似文献   

17.
New synthetic protocol for the preparation of nucleoside 5'-(N-aryl)phosphoramidate monoesters 4 was developed. It consisted of a condensation of the corresponding nucleoside 5'-H-phosphonates with aromatic- or heteroaromatic amines promoted by diphenyl phosphorochloridate, followed by oxidation of the produced H-phosphonamidates with iodine/water. 5'-(N-Aryl)phosphoramidate monoesters derived from 3'-azido-3'-deoxythymidine (AZT) or 2',3'-dideoxyuridine (ddU) nucleosides and various aromatic and heteroaromatic amines were evaluated as potential anti-HIV drugs. It was found that these compounds act most likely as pronucleotides and that some of them have therapeutic indices superior to those of the reference AZT.  相似文献   

18.
The novel 5-chloro-, 5-bromo-, and 5-iodo-derivatives of 3'-fluoro-2',3'-dideoxyuridine (FddUrd), designated FddCIUrd, FddBrUrd, and FddIUrd, respectively, have been synthesized and evaluated for their antiretrovirus activity against human immunodeficiency virus (HIV) and murine Moloney sarcoma virus. All three 5-halogeno-FddUrd analogues inhibited HIV-1 replication in MT4 cells with an effective dose (ED50) of about 0.2-0.4 microM. However, FddCIUrd was markedly more selective in its anti-HIV-1 activity than FddBrUrd or FddIUrd. The selectivity index of FddCIUrd was similar to that of 3'-azido-2',3'-dideoxythymidine (AZT) when evaluated in parallel (1408 and 1603, respectively). The FddUrd derivatives also had a marked inhibitory effect on HIV-2 replication in MT4 cells and HIV-1 induced antigen expression in HUT-78 cells. However, neither FddUrd nor its 5-halogeno derivatives were inhibitory to Moloney sarcoma virus-induced transformation of murine C3H cells. The anti-HIV-1 activity of FddUrd, FddCIUrd, FddBrUrd, and FddIUrd was reversed by the addition of thymidine and 2'-deoxycytidine. The 5-halogeno-FddUrd analogues had a markedly higher affinity for MT4 thymidine kinase than FddUrd (Ki/Km, 4.0-4.7, as compared with 302 for FddUrd).  相似文献   

19.
As antiviral nucleosides containing a 2',3'-unsaturated sugar moiety with 2'-fluoro substitution are endowed with increased stabilization of the glycosyl bond, it was of interest to investigate the influence of the fluorine atom at the 3'-position. Various pyrimidine and purine L-3'-fluoro-2',3'-unsaturated nucleosides were synthesized from their precursors, L-3',3'-difluoro-2',3'-dideoxy nucleosides, by elimination of hydrogen fluoride. In the L-3',3'-difluoro-2',3'-dideoxy nucleoside series, cytidine 16 and 5-fluorocytidine 18 analogues showed modest antiviral activity (EC(50) 11.5 and 8.8 microM, respectively) when evaluated against HIV-1 in human peripheral blood mononuclear (PBM) cells. In the 2',3'-unsaturated series, L-3'-fluoro-2',3'-didehydro-2',3'-dideoxycytidine 24 and 5-fluorocytidine 26 showed highly potent antiviral activity (EC(50) 0.089 and 0.018 microM, respectively) without significant cytotoxicity. The guanosine analogue 48 showed only marginal anti-HIV activity with some cytotoxicity (EC(50) 38.5 microM, and IC(50) 17.4, 58.4, 36.5 microM in PBM, CEM, and Vero cells, respectively). The cytidine 24 and 5-fluorocytidine 26 analogues, however, showed significantly decreased antiviral activity against the clinically important lamivudine-resistant variants (HIV-1(M184V)). Molecular modeling studies demonstrated that the 3'-fluoro atom of the L-3'-fluoro-2',3'-unsaturated nucleoside is within the hydrogen bonding distance with the amide backbone of Asp185, which favors the binding of the nucleoside triphosphate to the wild-type RT. This favorable binding mode, however, cannot be maintained when the triphosphate of 3'-fluoro 2',3'-unsaturated nucleoside binds to the active site of M184V RT because the bulky side chain of Val184 occupies the space needed for the nucleotide. The biological results suggest that, in addition to the sugar conformation, the base moiety may also play a role in their interaction with the M184V RT.  相似文献   

20.
A series of 2'- and 3'-fluorinated 2',3'-dideoxynucleosides and 3'-azido-2',3'-dideoxynucleosides were synthesized and evaluated for their inhibitory activity against human immunodeficiency virus-1 (HIV-1) replication in MT-4 cells. Neither conversion of 3'-fluoro- or 3'-azido-2',3'-dideoxyadenosine to the corresponding inosine derivatives nor 8-bromination of 2',3'-dideoxyadenosine resulted in increased anti-HIV-1 activity. Nor did introduction of a 2'-fluorine in the erythro or threo configuration lead to improved anti-HIV-1 activity of the parent 2',3'-dideoxynucleosides. 1-(2-Fluoro-2,3-dideoxy-beta-D-threo-pentofuranosyl)cytosine and 1-(2-fluoro-2,3-dideoxy-beta-D-erythropentofuranosyl)thymine were only marginally active. However, 3'-fluoro-2',3'-dideoxyuridine (FddUrd) proved to be potent and a relatively nontoxic inhibitor of HIV-1. 5-Halogenated derivatives of FddUrd were prepared in attempts to further increase its anti-HIV potency and selectivity. Of these 5-halogenated derivatives, 3'-fluoro-2',3'-dideoxy-5-chlorouridine emerged as the most selective inhibitor of HIV-1 replication. Its selectivity index was comparable to that of azidothymidine when evaluated under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号