首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cerebral ocular motor signs   总被引:2,自引:0,他引:2  
Eye movement disturbances resulting from cerebral lesions are reviewed and the specific roles of the different ocular motor areas are summarized. Three cortical areas may trigger saccades: the frontal eye field (FEF), the supplementary eye field (SEF) and the parietal eye field (PEF). The FEF could be involved mainly in intentional visual exploration (intentional saccades), the PEF mainly in reflexive visual exploration (reflexive saccades) and the SEF in the preparation of motor programs (sequences of saccades). Only bilateral lesions affecting these areas result in visible saccade disturbances (at bedside examination), as manifested in Balint’s syndrome after parietal lesions, and ocular motor apraxia after fronto-parietal lesions. Other cortical areas prepare saccades: the posterior parietal cortex (near the PEF) controls visuomotor integration; the prefrontal cortex (i.e. area 46 of Brodmann) is involved in inhibition of unwanted reflexive saccades, prediction (predictive saccades) and spatial memory. Smooth pursuit is controlled by the FEF and the medial superior temporal area, located in the posterior part of the cerebral hemisphere. Eye movement disorders resulting from basal ganglia lesions are also reviewed. Lastly, the contribution of eye movement recordings in early diagnosis of some cerebral degenerative diseases (such as progressive supranuclear palsy or cortico-basal degeneration) is emphasized. Received: 15 August 1996 Accepted: 1 October 1996  相似文献   

2.
OBJECTIVE: Focal brain lesions due to traumatic brain injury (TBI) do not only lead to functional deficits in the lesion area, but also disturb the structurally intact neuronal network connected to the lesion site. Therefore we hypothesized dysfunctions of the cortical motor network after frontal TBI. The movement related potential (MRP) is an EEG component related to voluntary movement consisting of the Bereitschaftspotential (BP), the negative slope (NS), and the motor potential (MP). The aim of our study was to demonstrate alterations in the movement related cortical network in the acute stage after TBI by comparing our patients' MRPs to those of a healthy control group. METHODS: EEGs of 22 patients with magnetic resonance imaging defined contusions of the prefrontal cortex were recorded within 8 weeks after TBI. We further recruited a healthy control group. The paradigm consisted of self-paced abductions of the right index finger. RESULTS: Compared to healthy controls, the BP in the patient group was significantly reduced and its onset delayed. Moreover, an enhanced contribution of the postrolandic hemisphere ipsilateral to the movement and a reduced contribution of the left frontal cortex, ipsilateral to the lesion in the majority of the patients, were observed during motor execution (MP). CONCLUSIONS: Anatomical connections between the prefrontal cortex and the supplementary motor area (SMA) are known to exist. We suggest that prefrontal lesions lead to reduced neuronal input into the SMA. This deficit in the preparatory motor network may cause the reduced BPs in our patients. Moreover, an increased need for attentional resources might explain the enhanced motor potentials during movement execution. In conclusion, we demonstrated altered MRPs in the acute stage after frontal TBI, which are a consequence of disturbed neuronal networks involved in the preparation and execution of voluntary movements.  相似文献   

3.
The ipsilateral connections of motor areas of galagos were determined by injecting tracers into primary motor cortex (M1), dorsal premotor area (PMD), ventral premotor area (PMV), supplementary motor area (SMA), and frontal eye field (FEF). Other injections were placed in frontal cortex and in posterior parietal cortex to define the connections of motor areas further. Intracortical microstimulation was used to identify injection sites and map motor areas in the same cases. The major connections of M1 were with premotor cortex, SMA, cingulate motor cortex, somatosensory areas 3a and 1, and the rostral half of posterior parietal cortex. Less dense connections were with the second (S2) and parietal ventral (PV) somatosensory areas. Injections in PMD labeled neurons across a mediolateral belt of posterior parietal cortex extending from the medial wall to lateral to the intraparietal sulcus. Other inputs came from SMA, M1, PMV, and adjoining frontal cortex. PMV injections labeled neurons across a large zone of posterior parietal cortex, overlapping the region projecting to PMD but centered more laterally. Other connections were with M1, PMD, and frontal cortex and sparsely with somatosensory areas 3a, 1-2, S2, and PV. SMA connections were with medial posterior parietal cortex, cingulate motor cortex, PMD, and PMV. An FEF injection labeled neurons in the intraparietal sulcus. Injections in posterior parietal cortex revealed that the rostral half receives somatosensory inputs, whereas the caudal half receives visual inputs. Thus, posterior parietal cortex links visual and somatosensory areas with motor fields of frontal cortex.  相似文献   

4.
Two premovement potentials, the bereitschaftspotential (BP) and negative slope (NS'), can be recorded prior to the execution of self-paced hand movements using back-averaging of scalp electrical recordings. The contributions of the contralateral and ipsilateral primary motor cortex (M1) and the mesial dorsal frontal cortex (MFC) to the generation of the potentials were examined by simultaneously collecting positron emission tomography (PET) scans and scalp recorded electrical activity for dipole source analysis in eight right-handed normal subjects. Subjects performed simple unilateral thumb-finger opposition movements intermittently with an average inter-movement interval of 7.4 s. PET was also collected for the same movement performed repetitively with inter-movement intervals of 0.5 s such that finger movements were nearly continuous. PET studies of the intermittent movement revealed marked activation of the MFC in the region of the rostral supplementary motor area (SMA) and cingulate motor area, contralateral sensorimotor cortex and no activation of the ipsilateral sensorimotor cortex. When the same movements were performed in a continuous repetitive manner, PET revealed strong contralateral sensorimotor and caudal MFC activation, and no ipsilateral sensorimotor or rostral MFC activation. Dipole source solutions of the back-averaged potentials for the intermittent movements were analyzed by testing dipole vectors placed into the regions of PET activation. The premovement potentials were dominated by dipoles in the region of the MFC, with minimal contribution from either the contralateral or ipsilateral M1. Activation in the region of the contralateral M1 began near the onset of muscle activity. The orientation and timing of the MFC dipoles were consistent with both the BP and NS' potentials originating from neurons in the rostral SMA and dorsal tier of the cingulate sulcus and were appropriate for MFC activity to contribute to both the preparation for movement and the descending activation of spinal motor networks. © 1996 Wiley-Liss, Inc.  相似文献   

5.
A 28-year-old patient with pharmacoresistant non-lesional right frontal epilepsy underwent extra-operative intracranial EEG recordings and electrical cortical stimulation (ECS) to map eloquent cortex. Right supplementary motor area (SMA) ECS induced a brief seizure with habitual symptoms involving neck tingling followed by asymmetric tonic posturing. An additional feature was neck atonia. During atonia and sensory aura, discharges were seen in the mesial frontal electrodes and precentral gyrus. Besides motor signs, atonia, although rare and not described in the neck muscles, and sensations have been reported with SMA stimulation. The mechanisms underlying neck atonia in seizures arising from the SMA can be explained by supplementary negative motor area (SNMA) - though this was not mapped in electrodes overlying the ictal onset zone in our patient - or primary sensorimotor cortex activation through rapid propagation. Given the broad spectrum of signs elicited by SMA stimulation and rapid spread of seizures arising from the SMA, caution should be taken to not diagnose these as non-epileptic, as had previously occurred in this patient.  相似文献   

6.
Akinesia is associated with supplementary motor area (SMA) dysfunction in Parkinson's disease. We looked for a similar association in patients with schizophrenia. Using functional magnetic resonance imaging (fMRI), we compared motor activation in 6 akinetic neuroleptic-treated schizophrenic patients and 6 normal subjects. Schizophrenic patients had a defective activation in the SMA, left primary sensorimotor cortex, bilateral lateral premotor and inferior parietal cortices, whereas the right primary sensorimotor cortex and a mesial frontal area were hyperactive. SMA was hypoactive in akinetic schizophrenic patients, emphasizing the role of this area in motor slowness. Other abnormal signals likely reflect schizophrenia-related abnormal intracortical connections.  相似文献   

7.
The purpose of this study was to investigate the connectivity from the negative motor area and to elucidate the mechanism of negative motor phenomena. We report the results of cortico-cortical evoked potentials (CCEPs) by electrical stimulation of the primary motor area (MI), primary sensory area (SI), primary (PNMA) and supplementary negative motor area (SNMA) in eight epilepsy patients who underwent intracranial electrode placement. Alternating 1-Hz electrical stimuli were delivered to MI (six patients), SI (five), PNMA (six) and SNMA (two). CCEPs were recorded by averaging electrocorticograms time-locked to the stimuli. Stimulation of MI, SI and PNMA induced CCEP responses in the premotor area (PM), pre- and postcentral gyri, posterior parietal cortex and the temporo-parietal junction. Upon SNMA stimulation, CCEP responses were detected in the prefrontal cortex, PM, pre- and postcentral gyri, supplementary motor area (SMA) and preSMA. Compared with stimulation of SI and MI, PNMA stimulation revealed a broader distribution of CCEP responses in the frontal or parietal association cortex, indicating the importance of the fronto-parietal network associated with a higher level of motor control. We concluded that these connections are associated with motor control and that the negative motor phenomenon results from impairment of the organization of movements.  相似文献   

8.
Focal activation in the cerebral cortex during different motility and language tests in 52 patients examined by arteriography was studied by measuring focal cerebral blood flow (fCBF) by means of an apparatus of high resolution. A sterotactic or functional approach demonstrated that the upper premotor activation previously noted in certain types of movement, corresponds to supplementary motor area (SMA). A retrospective study of 157 maps of fCBF recorded during motor or verbal behaviour, compared to 90 recordings in subjects at rest, showed that SMA is involved in most voluntary movements, either verbal or non-verbal. An analysis of the results suggests that SMA acts during the establishment of new motor programs, and in the control of pre-established automatic activities, in response to internal and external stimuli.  相似文献   

9.
In the present study, somatotopic organization, architectonic features, and patterns of connections were used to define motor areas in the frontal and cingulate cortex of the prosimian primate Galago garnetti. Sites throughout portions of the motor cortex were electrically stimulated with microelectrodes at the approximate depth of layer V. In some of the same animals, injections in primary motor cortex (M1), and in the spinal cord, revealed patterns of connections with physiologically identified motor areas. Results were related to cortical architecture in brain sections processed for Nissl, myelin, cytochrome oxidase, acetylcholinesterase, or neurofilaments. Evidence was obtained for a number of fields previously identified in simian primates, including M1, dorsal premotor field with caudal (PMDc) and rostral (PMDr) divisions, ventral premotor area (PMV), supplementary motor area (SMA), presupplementary motor area (pre-SMA), frontal eye field (FEF), and cingulate motor areas, CMAr and CMAc located rostrally and caudally, respectively. In addition, we distinguished area 6Ds of Preuss and Goldman-Rakic (1991a) between PMV and PMDc, and a more posterior cingulate sensorimotor area (CSMA) with motor connections that may correspond to the supplementary sensory area of monkeys. Areas M1, SMA, PMDc, PMV, CMAr, CMAc, and CSMA projected to the spinal cord, while all of these areas and 6Ds projected to M1. Although area M1 had the lowest stimulation thresholds for evoked movements, movements were also evoked from the other motor areas, as well as from somatosensory areas 3a and 3b. These results indicate that prosimian galagos have a complex of motor areas that closely resembles that in monkeys and suggest that at least 10 motor fields emerged early in primate evolution.  相似文献   

10.
Readiness potentials (RPs) preceding voluntary self-paced limb movements were recorded intracerebrally in 13 patients suffering drug resistant, intractable epilepsy. Multilead depth electrodes were positioned using the Talairach's coordinate system; they allowed simultaneous recording from the external and mesial cortices and from the interposed white matter during self-paced unilateral hand or plantar flexions. Our intracerebral explorations have shown RPs in the primary motor cortex (MC) contralateral to the movement and in both supplementary motor areas (SMAs), indicating that at least 3 cortical sites become active before the movement. At variance with the scalp RPs recorded in the same patients, the intracerebral potentials were either negative, or positive, depending on the recording site. No consistent differences in duration and time of onset could be established between the MC and the SMA RPs, at least with the used time resolution. RPs were only occasionally observed in the parietal cortex and hippocampus and none were recorded from the amygdala, the temporal, temporo-occipital, prefrontal, frontal and cingular cortices. The wide topographical distribution of the scalp RPs may not be fully explained by the above intracortical findings, leaving the possibility that other generators exist, whose locations remain to be determined.  相似文献   

11.
Converging lines of evidence show that volitional movement prevention depends on the right prefrontal cortex (PFC), especially the right inferior frontal gyrus (IFG). Selective movement prevention refers to the rapid prevention of some, but not all, movement. It is unknown whether the IFG, or other prefrontal areas, are engaged when movement must be selectively prevented, and whether additional cortical areas are recruited. We used rapid event-related fMRI to investigate selective and nonselective movement prevention during performance of a temporally demanding anticipatory task. Most trials involved simultaneous index and middle finger extension. Randomly interspersed trials required the prevention of one, or both, finger movements. Regions of the right hemisphere, including the IFG, were active for selective and nonselective movement prevention, with an overlap in the inferior parietal cortex and the middle frontal gyrus. Selective movement prevention caused a significant delay in movement initiation of the other digit. These trials were associated with activation of the medial frontal cortex. The results provide support for a right-hemisphere network that temporarily "brakes" all movement preparation. When movement is selectively prevented, the supplementary motor cortex (SMA/pre-SMA) may participate in conflict resolution and subsequent reshaping of excitatory drive to the motor cortex.  相似文献   

12.
The callosal connections of motor and premotor fields in the frontal cortex of galagos were examined by placing multiple tracers into the primary motor area (M1), dorsal premotor area (PMD), ventral premotor area (PMV), supplementary motor area (SMA), and frontal eye field (FEF) following intracortical microstimulation. Retrogradely labeled neurons in the opposite hemisphere were plotted and superimposed onto brain sections stained with myelin and cytochrome oxidase for architectonic analysis. The main callosal connections of M1 and the caudal portion of PMD (PMDc) were with homotopic sites, and the major callosal connections of the rostral portion of PMD (PMDr), SMA, and FEF were with homotopic sites and adjoining cortex in the frontal lobe. In addition, M1 forelimb representation had sparse callosal connections, whereas M1 trunk and face representations, as well as the premotor areas, had dense callosal connections. The sparse interhemispheric connections of the forelimb sector of M1 suggests that the control of each forelimb is largely from the contralateral M1 in galagos, as in other primates.  相似文献   

13.
To evaluate changes in the human cerebral cortex after lower limb amputation, we studied repetitive toe movements using functional magnetic resonance imaging. The subject did not experience any phantom pain but had a vivid sensation of the phantom limb's presence and was able to imagine the movement of her phantom toes and ankle. Actual movement of her normal limb activated the contralateral supplementary motor area (SMA), the primary motor cortex (M1), and the primary somatosensory cortex (S1). Movement of her phantom limb activated the contralateral SMA and the M1. Imaginary movement of her normal toes without actual movement activated the contralateral SMA. The slice level that was activated by the movement of the phantom limb was shifted 8 mm caudally, suggesting that cortical reorganization had occurred after the lower limb amputation.  相似文献   

14.
A scheme for the cortical control of saccadic eye movements is proposed based partly on defects revealed by specific test paradigms in human with discrete lesions. Three different cortical areas are capable of triggering saccades. The frontal eye field disengages fixation, and triggers intentional saccades to visible targets, to remembered target locations, or to the location where it is predicted that the target will reappear (i.e., saccades concerned with intentional exploration of the visual environment). The parietal eye field triggers saccades made reflexively on the sudden appearance of visual targets (i.e., saccades concerned with reflexive exploration of the visual environment). The supplementary eye field is important for triggering sequences of saccades and in controlling saccades made during head or body movement (i.e., saccades concerned with complex motor programming). Three other areas contribute to the preparation of certain types of saccades. The prefrontal cortex (area 46 of Brodmann) plays a crucial role for planning saccades to remembered target locations. The inferior parietal lobule is involved in the visuospatial integration used for calculating saccade amplitude. The hippocampus appears to control the temporal working memory required for memorization of the chronological order of sequences of saccades.  相似文献   

15.
The presence of somatotopic organization in the human supplementary motor area (SMA) remains a controversial issue. In this study, subdural electrode grids were placed on the medial surface of the cerebral hemispheres in 13 patients with intractable epilepsy undergoing evaluation for surgical treatment. Electrical stimulation mapping with currents below the threshold of afterdischarges showed somatotopic organization of supplementary motor cortex with the lower extremities represented posteriorly, head and face most anteriorly, and the upper extremities between these two regions. Electrical stimulation often elicited synergistic and complex movements involving more than one joint. In transitional areas between neighboring somatotopic representations, stimulation evoked combined movements involving the body parts represented in these adjacent regions. Anterior to the supplementary motor representation of the face, vocalization and speech arrest or slowing of speech were evoked. Various sensations were elicited by electrical stimulation of SMA. In some cases a preliminary sensation of "urge" to perform a movement or anticipation that a movement was about to occur were evoked. Most responses were contralateral to the stimulated hemisphere. Ipsilateral and bilateral responses were elicited almost exclusively from the right (nondominant) hemisphere. These data suggest the presence of combined somatotopic organization and left-right specialization in human supplementary motor cortex.  相似文献   

16.
OBJECTIVE: To investigate, using PET and H2(15)O, brain activation abnormalities of patients with PD during motor imagery. To determine whether motor imagery activation patterns depend on the hand used to complete the task. BACKGROUND: Previous work in PD has shown that bradykinesia is associated with slowness of motor imagery. METHODS: The PET study was performed in eight patients with PD with predominantly right-sided akinesia, and in eight age-matched control subjects, all right-handed. Regional cerebral blood flow was measured by PET and H2(15)O while subjects imagined a predetermined unimanual externally cued sequential movement with a joystick with either the left or the right hand, and during a rest condition. RESULTS: In normal subjects, the prefrontal cortex, supplementary motor area (SMA), superior parietal lobe, inferior frontal gyrus, and cerebellum were activated during motor imagery with either the left or the right hand. Contralateral primary motor cortex activation was noted only when the task was imagined with the right (dominant) hand, whereas activation of the dorsolateral prefrontal cortex was observed only during imagery with the left hand. In patients with PD, motor imagery with the right ("akinetic") hand was characterized by lack of activation of the contralateral primary sensorimotor cortex and the cerebellum, persistent activation of the SMA, and bilateral activation of the superior parietal cortex. Motor imagery with the left ("non-akinetic") hand was also abnormal, with lack of activation of the SMA compared with controls. CONCLUSIONS: In patients with PD with predominantly right-sided akinesia, brain activation during motor imagery is abnormal and may appear even with the less affected hand. In normal subjects, brain activation during motor imagery depends on the hand used in the imagined movement.  相似文献   

17.
The ease with which humans are able to perform symmetric movements of both hands has traditionally been attributed to the preference of the motor system to activate homologous muscles. Recently, we have shown in right-handers, however, that bimanual index finger adduction and abduction movements in incongruous hand orientations (one palm down/other up) preferentially engaged parietal perception-associated brain areas. Here, we used functional magnetic resonance imaging to investigate the influence of hand orientation in left-handers on cerebral activation during bimanual index finger movements. Performance in incongruous orientation of either hand yielded activations involving right and left motor cortex, supplementary motor area in right superior frontal gyrus (SMA and pre-SMA), bilateral premotor cortex, prefrontal cortex, bilateral somatosensory cortex and anterior parietal cortex along the intraparietal sulcus. In addition, the occipito-temporal cortex corresponding to human area MT (hMT) in either hemisphere was activated in relation to bimanual index finger movements in the incongruous hand orientation as compared with the same movements in the congruous hand orientation or with simply viewing the pacing stimuli. Comparison with the same movement condition in right-handed subjects from a former study support these hMT activations exclusively for left-handed subjects. These results suggest that left-handers use visual motion imagery in guiding incongruous bimanual finger movements.  相似文献   

18.
The characteristic motor deficits of parkinsonism result from dysfunction of the nigrostriatal dopaminergic system of the basal ganglia. These subcortical deficits must ultimately be expressed at the cortical and spinal motoneuron levels to result in the difficulty with initiation and execution of movements seen in parkinsonism. This article describes the neuronal activity of two motor cortical regions, the primary motor cortex (MI) and supplementary motor area (SMA), which receive the majority of basal ganglia outputs related to movement control through the ventral lateral thalamus. The kinematics and electromyographic characteristics of stimulus-initiated and self-initiated normal and parkinsonian movements are described, and the possible relation of SMA and MI task-related neuronal activity to the parkinsonian movement deficits is reviewed.  相似文献   

19.
Topography of scalp potentials preceding self-initiated saccades   总被引:3,自引:0,他引:3  
M L Moster  G Goldberg 《Neurology》1990,40(4):644-648
We studied 3 scalp potentials recorded prior to saccades in relation to visual targets (the presaccadic negativity [PSN], presaccadic positivity [PSP], and spike potential [SP]) in normal subjects performing self-initiated saccades in darkness. There was a prominent PSN beginning at -800 msec, maximal at the vertex. This finding is consistent with activation of the supplementary eye field in the anterior mesial frontal cortex, a concept which correlates with cortical neuron recordings in monkeys and cerebral blood flow studies in humans. A widespread PSP, with greatest amplitude over the posterior scalp, suggests parieto-occipital participation even in the absence of visual targets. The sharp character of SP with focal lateralized frontal negativity, its "mirror image" scalp distribution when comparing leftward to rightward saccades, and its timing near the onset of saccades support an origin near the orbit, in either ocular motor nerves or muscles.  相似文献   

20.
OBJECTIVE: Patients undergoing surgical resection of medial frontal lesions may present a transient postoperative deficit that remains largely unpredictable. The authors studied the role of the supplementary motor area (SMA) in the occurrence of this deficit using fMRI. METHODS: Twenty-three patients underwent a preoperative fMRI before resection of medial frontal lesions. Tasks included self-paced flexion/extension of the left and right hand, successively. Preoperative fMRI data were compared with postoperative MRI data and with neurologic outcome. RESULTS: Following surgery, 11 patients had a motor deficit from which all patients recovered within a few weeks or months. The deficit was similar across patients, consisting of a global reduction in spontaneous movements contralateral to the operated side with variable severity. SMA activation was observed in all patients. The deficit was observed when the area activated in the posterior part of the SMA (SMA proper) was resected. CONCLUSIONS: fMRI is able to identify the area at risk in the SMA proper whose resection is highly related to the occurrence of the motor deficit. The clinical characteristics of this deficit support the role of the SMA proper in the initiation and execution of the movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号