首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Molecular mechanisms of how energy metabolism affects embryonic stem cell (ESC) pluripotency remain unclear. AMP-activated protein kinase (AMPK), a key regulator for controlling energy metabolism, is activated in response to ATP-exhausting stress. We investigated whether cellular energy homeostasis is associated with maintenance of self-renewal and pluripotency in mouse ESCs (mESCs) by using 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) as an activator of AMPK. We demonstrate that AICAR treatment activates the p53/p21 pathway and markedly inhibits proliferation of R1 mESCs by inducing G(1) /S-phase cell cycle arrest, without influencing apoptosis. Treatment with AICAR also significantly reduces pluripotent stem cell markers, Nanog and stage-specific embryonic antigen-1, in the presence of leukemia inhibitory factor, without affecting expression of Oct4. H9 human ESCs also responded to AICAR with induction of p53 activation and repression of Nanog expression. AICAR reduced Nanog mRNA levels in mESCs transiently, an effect not due to expression of miR-134 which can suppress Nanog expression. AICAR induced Nanog degradation, an effect inhibited by MG132, a proteasome inhibitor. Although AICAR reduced embryoid body formation from mESCs, it increased expression levels of erythroid cell lineage markers (Ter119, GATA1, Klf1, Hbb-b, and Hbb-bh1). Although erythroid differentiation was enhanced by AICAR, endothelial lineage populations were remarkably reduced in AICAR-treated cells. Our results suggest that energy metabolism regulated by AMPK activity may control the balance of self-renewal and differentiation of ESCs.  相似文献   

12.
13.
Embryonic stem cells (ESCs) maintain their pluripotency through high expression of pluripotency-related genes. Here, we show that differing levels of Oct4, Nanog, and c-myc proteins among the individual cells of mouse ESC (mESC) colonies and fluctuations in these levels do not disturb mESC pluripotency. Cells with strong expression of Oct4 had low levels of Nanog and c-myc proteins and vice versa. In addition, cells with high levels of Nanog tended to occupy interior regions of mESC colonies. In contrast, peripherally positioned cells within colonies had dense H3K27-trimethylation, especially at the nuclear periphery. We also observed distinct levels of endogenous and exogenous Oct4 in particular cell cycle phases. The highest levels of Oct4 occurred in G2 phase, which correlated with the pKi-67 nuclear pattern. Moreover, the Oct4 protein resided on mitotic chromosomes. We suggest that there must be an endogenous mechanism that prevents the induction of spontaneous differentiation, despite fluctuations in protein levels within an mESC colony. Based on the results presented here, it is likely that cells within a colony support each other in the maintenance of pluripotency.  相似文献   

14.
背景:Nanog、Oct4和Sox2通过调节胚胎干细胞的基因转录,对其多潜能性和自我更新的能力具有关键性的调控作用,脐带间充质干细胞中这些胚胎干细胞相关转录因子的表达情况如何还不太清楚。 目的:研究脐带间充质干细胞中Nanog、Oct4和Sox2等这些胚胎干细胞相关转录因子的表达情况。 方法:胶原酶和胰酶消化法培养脐带间充质干细胞;mTeSRTM1体系进行无滋养层培养人胚胎干细胞,定量PCR比较上述两种细胞中Nanog、Oct4和Sox2 mRNA表达量的差异;免疫荧光检测上述两种细胞中Nanog、Oct4和Sox2的表达情况。 结果与结论:间充质干细胞表达胚胎干细胞标记Nanog、Oct4和Sox2,但Oct4主要表达在胞浆,且以Oct4B为主。脐带间充质干细胞Nanog、Oct4A和Sox2的表达量明显低于胚胎干细胞,其mRNA表达量分别为胚胎干细胞的20%,0.3%,10%左右。通过了解两种细胞Nanog、Oct4和Sox2的表达差异,可为优化脐带间充质干细胞重编程提供依据,也为进一步研究胚胎干细胞相关转录因子在成体干细胞表达起何种作用提供参考。  相似文献   

15.
16.
17.
18.
19.
20.
Murine embryonic stem cells (mESCs) are pluripotent cells that can be propagated in an undifferentiated state in continuous culture on a feeder layer or without feeders in the presence of leukemia inhibitory factor (LIF). Although there has been a great advance since their establishment, ESC culture is still complex and expensive. Therefore, finding culture conditions that maintain the self-renewal of ESCs, preventing their differentiation and promoting their proliferation, is still an area of great interest. In this work, we studied the effects of the conditioned medium from a bovine granulosa cell line (BGC-CM) on the maintenance of self-renewal and pluripotency of mESCs. We found that this medium is able to maintain mESCs' self-renewal while preserving its critical properties without LIF addition. mESCs cultured in BGC-CM expressed the stem cell markers Oct4, Sox2, Nanog, SSEA-1, Klf4, Rex1, and ECAT1. Moreover, mESCs cultured in BGC-CM gave rise to embryoid bodies and teratomas that differentiated effectively to diverse cell populations from endoderm, mesoderm, and ectoderm. Further, we found that mESCs cultured in BGC-CM have an increased proliferation rate compared with cells grown in the mESC standard culture medium supplemented with LIF. These findings may provide a powerful tool to culture mESCs for long periods of time with high proliferation rate while preserving its basic characteristics, contributing to the application of these cells to assess potential tissue engineering and cellular therapy applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号