首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

OBJECTIVE

To assess the cardiovascular risk of diabetic subjects with chronic kidney disease (CKD) based on different estimated glomerular filtration rate (eGFR) equations and to evaluate which definition of CKD best improves cardiovascular risk prediction of the Framingham Cardiovascular Risk Score (Framingham-CV-RS).

RESEARCH DESIGN AND METHODS

CKD was defined as eGFR <60 mL/min/1.73 m2, estimated by the creatinine-based Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations and a cystatin C–based equation (CKD-CysC). Cox regression was used to estimate hazard ratios (HRs) of subjects with CKD for incident cardiovascular events in a cohort of 1,153 individuals with diabetes (baseline age 50–74 years). Furthermore, the CKD definitions were added individually to a reference model comprising the Framingham-CV-RS variables and HbA1c, and measures of model discrimination and reclassification were assessed.

RESULTS

During 5 years of follow-up, 95 individuals had a primary cardiovascular event. Crude HRs were increased for all CKD definitions. However, after adjusting for established cardiovascular risk factors, HRs for both creatinine-based CKD definitions were attenuated to point estimates of 1.03, whereas the HRs for the cystatin C–based CKD definition remained significantly increased (HR 1.75 [95% CI 1.07–2.87]). Extension of the reference model by the different CKD definitions resulted in an increase in the c statistic only when adding CKD-CysC (from 0.638 to 0.644) along with a net reclassification improvement of 8.9%.

CONCLUSIONS

Only the cystatin C–based CKD definition was an independent risk predictor for cardiovascular events in our diabetic study cohort and indicated a potentially better clinical utility for cardiovascular risk prediction than creatinine-based equations.Chronic kidney disease (CKD) is a frequent disease in the elderly, especially among older adults with diabetes (1,2). However, epidemiologic data about the prevalence of CKD in patients with diabetes remain sparse and the accuracy of the different estimating equations to assess renal function in clinical routine is still debated (1,3,4).CKD can be classified with an estimated glomerular filtration rate (eGFR) of <60 mL/min/1.73 m2 (CKD stages 3–5) (5). The most commonly used equation to estimate glomerular filtration rate (GFR) is the serum creatinine–based abbreviated Modification of Diet in Renal Disease (MDRD) equation (6), although it is well known that it underestimates GFR in the normal and high-normal range (7). Recently, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation has been introduced as a better means of estimate eGFR in observational research (8). However, data from patients with diabetes comparing the CKD-EPI and MDRD equations are still limited (8). Performance of creatinine-based eGFR in patients with diabetes and nephropathy lacks accuracy to monitor kidney function (9), especially in the early phases of renal impairment, and it can take years until other signs of a glomerulopathy such as albuminuria appear (10). Therefore, cystatin C–based estimating equations are suggested to show better clinical utility compared with creatinine-based equations (11,12).Which formula is best to be used to classify CKD in subjects with diabetes is an important question, especially because effective interventions exist to reduce the risk for cardiovascular disease and progression to end-stage renal disease (13). However, no study thus far has compared the MDRD and CKD-EPI formulas with a cystatin C–based equation in patients with diabetes (14). An eligible end point to shed further light on this question is an estimated predictive value of each equation for cardiovascular disease because CKD is clearly associated with cardiovascular end points, independent of established cardiovascular risk factors (15,16).Therefore, the objective of this analysis is to estimate the prognostic utility of serum creatinine– and cystatin C–based CKD definitions for incident cardiovascular events in subjects with diabetes.  相似文献   

2.

OBJECTIVE

Diabetic nephropathy (DN) is a major cause of mortality in type 1 diabetes. Reduced insulin sensitivity is a well-documented component of type 1 diabetes. We hypothesized that baseline insulin sensitivity would predict development of DN over 6 years.

RESEARCH DESIGN AND METHODS

We assessed the relationship between insulin sensitivity at baseline and development of early phenotypes of DN—microalbuminuria (albumin-creatinine ratio [ACR] ≥30 mg/g) and rapid renal function decline (glomerular filtration rate [GFR] loss >3 mL/min/1.73 m2 per year)—with three Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations over 6 years. Subjects with diabetes (n = 449) and without diabetes (n = 565) in the Coronary Artery Calcification in Type 1 Diabetes study had an estimated insulin sensitivity index (ISI) at baseline and 6-year follow-up.

RESULTS

The ISI was lower in subjects with diabetes than in those without diabetes (P < 0.0001). A higher ISI at baseline predicted a lower odds of developing an ACR ≥30 mg/g (odds ratio 0.65 [95% CI 0.49–0.85], P = 0.003) univariately and after adjusting for HbA1c (0.69 [0.51–0.93], P = 0.01). A higher ISI at baseline conferred protection from a rapid decline of GFR as assessed by CKD-EPI cystatin C (0.77 [0.64–0.92], P = 0.004) and remained significant after adjusting for HbA1c and age (0.80 [0.67–0.97], P = 0.02). We found no relation between ISI and rapid GFR decline estimated by CKD-EPI creatinine (P = 0.38) or CKD-EPI combined cystatin C and creatinine (P = 0.50).

CONCLUSIONS

Over 6 years, a higher ISI independently predicts a lower odds of developing microalbuminuria and rapid GFR decline as estimated with cystatin C, suggesting a relationship between insulin sensitivity and early phenotypes of DN.Diabetic nephropathy (DN) is a common and serious complication of diabetes. Its incidence is rising rapidly (1), and it is the most common cause of end-stage renal disease in the U.S. and Europe (2). The 2011 U.S. Renal Data System showed that DN accounted for 44.5% of all cases of end-stage renal disease in 2009 (3). Despite improvements in the outlook of this complication in past decades, it continues to be one of the major causes of morbidity and mortality in type 1 diabetes (4,5). DN is an important risk factor for coronary artery disease (68) and overall mortality (6,9). These findings highlight the need for improved methods of identifying persons at high risk for DN (10).The role of insulin sensitivity in the development and progression of macro- (7,11,12) and microvascular complications (12,13) in type 1 diabetes is increasingly recognized. Reduced insulin sensitivity also is a plausible mechanism linking renal disease with excess mortality in type 1 diabetes. Historically, when glycemic control is poor, reduced insulin sensitivity was believed to be directly related to body weight and HbA1c (14,15), but more recent data suggest that reduced insulin sensitivity cannot simply be explained by weight or poor glycemic control. In fact, reduced insulin sensitivity has been documented in type 1 diabetic subjects with normal BMI and HbA1c compared with nondiabetic individuals (16). The Coronary Artery Calcification in Type 1 Diabetes (CACTI) longitudinal cohort study of adults with type 1 diabetes investigated the determinants of early and accelerated atherosclerosis and found that insulin sensitivity independently predicted coronary artery calcification (17,18). Reduced insulin sensitivity has also been shown to predict diabetic retinopathy, neuropathy, and nephropathy in subjects with type 1 diabetes (13).Despite advances in the estimation of insulin sensitivity (insulin sensitivity index [ISI]) (19) and glomerular filtration rate (GFR) (20), research in the association of insulin sensitivity with DN has been limited since the Pittsburgh Epidemiology of Diabetes Complications (EDC) cohort showed more than a decade ago that the estimated glucose disposal rate (eGDR) predicts overt nephropathy (13). To readdress this relationship with contemporary data and estimating equations, we hypothesized that higher insulin sensitivity measured by ISI at baseline would be associated with decreased odds of developing two early phenotypes of DN—microalbuminuria (albumin-creatinine ratio [ACR] ≥30 mg/g) and rapid renal function decline (GFR loss >3 mL/min/1.73 m2 per year) (2123)—calculated by the three Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations (20) over 6 years in the CACTI study.  相似文献   

3.

OBJECTIVE

The best method to estimate glomerular filtration rate (GFR) in diabetic patients is still largely debated. We compared the performance of creatinine-based formulas in a European diabetic population.

RESEARCH DESIGN AND METHODS

We compared the performance of Cockcroft and Gault, simplified Modification of Diet in Renal Disease (MDRD), and Chronic Kidney Disease Epidemiology (CKD-EPI) Collaboration equations in 246 diabetic patients by calculating the mean bias and the interquartile range (IQR) of the bias, 10% (P10) and 30% (P30) accuracies, and Bland-Altman plots. GFR was measured by inulin clearance.

RESULTS

For the whole population, the IQR was slightly lower for CKD-EPI, but the mean bias was lower and P10 and P30 were higher for MDRD. Similar results were observed in specific subgroups, including patients with mild renal insufficiency, obese patients, or type 2 diabetic patients.

CONCLUSIONS

In our population, the CKD-EPI formula does not exhibit better performance than the simplified MDRD formula for estimating GFR.Using a creatinine-based formula is the most common way to evaluate the glomerular filtration rate (GFR) in clinical practice. However, it can lead to an inaccurate evaluation, especially in patients with normal renal function (1). A new GFR formula, the Chronic Kidney Disease Epidemiology (CKD-EPI) Collaboration equation, has recently been developed and has exhibited better performance than the other creatinine-based formulas in the general population (2). Therefore, we compared the performance of the CKD-EPI equation to Cockcroft and Gault (CG) and simplified Modification of Diet in Renal Disease (MDRD) equations in a population of diabetic patients.  相似文献   

4.

OBJECTIVE

To investigate serum levels of the adipokine chemerin in patients on chronic hemodialysis (CD) as compared with control patients with a glomerular filtration rate (GFR) >50 ml/min.

RESEARCH DESIGN AND METHODS

Chemerin was quantified by ELISA in control patients (n = 60) and CD patients (n = 60) and correlated with clinical and biochemical measures of renal function, glucose, and lipid metabolism, as well as inflammation, in both groups.

RESULTS

Median serum chemerin levels were more than twofold higher in CD patients (542.2 μg/l) compared with subjects with a GFR >50 ml/min (254.3 μg/l) (P < 0.001). Furthermore, GFR, as assessed by the original Modification of Diet in Renal Disease formula, independently predicted circulating chemerin concentrations in multiple regression analyses in both control patients (P < 0.05) and CD patients (P < 0.01).

CONCLUSIONS

We demonstrate that markers of renal function are independently related to circulating chemerin levels.Recently, chemerin has been identified as a novel adipocyte-secreted factor playing a crucial role in adipocyte differentiation and insulin signaling (14). Several studies have quantified circulating chemerin in humans. Thus, two reports found an independent association between chemerin and markers of inflammation (5,6). Furthermore, correlations between circulating chemerin and metabolic syndrome–related parameters have been described (68). In contrast to other adipokines (912), no data have been published so far about the relation of chemerin to renal function.  相似文献   

5.
NK recognition is regulated by a delicate balance between positive signals initiating their effector functions, and inhibitory signals preventing them from proceeding to cytolysis. Knowledge of the molecules responsible for positive signaling in NK cells is currently limited. We demonstrate that IL-2–activated human NK cells can express CD40 ligand (CD40L) and that recognition of CD40 on target cells can provide an activation pathway for such human NK cells. CD40-transfected P815 cells were killed by NK cell lines expressing CD40L, clones and PBLderived NK cells cultured for 18 h in the presence of IL-2, but not by CD40L-negative fresh NK cells. Cross-linking of CD40L on IL-2–activated NK cells induced redirected cytolysis of CD40-negative but Fc receptor-expressing P815 cells. The sensitivity of human TAP-deficient T2 cells could be blocked by anti-CD40 antibodies as well as by reconstitution of TAP/MHC class I expression, indicating that the CD40-dependent pathway for NK activation can be downregulated, at least in part, by MHC class I molecules on the target cells. NK cell recognition of CD40 may be important in immunoregulation as well as in immune responses against B cell malignancies.NK cells represent a distinct lineage of lymphocytes that are able to kill a variety of tumor (1), virus-infected (2), bone marrow transplanted (3), and allogeneic target cells (4). NK cells do not express T cell receptors or immunoglobulins and are apparently normal in mice with defects in the recombinase machinery (5, 6).Our knowledge about NK cell specificity has increased considerably in the last years. NK cells can probably interact with target cells by a variety of different cell surface molecules, some involved in cell adhesion, some activating the NK cytolytic program (7, 8), and other ones able to inhibit this activation by negative signaling (as reviewed in reference 9).A common feature of several inhibitory NK receptors is the capability to bind MHC class I molecules (10, 11), as predicted by the effector inhibition model within the missing self hypothesis of recognition by NK cells (1214). Interestingly, the MHC class I receptors identified so far belong to different gene families in mouse and man; these are the p58/p70/NKAT or killer cell inhibitory receptors (KIR)1 of the immunoglobulin superfamily in man and the Ly49 receptors of the C-type lectin family in the mouse. There is also evidence that MHC class I molecules can be recognized as triggering signals in NK cells of humans, rats as well as mice (13). The inhibitory receptors allow NK cells to kill tumor or normal cell targets with deficient MHC class I expression (12, 14). This does not exclude that other activating pathways can override inhibition by MHC class I molecules (15) and, even in their absence, there must be some activating target molecules that initiate the cytolytic program. Several surface molecules are able to mediate positive signals in NK cells. Some of these structures, like NKRP1 (16), CD69 (17), and NKG2 (18) map to the NK complex region (NKC) of chromosome 6 in mice and of chromosome 12 in humans (13). CD2 (19) and CD16 (20) molecules can also play a role in the activation pathway.NK cells resemble T cells in many respects, both may arise from an immediate common progenitor (21, 22), and share the expression of several surface molecules (23). NK cells produce cytokines resembling those secreted by some helper T cell subsets (24) and contain CD3 components in the cytoplasm (21). The expression of some surface structures, involved in TCR-dependent T cell costimulation, like CD28 in human (25), has been described on NK cells, but the functional relevance of these molecules for NK activation processes has not been fully established.Another T cell molecule of interest is CD40L, which interacts with CD40, a 50-kD membrane glycoprotein expressed on B cells (26), dendritic cells (27), and monocytes (28). CD40 is a member of the tumor necrosis factor/nerve growth factor receptor family (29) which includes CD27 (30), CD30 (31), and FAS antigen (32). Murine and human forms of CD40L had been cloned and found to be membrane glycoproteins with a molecular mass of ∼39 kD induced on T cells after activation (33). Also mast cells (34), eosinophils (35), and B cells (36) can be induced to express a functional CD40L. The CD40L–CD40 interaction has been demonstrated to be necessary for T cell–dependent B cell activation (33, 37). Mutations in the CD40L molecule cause a hyper-IgM immunodeficiency condition in man (38, 39, 40). On the other hand, CD40–CD40L interactions also orchestrate the response of regulatory T cells during both their development (41, 42) and their encounter with antigen (43, 44).NK cells have also been suggested to play a role in B cell differentiation and immunoglobulin production (45). Therefore, it was of interest to investigate whether NK cells could use a CD40-dependent pathway in their interactions with other cells. Therefore, we have investigated the ability of target cells expressing CD40 to induce activation of NK cytotoxicity.  相似文献   

6.
Through their interaction with the TNF receptor–associated factor (TRAF) family, members of the tumor necrosis factor receptor (TNFR) superfamily elicit a wide range of biological effects including differentiation, proliferation, activation, or cell death. We have identified and characterized a novel component of the receptor–TRAF signaling complex, designated TRIP (TRAF-interacting protein), which contains a RING finger motif and an extended coiled-coil domain. TRIP associates with the TNFR2 or CD30 signaling complex through its interaction with TRAF proteins. When associated, TRIP inhibits the TRAF2-mediated NF-κB activation that is required for cell activation and also for protection against apoptosis. Thus, TRIP acts as a receptor–proximal regulator that may influence signals responsible for cell activation/proliferation and cell death induced by members of the TNFR superfamily.Members of the TNF receptor (TNFR)1 superfamily play important roles in the induction of diverse signals leading to cell growth, activation, and apoptosis (1). Whether the signals induced by a given receptor leads to cell activation or death is, however, highly cell-type specific and tightly regulated during differentiation of cells. For example, the TNFRs can exert costimulatory signals for proliferation of naive lymphocytes but also induce death signals required for deletion of activated T lymphocytes (1). The cytoplasmic domains of these receptors lack intrinsic catalytic activity and also exhibit no significant homology to each other or to other known proteins. Exceptions to this include Fas(CD95) and TNFR1 that share a significant homology within an 80–amino acid region of their cytoplasmic tails (called the “death domain”; 2, 3). Therefore, it is suggested that the TNFR family members can initiate different signal transduction pathways by recruiting different types of intracellular signal transducers to the receptor complex (1).Indeed, several types of intracellular signal transducers have been identified that initiate distinct signal transduction pathways when recruited to the members of TNFR superfamily (419). Recent biochemical and molecular studies showed that a class of signal-transducing molecules are recruited to Fas(CD95) or TNFR1 via interaction of the death domains (2, 3, 6, 12, 17, 20). For example, Fas(CD95) and TNFR1 recruit FADD(MORT1)/RIP or TRADD/FADD (MORT1)/RIP through the interactions of their respective death domains (2, 3, 6, 12, 17, 20, 21). Clustering of these signal transducers leads to the recruitment of FLICE/ MACH, and subsequently, to cell death (13, 14).The TNFR family members can also recruit a second class of signal transducers called TRAFs (TNFR-associated factor), some of which are responsible for the activation of NF-κB or JNK (9, 20, 22). TRAF proteins were identified by their biochemical ability to interact with TNFR2, CD40, CD30, or LT-βR (4, 5, 10, 11, 15, 2327). These receptors interact directly with TRAFs via a short stretch of amino acids within their cytoplasmic tails, but do not interact with the death domain containing proteins (4, 5, 15, 2427). To date, five members of the TRAF family have been identified as signaling components of the TNFR family members. All TRAF members contain a conserved TRAF domain, ∼230 amino acids in length, that is used for either homo- or heterooligomerization among the TRAF family, for interactions with the cytoplasmic regions of the TNFR superfamily, or for interactions with downstream signal transducers (4, 5, 8, 10, 11, 19, 2325, 28). In addition to the TRAF domain, most of the TRAF family members contain an NH2-terminal RING finger and several zinc finger structures, which appear to be important for their effector functions (4, 5, 10, 11, 2325).Several effector functions of TRAFs were revealed by recent experiments based on a transfection system. TRAF2, first identified by its interaction with TNFR2 (4), was subsequently shown to mediate NF-κB activation induced by two TNF receptors, CD40 and CD30 (9, 2830). TRAF5 was also implicated in NF-κB activation mediated by LTβR (10), whereas TRAF3 (also known as CRAF1, CD40bp, or LAP1; references 5, 11, 24, and 25) was shown to be involved in the regulation of CD40-mediated CD23 upregulation in B cells (5). The role of other TRAF members in the TNFR family–mediated signal transduction is not clear. They may possess some effector functions as yet to be revealed, or work as adapter proteins to recruit different downstream signal transducers to the receptor complex. For example, TRAF1 is required for the recruitment of members of the cellular inhibitor of apoptosis protein (c-IAP) family to the TNFR2-signaling complex (7). In addition to the signal transduction by the TNFR family members, TRAFs may regulate other receptor-mediated signaling pathways. For example, TRAF6 is a component of IL-1 receptor (IL1R)–signaling complex, in which it mediates the activation of NF-κB by IL-1R (31). Since TRAFs form homo- or heterooligomers, it is suggested that the repertoire of TRAF members in a given cell type may differentially affect the intracellular signals triggered by these receptors. This may be accomplished by the selective interaction of TRAFs with a specific set of downstream signal transducers. Although many aspects of TRAF-mediated effector functions leading to cellular activation have been defined, it needs to be determined whether TRAF proteins will also mediate the apoptotic signals induced by the “death-domain-less” members of the TNFR superfamily (1, 27, 3236).Here we report the isolation and characterization of a novel component of the TNFR superfamily/TRAFs signaling complex, named TRIP (TRAF-interacting protein). TRIP associates with the receptor/TRAF signaling complex, and inhibits the TRAF2-mediated NF-κB activation. Biochemical studies indicate that TRIP associates with the TNFR2 or CD30 receptor complex via its interaction with TRAF proteins, suggesting a model which can explain why the ligation of these receptors can promote different cell fates: proliferation or death.  相似文献   

7.

OBJECTIVE

Growth deferentiation factor-15 (GDF-15) is involved in inflammation and apoptosis. Expression is induced in the heart in response to ischemia and in atherosclerotic plaques. The aim of this study was to investigate GDF-15 levels in relation to all-cause mortality, cardiovascular mortality and morbidity, decline in glomerular filtration rate (GFR), and progression toward end-stage renal disease (ESRD).

RESEARCH DESIGN AND METHODS

The study was a prospective observational follow-up study including 451 type 1 diabetic patients with diabetic nephropathy (274 men, aged 42.1 ± 0.5 years [means ± SD], diabetes duration 28.3 ± 8.9 years, GFR 76 ± 33 ml/min/1.73 m2) and a control group of 440 patients with longstanding type 1 diabetes and persistent normoalbuminuria (232 men, aged 45.4 ± 11.5 years, duration of diabetes 27.7 ± 10.1 years). The patients were followed for 8.1 (0.0–12.9) years (median [range]).

RESULTS

Among normoalbuminuric patients, GDF-15 above the median predicted an adjusted (age, systolic blood pressure [sBP], and estimated GFR) increased risk of all-cause mortality (hazard ratio [HR] 3.6 [95% CI 1.3–10.3]; P = 0.014). Among patients with diabetic nephropathy, higher (fourth quartile) versus lower (first quartile) GDF-15 levels predict all-cause mortality (covariate-adjusted [sex, age, smoking, blood pressure, A1C, cholesterol, GFR, N-terminal prohormone B-type natriuretic peptide, antihypertensive treatment, and previous cardiovascular events]; HR 4.86 [95% CI 1.37–17.30]) as well as fatal and nonfatal cardiovascular events (adjusted HR 5.59 [1.23–25.43] and 3.55 [1.08–11.64], respectively). In addition, higher GDF-15 levels predict faster decline in GFR (P < 0.001) but not development of ESRD.

CONCLUSIONS

Higher levels of GDF-15 are a predictor of all-cause and cardiovascular mortality and morbidity in patients with diabetic nephropathy. Furthermore, higher levels of GDF-15 are associated with faster deterioration of kidney function.Diabetes is associated with accelerated atherosclerosis and an increased risk of cardiovascular disease (CVD), which has become the major cause of morbidity and mortality among patients with diabetic nephropathy (1). Left ventricular hypertrophy, hypertension, and diabetes are leading predictors for the development of heart failure and sudden death (2,3). In general, the hypertrophic growth of the myocardium is regulated by a number of pro- and antigrowth factors, e.g., angiotensin-II and B-type natriuretic peptide (BNP) related to the transforming growth factor-β superfamily (46).Recently, growth differentiation factor-15 (GDF-15) has been identified as a novel anti-hypertrophic regulatory factor (7). GDF-15 is generated as a 40-kDa propeptide from which the NH2-terminus is cleaved and a 30-kDa protein secreted as the active form (8).GDF-15 is induced in the hypertrophic and dilated cardiomyopathy following hypertension/volume overload, ischemia, and heart failure, possibly via proinflammatory cytokine and oxidative stress-dependent signaling pathways (9,10). GDF-15 is highly expressed in the infarcted myocardium in predominantly nondiabetic patients suffering an acute myocardial infarction (MI) (9) and in atherosclerotic plaques obtained from carotid artery surgery (11). In a nested case-control study, GDF-15 was shown to be associated with adverse cardiovascular outcomes in women (12). Furthermore, GDF-15 has been shown to predict mortality in patients with both ST-elevation MI (STEMI) and non–STEMI, independent of known biomarkers such as N-terminal prohormone B-type natriuretic peptide (NT-proBNP) (13,14).Therefore, we investigated the predictive value of circulating GDF-15 levels on all-cause mortality, fatal and nonfatal CVD, decline in GFR, as well as progression to end-stage renal disease (ESRD) in a well-characterized population of type 1 diabetic patients with or without diabetic nephropathy.  相似文献   

8.
9.

OBJECTIVE

The aim of this study was to determine whether long-term cardiovascular risk differs in type 2 diabetic patients compared with first acute myocardial infarction patients in a Mediterranean region, considering therapy, diabetes duration, and glycemic control.

RESEARCH DESIGN AND METHODS

A prospective population-based cohort study with 10-year follow-up was performed in 4,410 patients aged 30–74 years: 2,260 with type 2 diabetes without coronary heart disease recruited in 53 primary health care centers and 2,150 with first acute myocardial infarction without diabetes recruited in 10 hospitals. We compared coronary heart disease incidence and cardiovascular mortality rates in myocardial infarction patients and diabetic patients, including subgroups by diabetes treatment, duration, and A1C.

RESULTS

The adjusted hazard ratios (HRs) for 10-year coronary heart disease incidence and for cardiovascular mortality were significantly lower in men and women with diabetes than in myocardial infarction patients: HR 0.54 (95% CI 0.45–0.66) and 0.28 (0.21–0.37) and 0.26 (0.19–0.36) and 0.16 (0.10–0.26), respectively. All diabetic patient subgroups had significantly fewer events than myocardial infarction patients: the HR of cardiovascular mortality ranged from 0.15 (0.09–0.26) to 0.36 (0.24–0.54) and that of coronary heart disease incidence ranged from 0.34 (0.26–0.46) to 0.56 (0.43–0.72).

CONCLUSIONS

Lower long-term cardiovascular risk was found in type 2 diabetic and all subgroups analyzed compared with myocardial infarction patients. These results do not support equivalence in coronary disease risk for diabetic and myocardial infarction patients.The prevalence of diabetes is reaching epidemic proportions in developed countries (1). For example, the U.S. has 18 million diabetic patients, Spain has >2 million diabetic patients, and management of the disease costs >$132 and >$3.3 billion per year, respectively (2).Some studies (35), several of them with great influence on important guidelines for cardiovascular prevention (3), suggest that the cardiovascular risk of diabetic patients is similar to that of coronary heart disease secondary prevention patients. Other reports, however, do not confirm these observations (610).Part of the discrepancy may stem from differences in the duration of diabetes, type of treatment, and baseline glucose control of diabetic patients included in the studies (35). These limit comparability, given the fact that time of evolution and treatment required to attain appropriate glycemic control are key determinants of prognosis (1016).Among population-based cohort studies that compared the prognosis of diabetic patients with that of myocardial infarction patients without diabetes (310), only two analyzed the role of diabetes duration (11,12). Even these studies did not include unstable angina among the end points and risk was not stratified by type of treatment. To our knowledge, the effect of type 2 diabetes on coronary heart disease incidence has barely been studied in southern Europe, a region known for low cardiovascular mortality (17). The aim of this study was to determine whether long-term cardiovascular risk differed between type 2 diabetic patients and first acute myocardial infarction patients and to assess the influence of diabetes duration, type of treatment, and glycemic control at baseline.  相似文献   

10.

OBJECTIVE

To examine the association of hyperglycemia, as measured by GHb, with subsequent mortality in a nationally representative sample of adults.

RESEARCH DESIGN AND METHODS

We included adults aged ≥20 years who participated in Third National Health and Nutrition Examination Survey (1988–1994) and had complete information, including baseline diabetes status by self-report and measured GHb (n = 19,025) and follow-up through the end of 2000 for mortality.

RESULTS

In the overall population, higher levels of GHb were associated with increased risk of mortality from all causes, heart disease, and cancer. After adjustment for potential risk factors, the relative hazard (RH) for adults with GHb ≥8% compared with adults with GHb <6% was 2.59 (95% CI 1.88–3.56) for all-cause mortality, 3.38 (1.98–5.77) for heart disease mortality, and 2.64 (1.17–5.97) for cancer mortality. Among adults with diagnosed diabetes, having GHb ≥8% compared with GHb <6% was associated with higher all-cause mortality (RH 1.68, 95% CI 1.03–2.74) and heart disease mortality (2.48, 1.09–5.64), but there was no increased risk of cancer mortality by GHb category. Among adults without diagnosed diabetes, there was no significant association of all-cause, heart disease, or cancer mortality and GHb category.

CONCLUSIONS

These results highlight the importance of GHb levels in mortality risk among a nationally representative sample of adults with and without diagnosed diabetes and indicate that higher levels are associated with increased mortality in adults with diabetes.Hperglycemia has been associated with a wide range of adverse outcomes for individuals with glucose values both above and below the threshold for diabetes, including increased cardiovascular disease (CVD) and mortality (1). Studies have consistently found undiagnosed diabetes to be associated with increased risk of mortality (24), and many studies have also shown levels of glucose that are elevated, but not enough for a diagnosis of diabetes, such as impaired fasting glucose, to be associated with increased mortality (24).However, most of these studies are based on fasting or postprandial glucose (14), and few are based on GHb levels (3,58). The GHb level may be a better indicator of hyperglycemia because it provides a measure of an individual''s average glucose levels for the previous 3 months. Thus, it may provide a more stable snapshot of glucose levels when used in prospective cohort studies to examine the association of subsequent risk. Currently, GHb is monitored in the treatment of diabetes, and GHb targets for prevention of complications among individuals with diabetes have been established (9). Interest in the use of GHb for the diagnosis of diabetes is increasing (10), and an international effort is underway to standardize the measurement of GHb (11). This focus of GHb in clinical care measures (12) raises important questions about the long-term predictability of GHb.Examination of the relationship of GHb with mortality reveals several areas of uncertainty, including whether the relationship of GHb with mortality is similar among individuals with and without diabetes from both prospective cohort studies and clinical trials. A few prospective cohort studies have examined the association of GHb with risk of mortality (58) and shown an increased risk of mortality with increasing GHb level. Only two studies included individuals with diabetes, but these studies did not examine GHb levels by diabetes status, and none were representative of the general U.S. population.Recently published findings from three clinical trials among adults with diabetes have added to this uncertainty. The Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial showed that lower GHb levels increased risk of mortality and did not decrease CVD events (13). Whereas the Action in Diabetes and Vascular Disease—Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) study showed that lowering of GHb levels was associated with a decrease in micro- and macrovascular events and deaths from CVD (14) and the Veterans Administration Diabetes Trial reported that lower GHb levels were not associated with a reduction in cardiovascular events (15). These findings have not led to any changes in glycemic control recommendations (16).The Third National Health and Nutrition Examination Survey (NHANES III) is the first nationally representative survey to include a measure of GHb and has mortality status available through linkage to the National Death Index. The objective of this study was to examine the association of GHb with subsequent mortality in a nationally representative sample of U.S. adults.  相似文献   

11.

OBJECTIVE

To investigate the impact of iron status on survival in patients with type 2 diabetes and coronary artery disease (CAD).

RESEARCH DESIGN AND METHODS

Serum ferritin, transferrin saturation (Tsat), and soluble transferrin receptor (sTfR) were measured in 287 patients with type 2 diabetes and stable CAD (65 ± 9 years of age, 78% men).

RESULTS

During a mean follow-up of 45 ± 19 months, there were 59 (21%) deaths and 60 (21%) cardiovascular hospitalizations. Both serum ferritin and sTfR strongly predicted 5-year all-cause mortality rates, independently of other variables (including hemoglobin, measures of renal function, inflammation, and neurohormonal activation). There was an exponential relationship between sTfR and mortality (adjusted hazard ratio [HR] per 1 log mg/L: 4.24 [95% CI 1.43–12.58], P = 0.01), whereas the relationship between ferritin and mortality was U-shaped (for the lowest and the highest quintiles vs. the middle quintile [reference group], respectively: adjusted HR 7.18 [95% CI 2.03–25.46], P = 0.002, and adjusted HR 5.12 [1.48–17.73], P = 0.01). Similar patterns were observed for the composite outcome of all-cause mortality or cardiovascular hospitalization, and in these multivariable models, low Tsat was related to unfavorable outcome.

CONCLUSIONS

Both low and high serum ferritin (possibly reflecting depleted and excessive iron stores, respectively) along with high serum sTfR (reflecting reduced metabolically available iron) identify patients with type 2 diabetes and CAD who have a poor prognosis.The clinical significance of deficiency and disordered metabolism of iron in patients with chronic diseases associated with aging (1), including obesity (2), metabolic syndrome (3), coronary artery disease (CAD) (4), and heart failure (HF) (57), has received much attention. Iron overload and associated oxidative stress have been reported to accelerate the development of atherosclerosis (8) and cause endocrine organ dysfunction (9). However, iron deficiency (ID) is the most common dietary deficiency and the predominant cause of anemia worldwide (10).The physiological significance of ID may be much broader than its role in erythropoiesis (1,7,11,12). Iron is also critical for cellular energy generation by mitochondria (1315). ID will impair the function of cells with high energy demand whether due to mechanical work, high metabolic rate, or high rates of proliferation (11,12).Diabetes may cause profound derangements of energy metabolism due to insulin resistance and mitochondrial dysfunction (16,17), contributing to a high risk of fatal and nonfatal cardiovascular events, and acting as an adjuvant substrate for other factors interfering with energy metabolism, such as iron excess or depletion. Attention has focused, until now, on the unfavorable effects of iron overload in diabetes, including oxidative stress and hemochromatosis (9), with little attention being paid to ID other than in pregnancy (18).Accordingly, we investigated the impact of iron status assessed using circulating biomarkers on survival in patients with type 2 diabetes and CAD.  相似文献   

12.

OBJECTIVE

Given evidence of both indirect and direct signaling, we tested the hypothesis that increased β-cell–mediated signaling of α-cells negates direct α-cell signaling in the regulation of glucagon secretion in humans.

RESEARCH DESIGN AND METHODS

We measured plasma glucagon concentrations before and after ingestion of a formula mixed meal and, on a separate occasion, ingestion of the sulfonylurea glimepiride in 24 basal insulin-infused, demonstrably β-cell–deficient patients with type 1 diabetes and 20 nondiabetic, demonstrably β-cell–sufficient individuals; the latter were infused with glucose to prevent hypoglycemia after glimepiride.

RESULTS

After the mixed meal, plasma glucagon concentrations increased from 22 ± 1 pmol/l (78 ± 4 pg/ml) to 30 ± 2 pmol/l (103 ± 7 pg/ml) in the patients with type 1 diabetes but were unchanged from 27 ± 1 pmol/l (93 ± 3 pg/ml) to 26 ± 1 pmol/l (89 ± 3 pg/ml) in the nondiabetic individuals (P < 0.0001). After glimepiride, plasma glucagon concentrations increased from 24 ± 1 pmol/l (83 ± 4 pg/ml) to 26 ± 1 pmol/l (91 ± 4 pg/ml) in the patients with type 1 diabetes and decreased from 28 ± 1 pmol/l (97 ± 5 pg/ml) to 24 ± 1 pmol/l (82 ± 4 pg/ml) in the nondiabetic individuals (P < 0.0001). Thus, in the presence of both β-cell and α-cell secretory stimuli (increased amino acid and glucose levels, a sulfonylurea) glucagon secretion was prevented when β-cell secretion was sufficient but not when β-cell secretion was deficient.

CONCLUSIONS

These data indicate that, among the array of signals, indirect reciprocal β-cell–mediated signaling predominates over direct α-cell signaling in the regulation of glucagon secretion in humans.The regulation of pancreatic islet α-cell glucagon secretion is complex (110). It involves direct signaling of α-cells (1) and indirect signaling of α-cells by β-cell (26) and δ-cell (7) secretory products, the autonomic nervous system (8,9), and gut incretins (10).Appropriate glucagon secretory responses occur from the perfused pancreas (3,5) and perifused islets (2). Low plasma glucose concentrations stimulate glucagon secretion from the transplanted (i.e., denervated) human pancreas (11) and the denervated dog pancreas (12). Therefore, we have focused on the intraislet regulation of glucagon secretion. Furthermore, because selective destruction of β-cells results in loss of the glucagon response to hypoglycemia in type 1 diabetes (13), and partial reduction of the β-cell mass in minipigs results in impaired postprandial suppression of glucagon secretion (14), we have focused on the role of β-cell–mediated signaling in the regulation of glucagon secretion.Findings from studies of the perfused rat (3,4) and human (5) pancreas, rats in vivo (6), rat islets (2), isolated rat α-cells (2), and humans (1518) have been interpreted to indicate that a β-cell secretory product or products tonically restrains basal α-cell glucagon secretion during euglycemia and that a decrease in β-cell secretion, coupled with low glucose concentrations at the α-cells, signals an increase in glucagon secretion in response to hypoglycemia. Parenthetically, the relative roles of the candidate β-cell secretory products (insulin, zinc, γ-aminobutyric acid, and amylin, among others) (2) that normally restrain α-cell glucagon secretion remain to be determined. However, that interpretation rests, in part, on results of studies in isolated rat α-cells (2), which are debated (1), and on the evidence that the islet microcirculation flows from β-cells to α-cells to δ-cells (4), which is also debated (19). Furthermore, it does not address the plausible possibility that a decrease in intraislet δ-cell somatostatin secretion might also signal an increase in α-cell glucagon secretion during hypoglycemia (7).Given that interpretation, it follows that an increase in β-cell secretion would signal a decrease in glucagon secretion in the postprandial state (14). The concept is an interplay of indirect reciprocal β-cell–mediated signaling of α-cells and of direct α-cell signaling in the regulation of glucagon secretion.There is, in our view, compelling evidence that, among other mechanisms, both indirect reciprocal β-cell–mediated signaling of α-cells (26) and direct α-cell signaling (1) are involved in the regulation of glucagon secretion by nutrients, hormones, neurotransmitters, and drugs. Given that premise, we posed the question: Which of these predominates in humans? Accordingly, we tested the hypothesis that increased β-cell–mediated signaling of α-cells negates direct α-cell signaling in the regulation of glucagon secretion in humans. To do so, we measured plasma glucagon responses to ingestion of a mixed meal and, on a separate occasion, to ingestion of the sulfonylurea glimepiride in patients with type 1 diabetes and in nondiabetic individuals. We conceptualized patients with type 1 diabetes as a model of α-cells isolated from β-cells because their β-cells had been destroyed but they have functioning α-cells. (Their α-cells are not, of course, isolated from other islet cells, including δ-cells.) Increased plasma amino acid and glucose levels after a mixed meal and sulfonylureas normally stimulate β-cell secretion; increased plasma amino acid and perhaps glucose (2) levels after a mixed meal and sulfonylureas (1) stimulate α-cell secretion. Our hypothesis predicts that such factors that normally stimulate both β-cells and α-cells would stimulate glucagon secretion in patients with type 1 diabetes but not in nondiabetic individuals, i.e., in the virtual absence and the presence of β-cell function, respectively. Indeed, a mixed meal (20,21) and the secretagogues tolbutamide (22), glyburide (23), and repaglinide (23) have been reported to raise plasma glucagon concentrations in patients with type 1 diabetes, but all of those studies lacked nondiabetic control subjects.  相似文献   

13.

OBJECTIVE

We aimed to determine the associations of waist circumference (WC) and BMI with all-cause mortality among patients with diabetes.

RESEARCH DESIGN AND METHODS

The sample included 847 white and 553 African American patients (18–69 years of age) with diabetes. Height, weight, and WC were measured, and the BMI (kg/m2) was calculated. Cox regression was used to analyze the associations of BMI and WC with mortality, adjusting for age, sex, race, examination year, smoking status, alcohol consumption, and physical activity. Hazard ratios (HRs) are expressed per standard deviation of each independent variable.

RESULTS

A total of 86 deaths occurred during 6.7 years of follow-up. After adjustment for covariates, WC (HR 1.40 [95% CI 1.14–1.72]) and BMI (1.29 [1.04–1.61]) demonstrated significant relationships with mortality.

CONCLUSIONS

The results indicate that maintaining a healthy WC and BMI are both important for individuals living with diabetes.The number of individuals in the U.S. living with diabetes continues to rise (1), and these patients have an increased risk of cardiovascular complications and premature mortality (2). Obesity is associated with the development of type 2 diabetes (3,4); however, the relationship between the most common measure of obesity, the BMI, and mortality among patients with diabetes is less clear. To date, studies have reported positive associations (5), negative associations (69), U-shaped associations (10,11), or no association (12) between BMI and mortality among patients with diabetes. However, the BMI has some limitations as an indicator of obesity (13), and no study has been reported on the relationship with other indicators of adiposity. Thus, the purpose of this prospective cohort study was to determine the associations of waist circumference (WC) and BMI with all-cause mortality.  相似文献   

14.

OBJECTIVE

There is limited information on whether increased serum uric acid levels are independently associated with cardiovascular mortality in type 2 diabetes. We assessed the predictive role of serum uric acid levels on all-cause and cardiovascular mortality in a large cohort of type 2 diabetic individuals.

RESEARCH DESIGN AND METHODS

The cohort included 2,726 type 2 diabetic outpatients, who were followed for a mean period of 4.7 years. The independent association of serum uric acid levels with all-cause and cardiovascular mortality was assessed by Cox proportional hazards models and adjusted for conventional risk factors and several potential confounders.

RESULTS

During follow-up, 329 (12.1%) patients died, 44.1% (n = 145) of whom from cardiovascular causes. In univariate analysis, higher serum uric acid levels were significantly associated with increased risk of all-cause (hazard ratio 19 [95% CI 1.12–1.27], P < 0.001) and cardiovascular (1.25 [1.16–1.34], P < 0.001) mortality. After adjustment for age, sex, BMI, smoking, hypertension, dyslipidemia, diabetes duration, A1C, medication use (allopurinol or hypoglycemic, antihypertensive, lipid-lowering, and antiplatelet drugs), estimated glomerular filtration rate, and albuminuria, the association of serum uric acid with cardiovascular mortality remained statistically significant (1.27 [1.01–1.61], P = 0.046), whereas the association of serum uric acid with all-cause mortality did not.

CONCLUSIONS

Higher serum uric acid levels are associated with increased risk of cardiovascular mortality in type 2 diabetic patients, independent of several potential confounders, including renal function measures.Cardiovascular disease (CVD) represents the most common cause of morbidity and mortality in the type 2 diabetic population (1,2). Several biochemical parameters have been associated with increased risk for CVD in type 2 diabetes (35). Increased levels of serum uric acid are quite common in type 2 diabetic patients (6), and they might represent an additional CVD risk factor in these patients (7,8).Whereas several prospective studies have consistently demonstrated that elevated serum uric acid levels are an independent risk factor for CVD mortality in the general population (913), there is currently a paucity of available data on the association between serum uric acid levels and CVD mortality in the type 2 diabetic population. In a small retrospective study of 535 type 2 diabetic patients, it was found that higher serum uric acid levels were significantly associated with an increased risk of all-cause mortality (14). However, no information was available on specific causes of mortality in such studies, and no adjustment was made for important risk factors, such as diabetes duration and albuminuria. In another small study of 581 elderly type 2 diabetic patients, it was found that higher serum uric acid levels independently predicted cardiovascular mortality, but the authors did not adjust for glycemic control, use of medications, and albuminuria (15). In this respect, it is important to emphasize that the progressive decline in kidney function, which frequently occurs with aging and the course of type 2 diabetes, is also generally paralleled by progressive increases in serum uric acid levels (16). Thus, the presence of renal dysfunction, as assessed by glomerular filtration rate and albuminuria, should be always taken into account when the association of serum uric acid levels with mortality is explored, especially in the type 2 diabetic population.The aim of this prospective study was to investigate whether an association does exist between serum uric acid concentrations and all-cause and cardiovascular mortality in a large cohort of type 2 diabetic individuals, independent of several baseline confounding factors, including markers of kidney function.  相似文献   

15.

OBJECTIVE

Plasma osteoprotegerin (OPG) is an emerging strong and independent predictor of cardiovascular disease (CVD) in high-risk populations. OPG is a bone-related glycopeptide produced by vascular smooth muscle cells, and increased plasma OPG levels may reflect arterial vascular damage. We aimed to investigate the prognostic value of OPG in relation to all-cause and cardiovascular mortality in a cohort of type 2 diabetic patients.

RESEARCH DESIGN AND METHODS

In a prospective observational follow-up study, 283 type 2 diabetic patients (172 men; aged 53.9 ± 8.8 years) were followed for a median of 16.8 years (range 0.2–23.0). Baseline plasma OPG concentrations were determined by immunoassay.

RESULTS

During follow-up, 193 (68%) patients died. High versus low levels of OPG predicted all-cause mortality (covariate-adjusted for urinary albumin excretion rate [UAER], estimated glomerular filtration rate, and conventional risk factors); hazard ratio (HR) 1.81 [95% CI 1.21–2.69]. The all-cause predictive effect of OPG was independent of NH2-terminal pro-brain natriuretic peptide (NT-proBNP) and was also useful within groups divided according to level of UAER. In total, 103 (73%) patients died because of CVD. High and medium versus low levels of OPG predicted cardiovascular mortality (unadjusted HR 1.86 [95% CI 1.07–3.23] and 3.51 [2.10–5.85], respectively). However, after adjustment for the covariates, HRs were no longer significant.

CONCLUSIONS

Elevated plasma OPG is a strong predictor of all-cause mortality in type 2 diabetic patients. The effect of OPG on all-cause mortality was independent of conventional cardiovascular risk factors, UAER, and NT-proBNP levels.Plasma osteoprotegerin (OPG) is a promising strong and independent predictor of cardiovascular disease (CVD) in high-risk individuals, such as type 1 diabetic patients with nephropathy and nondiabetic patients after kidney transplantation or myocardial infarction (14). OPG is a member of the tumor necrosis factor receptor superfamily acting as a soluble decoy receptor for the receptor activator of nuclear factor-κβ ligand (RANKL) to prevent osteoclast activation and bone resorption (5). OPG mRNA has been detected in a variety of human tissues, including the lung, heart, and kidney (5). This bone-related glycoprotein is present in the arterial wall, and plasma OPG has been suggested to reflect the increased OPG content in arterial tissue observed in diabetic patients (6). OPG is upregulated in calcified coronary plaques (7) and associated with angiographic disease severity and cardiovascular events independent of conventional risk factors (8,9). Therefore, increased plasma OPG levels are suggested to be a marker of arterial vascular damage.CVD is the major determinant of morbidity and mortality in patients with type 2 diabetes and, in particular, patients with an elevated urinary albumin excretion rate (UAER) (10). Increased OPG levels are associated with diabetes (11). Recently, an elevated plasma OPG level was shown to predict increased mortality in patients with type 1 diabetes and diabetic nephropathy (4) and also to predict increased incidence of cardiovascular events among patients with uncomplicated type 2 diabetes who were followed for 18 months (12). However, the prognostic importance of OPG in type 2 diabetic patients with long follow-up and elevated UAER is unknown. Therefore, this study examines the predictive value of plasma OPG in relation to all-cause and cardiovascular mortality in a large cohort of type 2 diabetic patients followed prospectively for 17 years.  相似文献   

16.
17.
Aromatic dicationic compounds, such as pentamidine, have potent antimicrobial activities. Clinical use of these compounds has been restricted, however, by their toxicity and limited oral activity. A novel approach, using amidoxime derivatives as prodrugs, has recently been proposed to overcome these limitations. Although results were presented for amidoxime derivatives of only one diamidine, pentamidine, the authors in the original proposal claimed that amidoxime derivatives would work as effective prodrugs for all pharmacologically active diamidines. Nine novel amidoxime derivatives were synthesized and tested in the present study for activity against Pneumocystis carinii in corticosteroid-suppressed rats. Only three of the nine compounds had significant oral anti-Pneumocystis activity. The bisbenzamidoxime derivatives of three direct pentamidine analogs had excellent oral and intravenous activities and reduced acute host toxicity. These compounds are not likely candidates for future drug development, however, because they have chronic toxic effects and the active amidine compounds have multiple sites susceptible to oxidative metabolism, which complicates their pharmacology and toxicology. Novel diamidoximes from three other structural classes, containing different groups linking the cationic moieties, lacked significant oral or intravenous anti-Pneumocystis activity, even though the corresponding diamidines were very active intravenously. Both active and inactive amidoximes were readily metabolized to the corresponding amidines by cell-free liver homogenates. Thus, the amidoxime prodrug approach may provide a strategy to exploit the potent antimicrobial and other pharmacological activities of selected, but certainly not all, aromatic diamidines.

Aromatic dicationic compounds, including bisbenzamidines and dicationically substituted bisbenzimidazoles and carbazoles, have excellent experimental anti-Pneumocystis activities (14, 40, 46, 48, 50, 51) and are also active against other microbial pathogens, including protozoan parasites (25, 10, 38, 41, 43, 44), fungi (45), and some viruses (2527, 49, 53). Aromatic dications also possess other pharmacological properties, including antiinflammatory and anticoagulant activities (2937). Two problems hindering development of these compounds as new drugs, however, are limited oral bioavailability and toxicity (24, 38, 48, 51).Recent studies of pentamidine metabolism (79, 2123) have led to a novel approach to overcome the limited oral bioavailability and acute toxicity. Aromatic diamidoximes are hypothesized to be orally bioavailable prodrugs that are readily reduced by drug-metabolizing enzymes to the active aromatic amidines (19, 21, 22), resulting in excellent antimicrobial activity with reduced acute host toxicity.Amidoximes were first shown by Lamb and White to be active against experimental African trypanosomiasis (42) and then later were shown to be active against other microorganisms (1, 17, 18, 28). Although activities were often reported for both amidoximes and corresponding amidines, no mention was made in these early publications that metabolic activation was required for in vivo activity of the amidoximes. Moreover, no systematic studies were performed to determine which analogs were orally active and if the amidoxime derivatives had increased oral activity compared to the amidines. Thus, the concept of amidoximes as prodrugs of amidines was not raised in earlier studies.The hypothesis that amidoximes might be useful prodrugs resulted from research examining the metabolism of pentamidine (69, 21, 22). Two primary oxidative metabolites identified were the mono- and diamidoximes, formed by N-hydroxylation of pentamidine. Although the diamidoxime derivative of pentamidine has little or no activity against three protozoan parasites in vitro, both the mono- and diamidoximes were active against African trypanosomes and Leishmania spp. when given to experimental animals subcutaneously (19, 2123, 39). The diamidoxime given orally to rats was absorbed from the gut and converted to pentamidine, a reaction subsequently shown to be catalyzed by an oxygen-independent hepatic reductase activity (21, 22). These observations led to the proposal that amidoxime derivatives, in general, are effective, orally absorbed prodrugs for all pharmacologically active amidine-containing compounds (19). However, the only amidoximes tested were derivatives of pentamidine. We recently demonstrated that two novel amidoximes of 2,5-bis[4-amidinophenyl]furan were highly active orally and intravenously (13). Moreover, Weller and coworkers demonstrated that amidoximes of potent monoamidine fibrinogen receptor antagonists greatly enhanced their oral bioavailability (54).With this promising background, we began to synthesize potential amidoxime prodrugs of our most active, least toxic diamidines. Results presented here, however, demonstrate that amidoximes are not effective prodrugs for all aromatic dicationic compounds. The nature of the linker between the two amidoxime moieties plays a key role in determining if a particular diamidoxime has oral anti-Pneumocystis activity. Diamidoxime derivatives of the very promising bisbenzimidazole and carbazole classes of dications, and bisbenzamidoximes that contain additional nitrogen atoms in the aliphatic linkers, had little or no anti-Pneumocystis activity, even though the parent diamidines had excellent intravenous activity. Variability in activity does not appear to be caused by differences in enzymatic reductase activity, since both active and inactive diamidoximes were metabolized by cell-free liver homogenates.  相似文献   

18.
19.
20.

OBJECTIVE

To measure relative and absolute educational disparities in mortality among U.S. adults with diabetes and to compare their magnitude with disparities observed within the nondiabetic population.

RESEARCH DESIGN AND METHODS

A total of 85,867 individuals (5,007 with diabetes), aged 35–84 years, who participated in the National Health Interview Survey from 1986 to 1996 were followed for mortality through 31 December 2002. Relative and absolute educational disparities in all-cause, cardiovascular disease (CVD), and non-CVD mortality were measured.

RESULTS

In relative terms, the risk of all-cause mortality was 28% higher in diabetic adults with the lowest versus the highest position on the educational scale (relative index of inequality 1.28 [95% CI 1.08–1.53]). This inverse relationship reflected marked disparities in CVD mortality and was found in all age, sex, and race/ethnicity groups except Hispanics. Although substantial, this relative educational gradient in mortality among adults with diabetes was smaller than in the nondiabetic population. In absolute terms, diabetic adults with the lowest position on the educational scale suffered 503 excess deaths per 10,000 person-years of follow-up compared with those with the highest position. These absolute disparities were stronger than in the nondiabetic population. The results were even more striking for CVD mortality.

CONCLUSIONS

The risk of mortality differs substantially according to educational level among individuals with diabetes in the U.S. Although relative educational disparities in mortality are weaker in adults with versus without diabetes, their absolute impact is greater and translates into a major mortality burden.In the U.S., >20 million adults have diabetes, and the prevalence is expected to rise substantially in the coming decades (1,2). Diabetes complications impose an enormous burden on public health, and people with diabetes have an age-adjusted mortality rate approximately twice as high as those without (3).The public health burden of diabetes is unevenly distributed across socioeconomic strata. First, diabetes is more common in ethnic minorities and people of low education and income level (4,5). Second, in people with diabetes, socioeconomic position (SEP) may influence major determinants of health, such as access to care, quality of care, and health behaviors (6). Correspondingly, SEP may have a profound impact on the morbidity and mortality associated with diabetes. In Europe, socioeconomic health disparities have been reported among people with diabetes in various settings (5,6); though, two large record linkage studies (7,8) found that the magnitude of socioeconomic differentials in survival was weaker in people with diabetes than in the general population, a result that has remained largely unexplained. In the U.S., only few studies have focused on SEP-related disparities among people with diabetes and then only in selected subpopulations (912), making it difficult to determine the impact of such disparities at the population level and their public health importance.To fully monitor health disparities, the general consensus is that both relative and absolute measures are required (13,14). The objective of this study was to quantify relative and absolute educational disparities in mortality within the U.S. diabetic population according to cause of death and across age, sex, and race/ethnicity strata and to compare the magnitude of these disparities to those found in the nondiabetic population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号