首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relation between the lactate content and the membrane potential was investigated in the gastrocnemius and soleus muscle of the cat during and after a 4 h period of ischemia. The skeletal muscle content of ATP and glucose was also measured. No change occurred in the ATP content of the gastrocnemius muscle during the period of ischemia, whereas in the soleus a 40% reduction of ATP occurred. The glucose content decreased during ischemia and increased above initial values after reflow in both muscles. The lactate content increased, and the membrane potential decreased linearly in both muscles during the ischemic period. The final lactate accumulation was higher and the decrease in membrane potential was less in the gastrocnemius than in the soleus. After release of the tourniquet both variables returned to normal or near normal values within 1.5 h in both muscles. A significant correlation was found between the lactate content and the membrane potential in both muscles during the entire experimental period. It is suggested that the depolarisation occurring in skeletal muscle during hypoxia is partly caused by changes in intracellular pH.This work was supported by grants from the Medical Faculty, University of Göteborg and from the Göteborg Medical Society  相似文献   

2.
Oxygen consumption, lactate production and tissue contents of ATP, phosphocreatine (PCr) and lactate were measured following readdition of K+ to K+-depleted rat portal veins, in order to study the energy turnover associated with Na+/K+ pumping. During incubation in K+-free medium at 37° C spontaneous contractions disappeared in 10–20 min. Readdition of K+ (5.9 mM) after 40 min K+-free incubation caused hyperpolarization of the cell membrane for the first 5–10 min and then gradual depolarization with return of spontaneous action potentials and contractions by 10–20 min. During the first 4–6 min after K+ readdition aerobic lactate production was about doubled and then gradually returned to the original level (0.17 mol/min g) at about 20 min. The increase in glycolytic rate was prevented by 1 mM ouabain. In contrast, O2 consumption (in K+-free medium, 0.38 mol/min g) rose by about 10% when K+ was added and this increase lasted about 5 min. By 8 min after K+ addition the increased glycolysis and oxidative phosphorylation had accounted for each about the same amount of extra ATP generation over that extrapolated from the steady rate before K+ addition. The average total increase in ATP turnover in the first 8 min was 15%. During this period there was no change in the cellular content of ATP, PCr, or extractable ADP. The results indicate that Na+/K+ pumping utilizes a relatively small share of the total energy turnover in the vascular smooth muscle but is to a large extent dependent on aerobic glycolysis and therefore a major site of carbohydrate usage.  相似文献   

3.
The role of perivascular H+ and K+ in the adjustment of pial arterial diameter during changes in arterial blood pressure was investigated in chloralose anesthetized cats. Blood pressure was reduced by i.v. mecamylamine or pentolinium and was increased by i.v. hypertensin. Pial arterioles and arteries with a control diameter ranging from 37–218 at a spontaneous mean arterial blood pressure of 128±16 (SD) mm Hg were studied. Vascular diameter as measured by TV image splitting showed the typical reactions, i.e. constriction during increase (up to 200 mm Hg) and dilation during decrease in blood pressure (down to 60 mm Hg). Perivascular H+ and K+ activities were measured using pH microelectrodes (Hinke type) and K+ ion exchanger microelectrodes, respectively. Under control conditions perivascular pH was 7.25±0.11 (SD) and K+ activity was 2.46±0.65 (SD) mM, respectively. During changes in blood pressure the vascular reactions of pial arteries were not accompanied by significant alterations in perivascular H+ or K+ activity. From these data it can be concluded that mechanisms other than those which are mediated by H+ or K+ are involved in the adjustment of pial arterial diameter during changes in arterial blood pressure.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

4.
Zusammenfassung An isolierten Vorhöfen des Meerschweinchenherzens wurden der Extracellulärraum (ER), die intracellulären Na+-und K+-Konzentrationen ([Nai], [K]i) und das membranpotential (MP) vor, während und nach Unterkühlung der Präparate gemessen. Das Wiedererwärmen der Vorhöfe erfolgte bei 35° C in Tyrode-Lösungen mit einem K+-Gehalt ([K]e) von 0–21,6 mM/l [K]e.Der Extracellulärraum (ER) wurde als Inulinraum gemessen. Bei 35° C betrug er etwa 350 ml/kg, bei 4–6° C etwa 300 ml/kg.Der intracelluläre K+-Gehalt der Vorhöfe sank während der Unterkühlung ab und nahm bei Wiedererwärmen der Präparate zu. Die intracelluläre Na+-Konzentration stieg während der Hypothermie an und fiel während des Wiedererwärmens ab.Das Membranpotential nahm bei Unterkühlung der Vorhöfe ab. Wiedererwärmen verursachte einen raschen Anstieg des Membranpotentiales. In Tyrodelösung mit 21,6 bzw. 10,8 mM/l [K]e war das Membranpotential innerhalb der ersten 10 min des Wiedererwärmens signifikant mehr negativ als das entsprechende K+-Gleichgewichtspotential (EK). Bei Weidererwärmen der Vorhöfe in einer Tyrodelösung mit 5,4 mM/l [K]e waren Membranpotential und K+-Gleichgewichtspotential in den ersten 10 min gleich hoch. In K+-freier Tyrodelösung war das Ansteigen, des Membranpotentiales bei Wiedererwärmen nicht von einer gleichzeitigen Veränderung von [Na]i begleitet. Unter diesen Bedingungen erreichte das Membranpotential wahrscheinlich nicht die Höhe des K+-Gleichgewichtspotentiales.Aus den Versuchsergebnissen wird geschlossen, daß das Membranpotential des Meerschweinchenvorhofes nach Hypothermie von einer elektrogenen Na+-Pumpe mit bestimmt werden kann. Die Leistung des elektrogenen Na+-Transportes ist von [K]e und wahrscheinlich von [Na]i abhängig.  相似文献   

5.
The relation between transcellular Na+ absorption, intracellular Na+ concentration and Na+/K+-ATPase activity (the last estimated by the rubidium uptake across the basolateral cell membrane) was examined in the different cell types of the rabbit cortical collecting duct (CCD). Experiments were performed on isolated perfused CCD in which Na+ absorption was varied by perfusing the tubule with solutions containing different Na+ concentrations (nominally Na+-free, 30 mM and 144 mM). Experiments were terminated by shock-freezing the tubules during perfusion. Precisely 30 s before shock-freezing, the K+ in the bathing solution was exchanged for Rb+. Intracellular element concentrations, including Rb+, were determined in freeze-dried cryosections of the tubules using energy-dispersive X-ray analysis. Increasing Na+ concentration in the perfusion solution caused significant rises in intracellular Na+ concentration and Rb+ uptake of principal cells. Principal cell Na+ and Rb+ concentrations were 7.8±0.9 and 7.0±0.8 mmol/kg wet weight respectively, when the perfusion solution was Na+-free, 10.1±0.7 and 11.6±0.6 mmol/kg wet weight with 30 mM Na+ in the perfusion solution, and 14.5±1.5 and 14.9 ±0.9 mmol/kg wet weight with 144 mM Na+ in the perfusion solution. In contrast, a comparable relationship between lumen Na+ concentration, intracellular Na+ concentration and basolateral Rb+ uptake was not seen in intercalated cells. These results support the notion that principal, but not intercalated, cells are involved in transepithelial Na+ absorption. In addition, the data demonstrate that apical Na+ entry and basolateral Na+/K+-AT-Pase activity are closely coupled in principal cells of the rabbit CCD. A rise in lumen Na+ concentration leads to increased Na+ entry and augmented intracellular Na+ concentration, which then secondarily stimulates active basolateral Na+/K+(Rb+) exchange.  相似文献   

6.
Morphological studies have demonstrated that a chronic increase in distal Na+ delivery causes hypertrophy of the distal convoluted tubule (DCT). To examine whether high NaCl-intake also causes functional changes in the well defined DCT, we measured transmural voltage (V T), lumen-to-bath Na+ flux (J Na(LB)), and net K+ secretion (J K(net)) in DCTs obtained from control rabbits and those on high NaCl-intake diets. The lumen negativeV T was significantly greater in the high NaCl group than in the control group. The net K+ secretion (pmol mm–1 min–1) was greater in the high NaCl-intake group (54.1±13.0 vs 14.7±5.6). The K+ permeabïlities in both luminal and basolateral DCT membranes, as assessed by the K+-induced transepithelial voltage deflection inhibitable with Ba2+, were increased in the experimental group. The lumen-to-bath22Na flux (pmol mm–1 min–1) was also greater in the experimental group (726±119 vs 396±65). TheV T component inhibitable with amiloride was also elevated in the high NaCl-intake group. Furthermore, Na+–K+-ATPase activity of the DCT was higher in the experimental than in the control group. We conclude that high NaCl intake increases both Na+ reabsorption and K+ secretion by the DCT. This phenomenon is associated with an increased Na+–K+-ATPase activity along with increased Na+ and K+ permeabilities of the luminal membrane, and an increase in the K+ permeability of the basolateral membrane. Cellular mechanisms underlying these functional changes remain to be established.  相似文献   

7.
Homocellular regulation of K+ at increased transcellular Na+ transport implies an increase in K+ exit to match the intracellular K+ load. Increased K+ conductance, gK, was suggested to account for this gain. We tested whether such a mechanism is operational in A6 monolayers. Na+ transport was increased from 5.1±1.0 A/cm2 to 20.7±1.3 A/cm2 by preincubation with 0.1 mol/l dexamethasone for 24 h. Basolateral K+ conductances were derived from transference numbers of K+, t K, and basolateral membrane conductances, gb, using conventional microelectrodes and circuit analysis with application of amiloride. Activation of Na+ transport induced an increase in gb from 0.333±0.067 mS/ cm2 to 1.160±0.196 mS/cm2 and t K was reduced to 0.22±0.01 from a value of 0.70±0.05 in untreated control tissues. As a result, gK remained virtually unchanged at increased Na+ transport rates. The increase in gb after dexamethasone was due to activation of a conductive leak pathway presumably for Cl. Increased K+ efflux, I K, was a consequence of the larger driving force for K+ exit due to depolarization at an elevated Na+ transport rate. The relationship between calculated K+ fluxes and Na+ transport rate, measured as the I sc, is described by the linear function I K=0.624×I Na–0.079, which conforms with a stoichiometry 23 for the fluxes of K+ and Na+ in the Na+/K+-ATPase pathway. Our data show that homocellular regulation of K+ in A6 cells is not due to up-regulation of g K .  相似文献   

8.
We investigated mechanisms of regulatory volume increase in fused Madin-Darby canine kidney (MDCK) cells, a cell line originally derived from renal collecting duct. The intracellular ion concentrations as well as the concentration of the volume marker tetramethylammonium+ were measured by means of ion-selective microelectrodes. Application of hypertonic Ringer bicarbonate solution (+150 mmol/l mannitol) resulted in cell shrinkage to 84±2% of the initial cell volume (shrinkage expected for an ideal osmometer = 66%), indicating a significant regulatory volume increase. During the first 90 s of the hypertonic stress, a transient increase in intracellular Na+ and HCO 3 concentrations was observed. It was followed by a sustained increase in intracellular K+ and Cl concentrations. Ouabain (0.1 mmol/l) as well as amiloride (1 mmol/l) reduced K+ accumulation significantly, whereas the H+ /K+-ATPase inhibitor SCH 28080 had no effect. Hypertonic stress hyperpolarized the cell membrane potential by 19±2 mV, owing to the decrease of the ratio of Cl conductance to K+ conductance of the cell membrane. We conclude: (a) acute hypertonic stress activates Na+/H+ exchange in MDCK cells; (b) transient alteration of intracellular Na+ and pH stimulates Na+/K+-ATPase and Cl/HCO 3 exchange, both leading to the sustained intracellular accumulation of KCl; (c) a high intracellular KCl concentration is maintained by the partial reversion of the Cl/K+ conductance ratio of the plasma membrane.  相似文献   

9.
The conductance properties of the luminal membrane of cells from the thick ascending limb of Henle's loop of rat kidney (TAL) are dominated by K+. In excised membrane patches the luminal K+ channel is regulated by pH changes on the cytosolic side. To examine this pH regulation in intact cells of freshly isolated TAL segments we measured the membrane voltage (V m) in slow-whole-cell (SWC) recordings and the open probability (P o) of K+ channels in the cell-attached nystatin (CAN) configuration, where channel activity and part of V m can be recorded. The pipette solution contained K+ 125 mmol/l and Cl 32 mmol/l. Intracellular pH was determined by 2,7 bis(2-carboxyethyl)-5,(6)-carboxyfluorescein (BCECF) fluorescence. pH changes were induced by the addition of 10 mmol/l NH4 +/NH3 to the bath. In the presence of NH4 +/NH3 intracellular pH acidified by 0.53±0.11 units (n=7). Inhibition of the Na+2Cl K+ cotransporter by furosemide (0.1 mmol/l) reversed this effect and led to a transient alkalinisation by 0.62±0.14 units (n=7). In SWC experiments V m of TAL cells was -72±1 mV (n=70). NH4 +/NH3 depolarised V m by 22±2 mV (n=25). In 11 SWC experiments furosemide (0.1 mmol/l) attenuated the depolarising effect of NH4 + from 24±3 mV to 7±3 mV. Under control conditions the single-channel conductance of TAL K+ channels in CAN experiments was 66±5 pS and the reversal voltage for K+ currents was 70±2 mV (n=35). The P o of K+ channels in CAN patches was reduced by NH4 +/NH3 from 0.45±0.15 to 0.09±0.07 (n=7). NH4 +/NH3 exposure depolarised the zero current voltage of the permeabilised patches by-9.7±3.6 mV (n=5). The results show that TAL K+ channels are regulated by cytosolic pH in the intact cell. The cytosolic pH is acidified by NH4 +/NH3 exposure at concentrations which are physiologically relevant because Na+2ClK+(NH4 +) cotransporter-mediated import of NH4 + exceeds the rate of NH3 diffusion into the TAL. K+ channels are inhibited by this acidification and the cells depolarise. In the presence of furosemide TAL cells alkalinise proving that NH4 + uptake occurs by the Na+2ClK+ cotransporter. The findings that, in the presence of NH4 +/NH3 and furosemide, V m is not completely repolarised and that K+ channels are not activated suggest that the respective K+ channels may in addition to their pH regulation be inhibited directly by NH4 +/NH3.  相似文献   

10.
Sarcoplasmic reticulum (SR) membrane vesicles have been prepared from rabbit skeletal muscle and solubilised using K+ cholate. Solubilised membrane proteins were reconstituted into small asolectin liposomes by dialysis against cholate-free solution. Large liposomes were produced by freezing and thawing at –80°C and room temperature, respectively. The liposomes were assayed for the SR K+ channel using the patch clamp technique. Channel density was modulated by varying protein: lipid ratios during reconstitution. Channels inserted into the membrane with a preferred orientation. The solubilised and reconstituted channel behaves ohmically over the holding potential range ±70 mV and has a conductance of 178.4±4.4 pS (mean ± SE,n=37) in 200 mM KCl. The channel has a selectivity sequence of K+>NH 4 + >Rb+>Na+ and K+ conductance is blocked by hexamethonium and decamethonium. The opening probability of the reconstituted channel is voltage dependent. The conductance and gating characteristics displayed by the solubilised and reconstituted channel correlate well with those previously observed following the fusion of native SR membrane vesicles with planar phospholipid bilayers.  相似文献   

11.
Transepithelial H+ transport was studied in diluting segments of the isolated-perfused kidney ofrana esculenta. The experiments were performed in controls as well as in K+-adapted and Na+-adapted animals (exposed to 50 mmol/l KCl or NaCl, resp. for at least 3 days). Conventional and single-barreled, liquid ion-exchanger H+-sensitive microelectrodes were applied in the tubule lumen to evaluate transepithelial H+ net flux (J te H ) as well as limiting transepithelial electrical and H+ electrochemical potential differences (PD te ,E te H ) and luminal pH at zero net flux conditions. The measurements were made in absence (control) and presence of furosemide (5·10–5 mol/l) or amiloride (10–3 mol/l). E te H (lumen positive vs ground) was 19±3 mV in controls, 43±3 mV in K+ adapted but about zero in Na+ adapted animals. Using the correspondingPD te -values, steady state luminal pH of 7.63±0.05, 7.13±0.05 and 8.02±0.02 was calculated for the respective groups of animals (peritubular pH 7.80). In parallel, significant secretoryJ te H (from blood to lumen) was found in controls (14±2 pmol·cm–2·S–1) which was stimulated by K+ adaptation (61±8 pmol·cm–2·s–1) but reversed in direction by Na+-adaptation (–8±1 pmol·cm–2·s–1). Amiloride inhibited secretoryJ te H . Elimination of the lumen positivePD te by furosemide did not affect significantlyE te H andJ te H in control and K+ adapted animals but abolished reabsorptiveJ te H in Na+ adapted animals.We conclude that in frog diluting segment H+ secretion is an active, amiloride-sensitive, furosemide-insensitive transport process. The data are consistent with luminal Na+/H+ exchange. The activity of this system depends critically on the metabolic state of the animal.Parts of the data were presented at the 16th Ann. Meeting of the Am. Soc. Nephrol., Washington (1983)This work was supported by österr. Forschungsrat, Proj. No.: 4366 and by Dr. Legerlotz Stiftung  相似文献   

12.
Epithelial cells lose their usual polarization during carcinogenesis. Although most malignant tumours are of epithelial origin little is known about ion channels in carcinoma cells. Previously, we observed that migration of transformed Madin-Darby canine kidney (MDCK-F) cells depended on oscillating K+ channel activity. In the present study we examined whether periodic K+ channel activity may cause changes of cell volume, and whether K+ channel activity is distributed in a uniform way in MDCK-F cells. After determining the average volume of MDCK-F cells (2013±270 m3; n=8) by means of atomic force microscopy we deduced volume changes by calculating the K+ efflux during bursts of K+ channel activity. Therefore, we measured the membrane conductance of MDCK-F cells which periodically rose by 22.3±2.5 nS from a resting level of 6.5±1.4 nS (n=12), and we measured the membrane potential which hyperpolarized in parallel from –35.4±1.2 mV to –71.6±1.8 mV (n=11). The distribution of K+ channel activity was assessed by locally superfusing the front or rear end of migrating MDCK-F cells with the K+ channel blocker charybdotoxin (CTX). Only exposure of the rear end to CTX inhibited migration providing evidence for horizontal polarization of K+ channel activity in transformed MDCK-F cells. This is in contrast to the vertical polarization in parent MDCK cells. We propose that the asymmetrical distribution of K+ channel activity is a prerequisite for migration of MDCK-F cells.  相似文献   

13.
The basolateral membrane of rabbit straight proximal tubules, which were cannulated and perfused on one side, was investigated with the patch clamp technique. Properties of inward and outward directed single K+ channel currents were studied in cell-attached and insideout oriented cell-excised membrane patches. In cell-attached patches with NaCl Ringer solution both in pipette and bath, outward K+ currents could be detected after depolarization of the membrane patch by about 20–30 mV. The current-voltage (i/V) relationship could be fitted by the Goldman-Hodgkin-Katz (GHK) current equation, with the assumption that these channels were mainly permeable for K+ ions. A permeability coefficientP K of (0.17±0.04) · 10–12 cm3/s was obtained, the single channel slope conductance at infinite positive potentialg(V ) was 50±12 pS and the single channel conductance at the membrane resting potentialg(V bl) was 12±3 pS (n=4). In cell-excised patches, with NaCl in the pipette and KCl in the bath, the data could also be fitted to the GHK equation and yieldedP K = (0.1 ±0.01) ·10–12 cm3/s,g(V ) = 40 ± 4 pS andg(V bl) = 7 ± 1 pS (n=8). In cell-attached patches with KCl in the pipette and NaCl in the bath, inward K+ channels occurred at clamp potentials 60 mV, whereas outward K+ channel current was detected at more positive voltages. The current-voltage curves showed slight inward rectification. The single channel conductance, obtained from the linear part of the i/V curve by linear regression, was 46±3 pS and the reversal potential was 59±6 mV (n=9). In cell-excised patches with KCl in the pipette and NaCl in the bath, inward directed K+ channel currents could again be described by the GHK equation. The single channel parameters were similar to those recorded for outward K+ currents (see above). In inside-out oriented cell-excised patches with NaCl in the pipette and KCl in the bath, reducing bath (i.e. cytosolic) Ca2+ concentration from 10–6 mol/l to less than 10–9 mol/l did not affect the open state probability of single channel currents. These results demonstrate that the observed channels are permeable for K+ ions in both directions and that these basolateral K+ channels in rabbit proximal straight tubule are not directly dependent on Ca2+ ions.  相似文献   

14.
Previous studies in isolated, in vitro perfused rectal gland tubules (RGT) have revealed that the basolateral membrane possesses a K+ conductive pathway. In the present study, we have utilized the patch clamp technique in RGT segments to characterize this pathway. The basolateral membrane was approached with patch pipettes at the open end of in vitro perfused segments [5]. Recordings were obtained in cell-attached as well as in excised inside-out patches. In cell-attached patches with the pipette filled with a KCl solution (274 mmol/l) and the bath containing NaCl shark Ringer (275 mmol/l), inward K+ currents (from pipette into cell) with a mean slope conductance of 123±26 pS (n=3) were observed. We were unable to generate outward K+ currents at high depolarizing (cell more positive) clamp voltages. This indicates inward rectification of this channel. To examine the rectification properties further, excised (inside out) patches were exposed to K+ concentration gradients, directed out of, as well as into the pipette. With NaCl in the pipette and KCl in the bath, K+ outward currents were observed. The current-voltage (IV) relation revealed Goldman-type rectification, with a mean single channel conductance of 185±28 pS (n=7) at high positive voltages (linear range of the IV curve). The single-channel permeability coefficient for K+ was 0.26±0.04 ·10–12 cm3/s (n=7). In the reversed experiment (pipette KCl, bath NaCl), inward currents of similar kinetics and amplitude were obtained. The single channel conductance was 146±21 pS (n=7) at high negative voltages (linear range of the IV curve). The single channel permeability coefficient for K+ was 0.21±0.03·10–12 cm3/s (n=7). We were not able to reverse the currents in any of these experiments, indicating that this channel is highly selective for K+ over Na+. In all three series of experiments, the kinetic appearance of the channels was similar. Bursts of activity were followed by interburst pauses. The open state was described by a single time constant of 3.0±0.2 ms, whereas the closed state was described by two time constants of 0.7±0.2 ms and 2.8±0.5 ms (n=8). It can be concluded that these channels permit K+ inward and outward currents. They are probably the equivalent of the basolateral K+ conductance as observed in a previous study [12]. Under physiological conditions a single channel conductance of some 20 pS is predicted from the present data. In cell-attached patches, with a high K+ concentration in the pipette, the channel behaves as an inward rectifier.Supported by Deutsche Forschungsgemeinschaft Gr 4808 and by NSF and NIH grants to the MDIBL. Parts of this study have been published in the Mount Desert Island Biol. Bulletin 1984, 1985.  相似文献   

15.
The patch-clamp technique was used to characterize K+ channel activity in the basolateral membrane of isolated crypts from rat distal colon. In cell-attached patches with KCl in the pipette, channels with conductances ranging from 6 pS to 80 pS appeared. With NaCl in the pipette and KCl in the bath in excised inside-out membrane patches a small-conductance channel with a mean conductance of 12±6 pS (n=18) was observed. The channel has been identified as K+ channel by its selectivity for K+ over Na+ and by its sensitivity to conventional K+ channel blockers, Ba2+ and tetraethylammonium (TEA+). Changes of cytosolic pH did not attenuate channel activity. Activity of the 12-pS channel was increased by membrane depolarization and elevated cytosolic Ca2+ concentration. In addition, a maxi K+ channel with a mean conductance of 187±15 pS (n=4) in symmetrical KCl solutions was only occasionally recorded. The maxi K+ channel could be blocked by Ba2+ (5 mmol/l) on the cytosolic side. Using the slow-whole cell recording technique under control conditions, a cell membrane potential of –70±10mV (n=18) was measured. By application of various K+ channel blockers such as glibenclamide, charybdotoxin, apamin, risotilide, Ba2+ and TEA+ in the bath, only Ba2+ and TEA+ depolarized the cell membrane. The present data suggest that the small K+ channel (12 pS) is involved in the maintenance of the cell membrane resting potential.  相似文献   

16.
The K+ channels of the principal cells of rat cortical collecting duct (CCD) are pH sensitive in excised membranes. K+ secretion is decreased with increased H+ secretion during acidosis. We examined whether the pH sensitivity of these K+ channels is present also in the intact cell and thus could explain the coupling between K+ and H+ secretion. Membrane voltages (V m), whole-cell conductances (g c), and single-channel currents of K+ channels were recorded from freshly isolated CCD cells or isolated CCD segments with the patch-clamp method. Intracellular pH (pHi) was measured using the pH-sensitive fluorescent dye 2-7-bis(carboxyethyl)-5-6-carboxyfluorescein (BCECF). Acetate (20 mmol/l) had no effect on V m, g c, or the activity of the K+ channels in these cells. Acetate, however, acidified pHi slightly by 0.17±0.04 pH units (n=19). V m depolarized by 12±3 mV (n=26) and by 23±2 mV (n=66) and g c decreased by 26±5% (n=13) and by 55±5% (n=12) with 3–5 or 8–10% CO2, respectively. The same CO2 concentrations decreased pHi by 0.49±0.07 (n=15) and 0.73±0.11 pH units (n=12), respectively. Open probability (P o) of all four K+ channels in the intact rat CCD cells was reversibly inhibited by 8–10% CO2. pHi increased with the addition of 20 mmol/l NH4 +/NH3 by a maximum of 0.64±0.08 pH units (n=33) and acidified transiently by 0.37±0.05 pH units (n=33) upon NH4 +/NH3 removal. In the presence of NH4 +/NH3 V m depolarized by 16±2 mV (n=66) and g c decreased by 26±7% (n=16). The activity of all four K+ channels was also strongly inhibited in the presence of NH4 +/NH3. The effect of NH4 +/NH3 on V m and g c was markedly increased when the pH of the NH4 +/NH3-containing solution was set to 8.5 or 9.2. From these data we conclude that cellular acidification in rat CCD principal cells down-regulates K+ conductances, thus reduces K+ secretion by direct inhibition of K+ channel activity. This pH dependence is present in all four K+ channels of the rat CCD. The inhibition of K+ channels by NH4 +/NH3 is independent of changes in pHi and rather involves an effect of NH3.  相似文献   

17.
The ion transport properties of the mammalian descending colon have been the subject of numerous investigations during the last decade. In contrast, relatively few studies have investigated proximal segments of this organ. In the present study, we assessed transepithelial transport of Na+, K+ and Cl in the isolated initial segment (P1) of rabbit colon in vitro using radioisotopic tracer fluxes and electrophysiological techniques. Like the rabbit descending colon, the proximal colon actively absorbs sodium and chloride, howeveer, its transport systems are markedly different. In vivo, this segment absorbs potassium, however in vitro active potassium secretion was observed. Unlike the descending colon, Na+ absorption is relatively insensitive to amiloride and only a slight inhibition was obtained even at 1 mM concentrations of this drug. Na+ and Cl absorption appeared to be coupled (directly or indicrectly) since the absorption of each ion was inhibited by the removal of the other. Serosal ouabain also inhibited Na+ and Cl absorption and net K+ secretion. Unlike the descending colon, the proximal P1 segment did not have a net absorptive K+ transport system that was detectable in the presence of ouabain. Electrically, the early proximal colon has a low transepithelial resistance compared to descending colon (R T=133±7 cm2) but a larger short-circuit current (l sc=178±12 A/cm2). The transepithelial potential averaged –21±1 mV, in excellent agreement with values measured in vivo. The apical and basolateral membrane potentials averaged –21±1 mV and –42±1 mV and intracellular potassium activity was 70±2 mM. The findings indicate active K+ uptake across the basolateral membrane and passive exit across the apical membrane. The basolateral membrane conductance may be a potassium conductance that is blockable by barium. It is likely that K+ transport normally occurs by both cellular and paracellular routes in this epithelium. Because of the numerous differences between this segment and the descending colon, we conclude that the P1 segment of proximal colon has a distinct function in colonic electrolyte transport  相似文献   

18.
Cat submandibular glands were perfused with Locke solution in a thermostated chamber and intermittently stimulated with 10–5 M acetylcholine (ACh). In one series of experiments the perfusion pressure was varied within the range 90–60 mm Hg, and secretory flow rate, active K+-reuptake, passive K+-release, and resting and ACh-induced venous flow rates were measured. The ACh-induced secretory flow rate and the maximal K+-fluxes were related to the simultaneous ACh-induced venous flow rates. A proportionality was found between the maximal rate of ACh-induced K+-release and ACh-induced venous flow rates below 8 ml/min, while at higher flow rates the K+-release leveled off. The maximal rate of the post-stimulatory K+-reuptake increased proportionally to the ACh-induced perfusate flow rate throughout the range studied. The secretory flow rate was much less affected by changes in ACh-induced perfusate flow rate. In another series of experiments the gland temperature was varied within the range 12–37°C, and the same parameters were measured. All parameters decreased with cooling being reduced to 50% of their 37°C values at: 24°C for secretion, 19°C for K+-reuptake, and 14°C for K+-release. It is concluded: that 1) the rate of ACh-induced K+-release is limited by the ACh-induced perfusate flow rate (within the physiological range), 2) the capacity of the K+-reuptake mechanism is at least one order of magnitude larger than the maximal rate of K+-reuptake in vivo, 3) the marked temperature sensitivity of the secretory flow rate reflects the high complexity of the mechanisms involved.  相似文献   

19.
Microelectrodes were used to measure membrane potential and intracellular potassium activity in surface epithelial cells (SEC) of frog (Rana esculenta) fundic gastric mucosa in vitro. Separate measurements were carried out by applying fine-tipped, single barrelled, KCl filled non-selective electrodes and liquid K+-selective electrodes. Membrane potentials with respect to the mucosal and serosal surfaces, measured with non-selective electrodes, were –54.5±1.0 S.E. mV (n=59) and –73.0±1.1 S.E. mV (n=59) respectively. The electrical potential difference referred to the mucosal surface, when measured with K+-sensitive electrodes, was +21.2±0.8 S.E. mV (n=35), and intracellular K+ activity was 98.5 mmol/l. Assuming that intracellular and extracellular K+ activity coefficients are equal (K=K), the K+ concentration is 135.0 mmol/l. The K+ equilibrium potential,E K, was calculated as –90.0 mV i.e. more negative than both membrane potentials. This result indicates active potassium accumulation in the SEC and provides direct evidence of the presence of an active K+ pump in either both or in only one of the cell membranes.  相似文献   

20.
Summary The influence of serum from patients with essential hypertension on the sodium efflux rate constants of human lymphocytes and on the activity of isolated (Na++K+)-ATPase was investigated. The ouabain-sensitive sodium efflux rate constant was significantly decreased (p<0.001) in the sera of 19 hypertensives (1.92±0.11 h–1) compared with the sera of 30 normotensives (2.44±0.07 h–1). The ouabain-insensitive sodium efflux was unaffected. These results corresponded with a significant difference (p<0.005) of (Na++K+)-ATPase activity (1.03±0.04 mU/ml and 0.079±0.06 mU/ml), when an isolated (Na++K+)-ATPase was incubated with the sera of 22 normotensives or 18 hypertensives. Both the rate constant of ouabain-sensitive sodium efflux and the (Na++K+)-ATPase activity correlated significantly with the diastolic and systolic blood pressure (p<0.001). These data, therefore, demonstrated the close relationship between essential hypertension and the concentration of a circulating inhibitor of the sodium pump.Abbreviations ATP Adenosine triphosphate - EGTA Ethyleneglycol bis(2-aminoethyl)-N,N,N,N-tetraacetic acid This paper contains an essential part of the thesis of K.M. presented to the Fachbereich Veterinärmedizin, GiessenThis work was supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg (Scho 139/16-2) and by the Fonds der Chemischen Industrie, Frankfurt/Main  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号