首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin-dependent diabetes mellitus is a chronic metabolic disease that causes long-term secondary complications such as neuropathy. The occurrence of diabetic neuropathy has generally been thought of as being associated with hyperglycaemia. However, in a previous light microscopic examination of plantar nerves in diabetic BB/Wor rats treated with insulin implants we found that eu-/hyperglycaemic rats present a normal picture, whereas eu-/hypoglycaemic rats show severe changes. The aim of the present work is to supplement our previous light microscopic report with electron microsocpic data from the lateral plantar nerve of normal, eu-/hyperglycaemic and eu-/hypoglycaemic BB/Wor rats. Under the electron microscope lateral plantar nerves collected from eu-/hyperglycaemic rats presented a qualitatively normal picture. In addition, the fibre numbers and the size distribution of the myelinated fibres were normal. In contrast, specimens from eu-/hypoglycaemic BB/Wor rats showed severe qualitative changes, interpreted as signs of axonal de- and regeneration. The total number of axons was somewhat subnormal and the sizes of the myelinated fibres were strongly shifted towards smaller diameters. These data confirm our previous light microscopic observations. We conclude that eu-/hypoglycaemic BB/Wor rats treated with insulin implants, but not similarly treated eu-/hyperglycaemic animals, develop a neuropathy in their plantar nerves. Received: 27 November 1997 / Accepted: 12 January 1998  相似文献   

2.
It is generally believed that diabetic neuropathy is due to chronic hyperglycaemia. However, experience from insulinoma patients and experimental studies show that hypoglycaemia may also cause neuropathy. Accordingly, the plantar nerves of diabetic eu-/hypoglycaemic BB/Wor rats treated with insulin implants exhibit a distinct neuropathy. To what extent hypoglycaemic neuropathy affects axon terminals in skin and muscle is unknown. In the present study we examine the occurrence of epidermal axon profiles and the neuropeptide calcitonin gene-related peptide (CGRP) in plantar skin, and of end plate axon terminals in a plantar muscle of diabetic BB/Wor rats subjected to long periods of hypoglycaemia. The number of protein gene product-immunoreactive axon profiles was found to be normal in heel skin biopsy specimens from eu-/hypoglycaemic rats, but many profiles were short and thin. The content of CGRP in the skin biopsy samples was significantly below normal. After staining with antibodies against the vesicular acetyl choline transporter protein, the occurrence of end plate axon terminals was significantly reduced in sections from the flexor hallucis brevis muscle of eu-/hypoglycaemic rats. Moreover, the end plate axon terminals tended to be abnormally small in these rats. We conclude that the hypoglycaemic neuropathy seen in plantar nerve trunks of diabetic BB/Wor rats treated with insulin implants is accompanied by mild alterations in the epidermal innervation of plantar skin and a more obviously abnormal nerve terminal pattern in plantar muscle.  相似文献   

3.
It is generally believed that diabetic neuropathy is due to chronic hyperglycaemia. However, experience from insulinoma patients and experimental studies show that hypoglycaemia may also cause neuropathy. Accordingly, the plantar nerves of diabetic eu-/hypoglycaemic BB/Wor rats treated with insulin implants exhibit a distinct neuropathy. To what extent hypoglycaemic neuropathy affects axon terminals in skin and muscle is unknown. In the present study we examine the occurrence of epidermal axon profiles and the neuropeptide calcitonin gene-related peptide (CGRP) in plantar skin, and of end plate axon terminals in a plantar muscle of diabetic BB/Wor rats subjected to long periods of hypoglycaemia. The number of protein gene product-immunoreactive axon profiles was found to be normal in heel skin biopsy specimens from eu-/hypoglycaemic rats, but many profiles were short and thin. The content of CGRP in the skin biopsy samples was significantly below normal. After staining with antibodies against the vesicular acetylcholine transporter protein, the occurrence of end plate axon terminals was significantly reduced in sections from the flexor hallucis brevis muscle of eu-/hypoglycaemic rats. Moreover, the end plate axon terminals tended to be abnormally small in these rats. We conclude that the hypoglycaemic neuropathy seen in plantar nerve trunks of diabetic BB/Wor rats treated with insulin implants is accompanied by mild alterations in the epidermal innervation of plantar skin and a more obviously abnormal nerve terminal pattern in plantar muscle. Received: 10 May 1999 / Revised, accepted: 9 July 1999  相似文献   

4.
The aim of this study was to find out whether dysglycaemia causes neuropathy in the vagus nerve of insulin-treated diabetic BB/Wor rats. Specimens were collected from the left vagus nerve proximal and distal to the level of recurrent laryngeal branch and from the recurrent branch itself in control rats and diabetic BB/Wor rats subjected to hyper- or hypoglycaemia. Myelinated and unmyelinated axons were counted and myelinated axon diameters were measured by electron microscopy. In controls, the vagus nerve proximal to the recurrent branch exhibited three regions in terms of fibre composition: part A was mainly composed of large myelinated axons, part B contained small myelinated and unmyelinated axons, and part C contained mainly unmyelinated axons. The distal level resembled part C at the proximal level and the recurrent branch resembled parts A and B. In hyperglycaemic rats, a normal picture was found at the proximal and distal levels of the vagus nerve and in the recurrent branch. In hypoglycaemic rats, signs of past and ongoing degeneration and regeneration of large myelinated axons were found at the proximal and distal levels and in the recurrent branch. We conclude that hypoglycaemia elicits degenerative alterations in large myelinated axons in the vagus and recurrent laryngeal nerves in diabetic BB/Wor rats. The absence of signs of neuropathy in unmyelinated and small myelinated axons suggests that the sensory and autonomic components of the nerve are less affected. In contrast, the hyperglycaemic rats examined here did not show obvious degenerative alterations.  相似文献   

5.
It is believed that hyperglycaemia underlies diabetic neuropathy. However, low blood glucose values may also cause pathological changes in peripheral nerves and in neuronal perikarya. This study examined spinal roots, dorsal root ganglia and the ventral horn at the segmental level L5 in long-term insulin-treated eu-/hypoglycaemic diabetic rats with an obvious plantar nerve pathology. The purpose was to determine whether hypoglycaemic neuropathy affects sensory and/or motor neurons at root and/or perikaryal levels. Electron microscopic examination of dorsal roots from eu-/hypoglycaemic rats showed a normal qualitative morphology and normal numbers of unmyelinated and myelinated axons. In ventral roots the picture varied. Whereas two rats exhibited an essentially normal morphology, three rats presented moderate or marked signs of pathology such as clusters of small and medium-sized myelinated axons, medium-sized myelinated axons with abnormally thin sheaths, large unmyelinated axons and signs of past or ongoing axonal degeneration. Light microscopic examination of the L5 dorsal root ganglion and ventral horn showed a qualitatively normal picture in eu-/hypoglycaemic rats and the mean number of large ventral horn neurons per section was normal. These results suggest that the type of eu-/hypoglycaemia examined here affects ventral root axons but not dorsal root axons, that the degree of ventral root pathology is variable and that sensory and motor neuron perikarya do not appear to be affected. Received: 22 October 1999 / Revised, accepted: 4 January 2000  相似文献   

6.
Dysfunction of the autonomic nervous system is a recognized complication of diabetes, ranging in severity from relatively minor sweating and pupillomotor abnormality to debilitating interference with cardiovascular, genitourinary, and alimentary dysfunction. Neuroaxonal dystrophy (NAD), a distinctive distal axonopathy involving terminal axons and synapses, represents the neuropathologic hallmark of diabetic sympathetic autonomic neuropathy in man and several insulinopenic experimental rodent models. Although the pathogenesis of diabetic sympathetic NAD is unknown, recent studies have suggested that loss of the neurotrophic effects of insulin and/or insulin-like growth factor-I (IGF-I) on sympathetic neurons rather than hyperglycemia per se, may be critical to its development. Therefore, in our current investigation we have compared the sympathetic neuropathology developing after 8 months of diabetes in the streptozotocin (STZ)-induced diabetic rat and BB/ Wor rat, both models of hypoinsulinemic type 1 diabetes, with the BBZDR/Wor rat, a hyperglycemic and hyperinsulinemic type 2 diabetes model. Both STZ- and BB/Wor-diabetic rats reproducibly developed NAD in nerve terminals in the prevertebral superior mesenteric sympathetic ganglia (SMG) and ileal mesenteric nerves. The BBZDR/Wor-diabetic rat, in comparison, failed to develop superior mesenteric ganglionic NAD in excess of that of age-matched controls. Similarly, NAD which developed in axons of ileal mesenteric nerves of BBZDR/Wor rats was substantially less frequent than in BB/Wor- and STZ-rats. These data, considered in the light of the results of previous experiments, argue that hyperglycemia alone is not sufficient to produce sympathetic ganglionic NAD, but rather that it may be the diabetes-induced superimposed loss of trophic support, likely of IGF-I, insulin, or C-peptide, that ultimately causes NAD.  相似文献   

7.
We investigated the effects of hyperglycemia and hypoglycemia on development of peripheral neuropathy in somatic motor and sensory nerves in type 1 diabetic BB/Wor rats. The animals were maintained in a hyper- or hypoglycemic state by treatment with insulin for 3 months. Nondiabetic siblings served as controls. Qualitative analysis of the gastrocnemius and sural nerves by light and electron microscopy revealed signs of Wallerian-type axonal degeneration and regeneration of large myelinated fibers in the hypoglycemic but not the hyperglycemic animals. Degeneration was more common in the gastrocnemius nerve than in the sural nerve. In hypoglycemic rats, myelinated fibers in both the gastrocnemius and sural nerves had significantly shorter internodes and smaller diameters. The decreased fiber diameter was related (r = -0.9) to the duration of severe hypoglycemia (相似文献   

8.
The role of impaired insulin/IGF action in primary diabetic encephalopathy   总被引:2,自引:0,他引:2  
Li ZG  Zhang W  Sima AA 《Brain research》2005,1037(1-2):12-24
We have previously shown that hippocampal neuronal apoptosis accompanied by impaired cognitive functions occurs in type 1 diabetic BB/Wor rats. To differentiate the contribution by insulin deficiency vs. that by hyperglycemia on neuronal apoptosis, we examined the activities of various apoptotic pathways in hippocampi from type 1 diabetic BB/Wor rats (hyperglycemic and insulinopenic) and type 2 diabetic BBZDR/Wor rats (hyperglycemic and hyperinsulinemic). DNA fragmentation was demonstrated by LM-PCR in type 1 diabetic BB/Wor rats, but was not detectable in duration- and hyperglycemia-matched type 2 BBZDR/Wor rats. Of various apoptotic pathways, Fas activations, 8-OHdG expression, and caspase-12 were demonstrated in type 1 diabetic BB/Wor rats only. In contrast, perturbations of the IGF and NGF systems and PARP activation were demonstrated in type 1 and to a lesser extent in type 2 diabetes. Expressions of Bax and active caspase-3 were significantly increased in type 1, but not in type 2, diabetic rats. These data suggest a lesser apoptogenic stress in type 2 vs. type 1 diabetes. These differences translated into a more profound neuronal loss in the hippocampus of type 1 rats. The results demonstrate that caspase-dependent apoptotic activities dominate in type 1 diabetes, whereas PARP-mediated caspase-independent apoptotic stress is present in both type 1 and type 2 diabetes. The findings suggest that insulin deficiency plays a compounding role to that of hyperglycemia in neuronal apoptosis underpinning primary diabetic encephalopathy.  相似文献   

9.
We recently reported that early gene responses and expression of cytoskeletal proteins are perturbed in regenerating nerve in type 1 insulinopenic diabetes but not in type 2 hyperinsulinemic diabetes. We hypothesized that these differences were due to impaired insulin action in the former type of diabetes. To test this hypothesis, type 1 diabetic BB/Wor-rats were replaced with proinsulin C-peptide, which enhances insulin signaling without lowering blood glucose. Following sciatic nerve crush injury, early gene responses such as insulin-like growth factor, c-fos, and nerve growth factor were examined longitudinally in sciatic nerve. Neurotrophic factors, their receptors, and beta-tubulin and neurofilament expression were examined in dorsal root ganglia. C-peptide replacement significantly normalized early gene responses in injured sciatic nerve and partially corrected the expression of endogenous neurotrophic factors and their receptors, as well as neuroskeletal protein in dorsal root ganglia. These effects translated into normalization of axonal radial growth and significantly improved axonal elongation of regenerating fibers in C-peptide-replaced BB/Wor-rats. The findings in C-peptide replaced type 1 diabetic rats were similar to those previously reported in hyperinsulinemic and iso-hyperglycemic type 2 BB/Z-rats. We conclude that impaired insulin action may be more important than hyperglycemia in suppressing nerve fiber regeneration in type 1 diabetic neuropathy.  相似文献   

10.
The triggers and pathogenesis of peripheral diabetic neuropathy are poorly understood, and this study evaluated the role of insulinopenia in nociceptive abnormalities in the streptozotocin (STZ) rat model of diabetes to test the hypothesis that, in addition to hyperglycemia, impairment of insulin signaling may be involved in progression of neuropathy. We measured blood glucose, plasma insulin, and sciatic nerve glucose and sorbitol levels, and withdrawal thresholds for hind limb pressure pain and heat pain in STZ-injected rats that developed hyperglycemia or remained normoglycemic. The pressure pain threshold did not change in vehicle-injected controls, but during the 2 weeks after STZ, it decreased by 25-40% in STZ-hyperglycemic and STZ-normoglycemic animals (P<0.05). Mean heat pain threshold did not change in STZ-normoglycemic rats, but increased by about 1.5 degrees C in STZ-hyperglycemic rats (P<0.05). These pain thresholds did not correlate with blood or nerve glucose or sorbitol levels, but both correlated with plasma insulin level in STZ-normoglycemic rats, and low-dose insulin replacement normalized the pressure threshold without affecting blood glucose level. Thus, at least one of early signs of diabetic neuropathy in STZ-treated rats, mechanical hyperalgesia, can be triggered by moderate insulinopenia, irrespective of glycemic status of the animals.  相似文献   

11.
The spontaneously diabetic "BB" Wistar rat was examined for evidence of peripheral nerve abnormalities by a combined morphologic and physiologic approach. The studies were done on rats kept severely hyperglycemic and frequently ketotic. The peripheral nerves of the lower extremities, including the most distal nerves of the intrinsic foot muscles, revealed only minimal abnormalities by histologic and morphometric examination. Sciatic nerve conduction studies, however, measured over a 2-month period did not show a significant slowing in diabetics compared with age-matched controls, as well as between diabetics and weight-matched controls. In addition, fast anterograde axoplasmic transport studies were correlated with serum glucose results. Rats maintained severely hyperglycemic with or without ketosis had abnormal down flow rats of [3H]leucine compared to controls. Diabetic rats maintained with normal blood glucose levels showed no change in transport rates. These results suggested that persistent hyperglycemia in the "BB" Wistar rat produces significant physiologic but not significant structural abnormalities in the peripheral nerve.  相似文献   

12.
Increased resistance to ischemic nerve conduction failure (RINCF) has been demonstrated in the spontaneously diabetic BB Wistar rat as well as in non-insulin dependent but hyperglycemic litter-mates. There is marked variability in the severity of the ischemic resistance in insulin dependent rats but not in the non-insulin dependent litter-mates suggesting that the administration of insulin could acutely alter RINCF. We therefore studied the effects of rapid normalization of the blood glucose on RINCF in diabetic rats. Injection of insulin produced a rapid fall in blood glucose to normal levels by 2 h. This was closely followed by a significant fall in RINCF which reached normal levels by the time that the blood glucose had been normal for 2 h. These results suggest that increased RINCF in diabetes is a function of the availability of substrate for energy metabolism which is directly related to the blood glucose concentration and underscores the importance of measuring the blood glucose level whenever measurements of nerve function are made.  相似文献   

13.
Phrenic neuropathies are increasingly recognized in peripheral neuropathies but reports on experimental models of the phrenic nerves diabetic neuropathy are scanty. In the present study, we investigated the phrenic nerve neuropathy, due to experimental diabetes induced by streptozotocin (STZ) and the evolution of this neuropathy in diabetic rats treated with insulin. Proximal and distal segments of the left and right phrenic nerves were morphologically and morphometrically evaluated, from rats rendered diabetic for 12 weeks, by injection of STZ. Control rats received vehicle. Treated rats received a single subcutaneous injection of insulin on a daily basis. The nerves were prepared for light microcopy study by means of conventional techniques. Morphometry was carried out with the aid of computer software. The phrenic nerves of diabetic rats showed smaller myelinated axon diameters compared to controls. The g ratio was significantly smaller for myelinated fibers from diabetic rats compared to controls. Insulin treatment prevented these alterations. Histograms of size distribution for myelinated fibers and axons from control rats were bimodal. For diabetic animals, the myelinated fiber histogram was bimodal while the axon distribution turned to be unimodal. Insulin treatment also prevented these alterations. Our results confirm the phrenic nerve neuropathy in this experimental model of diabetes and suggest that conventional insulin treatment was able to prevent and/or correct the myelinated axon commitment by diabetes.  相似文献   

14.
Epalrestat is a noncompetitive and reversible aldose reductase inhibitor used for the treatment of diabetic neuropathy. This study assumed that epalrestat had a protective effect on diabetic peripheral nerve injury by suppressing the expression of aldose reductase in peripheral nerves of diabetes mellitus rats. The high-fat and high-carbohydrate model rats were established by intraperitoneal injection of streptozotocin. Peripheral neuropathy occurred in these rats after sustaining high blood glucose for 8 weeks. At 12 weeks after streptozotocin injection, rats were intragastrically administered epalrestat 100 mg/kg daily for 6 weeks. Transmission electron microscope revealed that the injuries to myelinated nerve fibers, non-myelinated nerve fibers and Schwann cells of rat sciatic nerves had reduced compared to rats without epalrestat administuation. Western blot assay and immunohistochemical results demonstrated that after intervention with epalrestat, the activities of antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase gradually increased, but aldose reductase protein expression gradually diminished. Results confirmed that epalrestat could protect against diabetic peripheral neuropathy by relieving oxidative stress and suppressing the polyol pathway.  相似文献   

15.
Advanced peripheral diabetic neuropathy (PDN) is associated with elevated vibration and thermal perception thresholds that progress to sensory loss and degeneration of all fiber types in peripheral nerve. A considerable proportion of diabetic patients also describe abnormal sensations such as paresthesias, allodynia, hyperalgesia, and spontaneous pain. One or several manifestations of abnormal sensation and pain are described in all the diabetic rat and mouse models studied so far (i.e., streptozotocin-diabetic rats and mice, type 1 insulinopenic BB/Wor and type 2 hyperinsulinemic diabetic BBZDR/Wor rats, Zucker diabetic fatty rats, and nonobese diabetic, Akita, leptin- and leptin-receptor-deficient, and high-fat diet—fed mice). Such manifestations are 1) thermal hyperalgesia, an equivalent of a clinical phenomenon described in early PDN; 2) thermal hypoalgesia, typically present in advanced PDN; 3) mechanical hyperalgesia, an equivalent of pain on pressure in early PDN; 4) mechanical hypoalgesia, an equivalent to the loss of sensitivity to mechanical noxious stimuli in advanced PDN; 5) tactile allodynia, a painful perception of a light touch; and 5) formalin-induced hyperalgesia. Rats with short-term diabetes develop painful neuropathy, whereas those with longer-term diabetes and diabetic mice typically display manifestations of both painful and insensate neuropathy, or insensate neuropathy only. Animal studies using pharmacological and genetic approaches revealed important roles of increased aldose reductase, protein kinase C, and poly(ADP-ribose) polymerase activities, advanced glycation end-products and their receptors, oxidative-nitrosative stress, growth factor imbalances, and C-peptide deficiency in both painful and insensate neuropathy. This review describes recent achievements in studying the pathogenesis of diabetic neuropathic pain and sensory disorders in diabetic animal models and developing potential pathogenetic treatments.  相似文献   

16.
Decreased nerve blood flow may be a pathogenetic factor in diabetic neuropathy. Previously it was shown that insulin treatment, commenced at the onset of streptozotocin-diabetes, prevents the development of a nerve blood flow deficit in the diabetic rat. The present study sought to determine the effect of short-term (one month) and acute (one hour) insulin reversal treatment on nerve blood flow deficits in streptozotocin-diabetes. Sciatic nerve blood flow was assessed using laser Doppler flowmetry. Treatment was initiated after one month of diabetes. One month of reversal insulin treatment ameliorated nerve laser Doppler flux (NDF) deficits; in untreated diabetic rats NDF was 51% of that in control animals (P < 0.01), in insulin-treated diabetic rats NDF was 85% of control values (P < 0.01 vs. untreated diabetic, P < 0.05 vs. control). In association with blood flow increases, we found a significant amelioration of motor (P < 0.05 vs. untreated diabetic) and sensory (P < 0.01 vs. untreated diabetic) nerve conduction velocities but not of exaggerated resistance to hypoxic conduction block. Insulin partially reversed hyperglycaemia and sciatic nerve polyol and sugar levels. In a second experiment, in rats with one month of diabetes, acute infusion of insulin led to a 47% (P < 0.001 vs. pre-insulin values) reduction of plasma glucose. This fall in plasma glucose was accompanied by a 38% (P < 0.05 vs. pre-insulin values) increase in NDF. Sensory nerve conduction velocity was marginally increased (6%, P < 0.05 vs. pre-insulin values) after insulin infusion, but motor conduction velocity was not. The data indicate that insulin can partially reverse deficits in nerve blood flow and conduction in diabetic rats.  相似文献   

17.
We sought to determine the impact that duration of hyperglycemia and control has on corneal nerve fiber density in relation to standard diabetic neuropathy endpoints. Control and streptozotocin‐diabetic C57Bl/6J mice were analyzed after 4, 8, 12, and 20 weeks. For the 20‐week time point, five groups of mice were compared: control, untreated diabetic, and diabetic treated with insulin designated as having either poor glycemic control, good glycemic control, or poor glycemic control switched to good glycemic control. Hyperglycemia was regulated by use of insulin‐releasing pellets. Loss of corneal nerves in the sub‐epithelial nerve plexus or corneal epithelium progressed slowly in diabetic mice requiring 20 weeks to reach statistical significance. In comparison, slowing of motor and sensory nerve conduction velocity developed rapidly with significant difference compared with control mice observed after 4 and 8 weeks of hyperglycemia, respectively. In diabetic mice with good glycemic control, average blood glucose levels over the 20‐week experimental period were lowered from 589 ± 2 to 251 ± 9 mg/dl. All diabetic neuropathy endpoints examined were improved in diabetic mice with good glycemic control compared with untreated diabetic mice. However, good control of blood glucose was not totally sufficient in preventing diabetic neuropathy.  相似文献   

18.
Cytoskeletal protein expression in sensory neurons and sciatic nerve axonal growth were examined in type 1 diabetic BB/Wor rats after sciatic nerve crush injury. Diabetic male rats were subjected to sciatic nerve crush at 6 wk of diabetes. L4 and L5 dorsal root ganglia (DRG) mRNA expression of low and medium molecular weight neurofilaments (NF-L, NF-M), betaII- and betaIII-tubulin as well as protein expression of NF-L, NF-M, and beta-tubulin were examined at various time points following crush injury and compared with age- and sex-matched non-diabetic BB/Wor rats. Steady state mRNA expression of NF-L, NF-M, betaII- and betaIII-tubulin were decreased in diabetic DRG. NF-L and NF-M proteins were also decreased in DRG of uncrushed diabetic animals. After crush injury, betaII- and betaIII-tubulin mRNA were upregulated in control animals at day 2 and day 6, respectively, and beta-tubulin protein showed similarly increased expression after crush injury, while such upregulations did not occur in diabetic animals. Conversely, mRNA and protein expressions of NF-L, NF-M were downregulated to a lesser extent in diabetic animals compared to control rats. These changes were associated with impaired axonal elongation and caliber growth of regenerating fibers in diabetic rats. We propose that upregulation of tubulin has a negative feedback on NF expression in response to nerve injury, as seen in control rats. The absence of this upregulation in diabetic animals may impair its regulatory effect on NF expression and contribute to perturbed nerve regeneration seen in diabetic nerve.  相似文献   

19.
The respiratory function of cerebral mitochondria harvested from genetically diabetic (BB/W) and streptozotocin-diabetic rats deprived of insulin for 3-4 weeks was found to be unchanged from control values. Furthermore, insulin-deprived BB/W rats subjected to 30 min of insulin-induced hypoglycemic coma demonstrated a normal mitochondrial respiration following a 60 min period of glucose restitution, a finding consistent with earlier results in non-diabetic rats. However, in rats exposed to 1 week of moderate hypoglycemia (plasma glucose = 3.0 mumol.ml-1), both state 3 respiration and the respiratory control ratio (RCR) were reduced from control. In fact, when the chronic hypoglycemia was imposed following a 3-4 week period of diabetic hyperglycemia, the state 3 rate and RCR were found to be reduced to a greater degree than in chronically hypoglycemic, non-diabetic, previously normoglycemic rats. Finally, when 1 week of moderate hypoglycemia preceded a 30 min period of insulin-induced hypoglycemic coma, a disturbed pattern of mitochondrial respiration (i.e. increased state 4, decreased RCR) was found at 60 min of recovery following coma. These results indicate that chronic increases in glucose (and insulin deprivation) have no effect on cerebral mitochondrial respiratory function, whereas prolonged, albeit moderate, reductions in cerebral glucose supply result in perturbations in mitochondrial respiration. These results demonstrate the importance of an adequate glucose supply for normal mitochondrial activity.  相似文献   

20.
Abnormal availability of neurotrophins, such as nerve growth factor (NGF), has been implicated in diabetic somatosensory polyneuropathy. However, the involvement of neurotrophins in diabetic neuropathy of autonomic nerves, particularly the vagus nerve which plays a critical role in visceral afferent and in autonomic motor functions, is unknown. To assess the effects of hyperglycemia on the neurotrophin content and transport in this system, cervical vagus nerves of streptozotocin (STZ)-induced diabetic rats were studied at 8, 16, and 24 weeks after the induction of diabetes. Elevations in vagus nerve hexose (glucose and fructose) and polyol levels (sorbitol), and their normalization with insulin treatment, verified that the STZ treatment resulted in hyperglycemia-induced metabolic abnormalities in the nerve. Neurotrophin (NGF and neurotrophin-3; NT-3) content and axonal transport were assessed in the cervical vagus nerves from nondiabetic control rats, STZ-induced diabetic rats, and diabetic rats treated with insulin. The NGF, but not the NT-3, content of intact vagus nerves from diabetic rats was increased at 8 and 16 weeks (but not at 24 weeks). Using a double-ligation model to assess the transport of endogenous neurotrophins, the retrograde transport of both NGF and NT-3 was found to be significantly reduced in the cervical vagus nerve at later stages of diabetes (16 and 24 weeks). Anterograde transport of NGF or NT-3 was not apparent in the vagus nerve of diabetic or control rats. These data suggest that an increase in vagus nerve NGF is an early, but transient, response to the diabetic hyperglycemia and that a subsequent reduction in neuronal access to NGF and NT-3 secondary to decreased retrograde axonal transport may play a role in diabetes-induced damage to the vagus nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号