首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Immunodeficient mice bearing targeted mutations in the IL2rg gene and engrafted with human immune systems are effective tools for the study of human haematopoiesis, immunity, infectious disease and transplantation biology. The most robust human immune model is generated by implantation of human fetal thymic and liver tissues in irradiated recipients followed by intravenous injection of autologous fetal liver haematopoietic stem cells [often referred to as the BLT (bone marrow, liver, thymus) model]. To evaluate the non‐obese diabetic (NOD)‐scid IL2rγnull (NSG)–BLT model, we have assessed various engraftment parameters and how these parameters influence the longevity of NSG–BLT mice. We observed that irradiation and subrenal capsule implantation of thymus/liver fragments was optimal for generating human immune systems. However, after 4 months, a high number of NSG–BLT mice develop a fatal graft‐versus‐host disease (GVHD)‐like syndrome, which correlates with the activation of human T cells and increased levels of human immunoglobulin (Ig). Onset of GVHD was not delayed in NSG mice lacking murine major histocompatibility complex (MHC) classes I or II and was not associated with a loss of human regulatory T cells or absence of intrathymic cells of mouse origin (mouse CD45+). Our findings demonstrate that NSG–BLT mice develop robust human immune systems, but that the experimental window for these mice may be limited by the development of GVHD‐like pathological changes.  相似文献   

2.
In BDC2·5 non‐obese diabetic (BDC2·5NOD) mice, a spontaneous model of type 1 diabetes, CD4+ T cells express a transgene‐encoded T cell receptor (TCR) with reactivity against a pancreatic antigen, chromogranin. This leads to massive infiltration and destruction of the pancreatic islets and subsequent diabetes. When we reconstituted lethally irradiated, lymphocyte‐deficient B6.g7 (I‐Ag7+) Rag–/– mice with BDC2·5NOD haematopoietic stem and progenitor cells (HSPC; ckit+LinSca‐1hi), the recipients exhibited hyperglycaemia and succumbed to diabetes. Surprisingly, lymphocyte‐sufficient B6.g7 mice reconstituted with BDC2·5NOD HSPCs were protected from diabetes. In this study, we investigated the factors responsible for attenuation of diabetes in the B6.g7 recipients. Analysis of chimerism in the B6.g7 recipients showed that, although B cells and myeloid cells were 98% donor‐derived, the CD4+ T cell compartment contained ~50% host‐derived cells. These host‐derived CD4+ T cells were enriched for conventional regulatory T cells (Tregs) (CD25+forkhead box protein 3 (FoxP3)+] and also for host‐ derived CD4+CD25FoxP3 T cells that express markers of suppressive function, CD73, FR4 and CD39. Although negative selection did not eliminate donor‐derived CD4+ T cells in the B6.g7 recipients, these cells were functionally suppressed. Thus, host‐derived CD4+ T cells that emerge in mice following myeloablation exhibit a regulatory phenoytpe and probably attenuate autoimmune diabetes. These cells may provide new therapeutic strategies to suppress autoimmunity.  相似文献   

3.
It has been established that a total of 250 μg of monoclonal anti‐mouse CD3 F(ab′)2 fragments, administered daily (50 μg per dose), induces remission of diabetes in the non‐obese diabetic (NOD) mouse model of autoimmune diabetes by preventing β cells from undergoing further autoimmune attack. We evaluated lower‐dose regimens of monoclonal anti‐CD3 F(ab′)2 in diabetic NOD mice for their efficacy and associated pharmacodynamic (PD) effects, including CD3–T‐cell receptor (TCR) complex modulation, complete blood counts and proportions of circulating CD4+, CD8+ and CD4+ FoxP3+ T cells. Four doses of 2 μg (total dose 8 μg) induced 53% remission of diabetes, similarly to the 250 μg dose regimen, whereas four doses of 1 μg induced only 16% remission. While the 250 μg dose regimen produced nearly complete and sustained modulation of the CD3 –TCR complex, lower doses, spaced 3 days apart, which induced similar remission rates, elicited patterns of transient and partial modulation. In treated mice, the proportions of circulating CD4+ and CD8+ T cells decreased, whereas the proportions of CD4+ FoxP3+ T cells increased; these effects were transient. Mice with greater residual β‐cell function, estimated using blood glucose and C‐peptide levels at the initiation of treatment, were more likely to enter remission than mice with more advanced disease. Thus, lower doses of monoclonal anti‐CD3 that produced only partial and transient modulation of the CD3–TCR complex induced remission rates comparable to higher doses of monoclonal anti‐CD3. Accordingly, in a clinical setting, lower‐dose regimens may be efficacious and may also improve the safety profile of therapy with monoclonal anti‐CD3, potentially including reductions in cytokine release‐related syndromes and maintenance of pathogen‐specific immunosurveillance during treatment.  相似文献   

4.
Patients with diabetes mellitus are more susceptible to tuberculosis (TB), and the clinical conditions of diabetic TB patients deteriorate faster than non‐diabetic TB patients, but the immunological basis for this phenomenon is not understood clearly. Given the role of cell‐mediated immunity (CMI) in providing protection against TB, we investigated whether CMI responses in diabetic TB patients are compromised. Peripheral blood mononuclear cells (PBMC) obtained from diabetic TB patients, non‐diabetic TB patients and Mycobacterium bovis bacilli Calmette–Guérin (BCG)‐vaccinated healthy subjects were cultured in the presence of complex mycobacterial antigens and pools of M. tuberculosis regions of difference (RD)1, RD4, RD6 and RD10 peptides. The PBMC were assessed for antigen‐induced cell proliferation and secretion of T helper 1 (Th1) [interferon (IFN)‐γ, interleukin (IL)‐2, tumour necrosis factor (TNF)‐β], and Th2 (IL‐4, IL‐5, IL‐10) cytokines as CMI parameters. All the complex mycobacterial antigens and RD1pool stimulated strong proliferation of PBMC of all groups, except moderate responses to RD1pool in healthy subjects. In response to complex mycobacterial antigens, both IFN‐γ and TNF‐β were secreted by PBMC of all groups whereas diabetic TB patients secreted IL‐10 with concentrations higher than the other two groups. Furthermore, in response to RD peptides, IFN‐γ and IL‐10 were secreted by PBMC of diabetic TB patients only. The analyses of data in relation to relative cytokine concentrations showed that diabetic TB patients had lower Th1 : Th2 cytokines ratios, and a higher Th2 bias. The results demonstrate a shift towards Th2 bias in diabetic TB patients which may explain, at least in part, a faster deterioration in their clinical conditions.  相似文献   

5.
TCRs of invariant NKT (iNKT) cells bind α‐galactosylceramide (αGC) loaded CD1d in a highly conserved fashion and show a characteristic TCR gene usage: An “invariant” α chain with a canonical AV14/AJ18 rearrangement in mice (AV24/AJ18 in humans) is paired with β chains containing characteristic Vβ segments. In the rat, a multimember AV14 gene family increases the variability within this system. This study characterizes CD1d binding of rat AV14 gene segments in TCR transductants as well as CD1d binding and iNKT TCR expression of expanded polyclonal F344 rat iNKT populations. It defines an important role of position 93 at the V‐J transition for TCR avidity and species cross‐reactivity of the rat iNKT TCR. Furthermore, for the first time we identified variability within the fourth hypervariable loop (HV4) of the α chain as a modulator of CD1d:αGC binding in rat and mouse. Additionally, we confirmed the importance of the CDR2β for CD1d:αGC binding, but also show that the CDR3β may even have opposite effects on binding depending on the pairing α chain. Altogether, we characterized naturally occurring sources of variability for the iNKT TCR and speculate that they rather level than increase the largely germline encoded differences of iNKT TCR ligand avidity.  相似文献   

6.
The dynamics of CMV pp65 and IE‐1‐specific IFNγ‐producing CD8+ (IFNγ CD8+) and CD4+ (IFNγ CD4+) T cells and CMV DNAemia were assessed in 19 pre‐emptively treated episodes of active CMV infection. Peripheral counts of IFNγ CD8+ and IFNγ CD4+ T cells inversely correlated with CMV DNAemia levels (P = <0.001 and P = 0.003, respectively). A threshold value of 1.3 cells/µl predicting CMV DNAemia clearance was established for IFNγ CD8+ T cells (PPV, 100%; NPV, 93%) and for IFNγ CD4+ T cells (PPV, 100%; NPV, 75%). Undetectable T‐cell responses were usually observed at the time of initiation of pre‐emptive therapy. Either a rapid (within 7 days) or a delayed (median 31 days) expansion of both T‐cell populations concomitant with CMV DNAemia clearance was observed in 5 and 8 episodes, respectively. An inconsistent or a lack of expansion of both T‐cell subsets was related to a persistent CMV DNAemia. Robust and maintained CMV‐specific T‐cell responses after CMV DNAemia clearance and cessation of antiviral therapy were associated with a null incidence of relapsing infections at least during the following month. Data obtained in the present study may be helpful in the design of therapeutic strategies for the management of active CMV infections in the allo‐SCT recipient. J. Med. Virol. 82: 1208–1215, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号