首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adoptive cell immunotherapy for human diseases, including the use of T cells modified to express an anti‐tumour T‐cell receptor (TCR) or chimeric antigen receptor, is showing promise as an effective treatment modality. Further advances would be accelerated by the availability of a mouse model that would permit human T‐cell engineering protocols and proposed genetic modifications to be evaluated in vivo. NOD‐scid IL2rγnull (NSG) mice accept the engraftment of mature human T cells; however, long‐term evaluation of transferred cells has been hampered by the xenogeneic graft‐versus‐host disease (GVHD) that occurs soon after cell transfer. We modified human primary CD4+ T cells by lentiviral transduction to express a human TCR that recognizes a pancreatic beta cell‐derived peptide in the context of HLA‐DR4. The TCR‐transduced cells were transferred to NSG mice engineered to express HLA‐DR4 and to be deficient for murine class II MHC molecules. CD4+ T‐cell‐depleted peripheral blood mononuclear cells were also transferred to facilitate engraftment. The transduced cells exhibited long‐term survival (up to 3 months post‐transfer) and lethal GVHD was not observed. This favourable outcome was dependent upon the pre‐transfer T‐cell transduction and culture conditions, which influenced both the kinetics of engraftment and the development of GVHD. This approach should now permit human T‐cell transduction protocols and genetic modifications to be evaluated in vivo, and it should also facilitate the development of human disease models that incorporate human T cells.  相似文献   

2.
NOD/LtSzscid/IL‐2Rγ?/? (NSG) mice have advantages in establishing humanized mouse models. However, transferring human PBMCs into these mice often causes lethal GVH disease. In this study, we discovered an improved method for the engraftment of normal or pathological human PBMCs into NSG mice and examined the subsequent induction of specific immune responses. We sequentially transferred human CD4+ memory T (Tm) and B cells obtained from PBMCs of healthy adults or patients with autoimmune diseases into NSG mice. Removing naïve CD4+ T cells from the transferred PBMCs allowed successful engraftment without lethal GVH disease. The transferred Tm cells were found to reside mainly in the spleen and the lymphoid nodules, where they expressed MHC class II molecules and produced cytokines, including IL‐21. Surprisingly, the transferred B cells were also well maintained in the lymphoid organs, underwent de novo class‐switch recombination, and secreted all isotypes of human Igs at significant levels. Moreover, transferring patient‐derived Tm and B cells resulted in sustained production of IgM‐rheumatoid factor and antiaminoacyl transfer RNA synthetase Abs in these mice. These results suggest that transfer of Tm and B cells derived from human PBMCs into NSG mice could be a useful method for the study of human autoimmune mechanisms.  相似文献   

3.
《Immunology》2017,151(1):43-55
Hepatitis B virus surface antigen (HBsAg) carriers are highly susceptible to liver injury triggered by environmental biochemical stimulation. Previously, we have reported an inverse correlation between γδ T cells and liver damage in patients with hepatitis B virus (HBV). However, whether γδ T cells play a role in regulating the hypersensitivity of HBsAg carriers to biochemical stimulation‐induced hepatitis is unknown. In this study, using HBV transgenic (HBs‐Tg) and HBs‐Tg T‐cell receptor‐δ‐deficient (TCR‐δ−/−) mice, we found that mice genetically deficient in γδ T cells exhibited more severe liver damage upon Concanavalin A (Con A) treatment, as indicated by substantially higher serum alanine aminotransferase levels, further elevated interferon‐γ (IFN‐γ) levels and more extensive necrosis. γδ T‐cell deficiency resulted in elevated IFN‐γ in CD4+ T cells but not in natural killer or natural killer T cells. The depletion of CD4+ T cells and neutralization of IFN‐γ reduced liver damage in HBs‐Tg and HBs‐Tg‐TCR‐δ−/− mice to a similar extent. Further investigation revealed that HBs‐Tg mice showed an enhanced interleukin‐17 (IL‐17) signature. The administration of exogenous IL‐23 enhanced IL‐17A production from Vγ4 γδ T cells and ameliorated liver damage in HBs‐Tg mice, but not in HBs‐Tg‐TCR‐δ−/− mice. In summary, our results demonstrated that γδ T cells played a protective role in restraining Con A‐induced hepatitis by inhibiting IFN‐γ production from CD4+ T cells and are indispensable for IL‐23‐mediated protection against Con A‐induced hepatitis in HBs‐Tg mice. These results provided a potential therapeutic approach for treating the hypersensitivity of HBV carriers to biochemical stimulation‐induced liver damage.  相似文献   

4.
Haematopoietic humanization of mice is used frequently to study the human immune system and its reaction upon experimental intervention. Immunocompromised non‐obese diabetic (NOD)‐Rag1–/– mice, additionally deficient for the common gamma chain of cytokine receptors (γc) (NOD‐Rag1–/– γc–/– mice), lack B, T and natural killer (NK) cells and allow for efficient human peripheral mononuclear cell (PBMC) engraftment. However, a major experimental drawback for studies using these mice is the rapid onset of graft‐versus‐host disease (GVHD). In order to elucidate the contribution of the xenogenic murine major histocompatibility complex (MHC) class II in this context, we generated immunodeficient mice expressing human MHC class II [human leucocyte antigen (HLA)‐DQ8] on a mouse class II‐deficient background (Aβ–/–). We studied repopulation and onset of GVHD in these mouse strains following transplantation of DQ8 haplotype‐matched human PBMCs. The presence of HLA class II promoted the repopulation rates significantly in these mice. Virtually all the engrafted cells were CD3+ T cells. The presence of HLA class II did not advance B cell engraftment, such that humoral immune responses were undetectable. However, the overall survival of DQ8‐expressing mice was prolonged significantly compared to mice expressing mouse MHC class II molecules, and correlated with an increased time span until onset of GVHD. Our data thus demonstrate that this new mouse strain is useful to study GVHD, and the prolonged animal survival and engraftment rates make it superior for experimental intervention following PBMC engraftment.  相似文献   

5.
More than a quarter of a century of research has established chronic immune activation and dysfunctional T cells as central features of chronic HIV infection and subsequent immunodeficiency. Consequently, the search for a new immunomodulatory therapy that could reduce immune activation and improve T‐cell function has been increased. However, the lack of small animal models for in vivo HIV study has hampered progress. In the current study, we have investigated a model of cord blood haematopoietic progenitor cells (CB‐HPCs) ‐transplanted humanized NOD/LtsZ‐scidIL‐2Rγnull mice in which progression of HIV infection is associated with widespread chronic immune activation and inflammation. Indeed, HIV infection in humanized NSG mice caused up‐regulation of several T‐cell immune activation markers such as CD38, HLA‐DR, CD69 and co‐receptor CCR5. T‐cell exhaustion markers PD‐1 and CTLA‐4 were found to be significantly up‐regulated on T cells. Moreover, increased plasmatic levels of lipopolysaccharide, sCD14 and interleukin‐10 were also observed in infected mice. Treatment with minocycline resulted in a significant decrease of expression of cellular and plasma immune activation markers, inhibition of HIV replication and improved T‐cell counts in HIV‐infected humanized NSG mice. The study demonstrates that minocycline could be an effective, low‐cost adjunctive treatment to regulate chronic immune activation and replication of HIV.  相似文献   

6.
Schistosoma japonicum infection can induce granulomatous inflammation and cause tissue damage in the mouse liver. The cytokine secretion profile of T helper (Th) cells depends on both the nature of the activating stimulus and the local microenvironment (e.g. cytokines and other soluble factors). In the present study, we found an accumulation of large numbers of IFN‐γ+ IL‐4+ CD4+ T cells in mouse livers. This IFN‐γ+ IL‐4+ cell population increased from 0·68 ± 0·57% in uninfected mice to 7·05 ± 3·0% by week 4 following infection and to 9·6 ± 5·28% by week 6, before decreasing to 6·3 ± 5·9% by week 8 in CD4 T cells. Moreover, IFN‐γ+ IL‐4+ Th cells were also found in mouse spleen and mesenteric lymph nodes 6 weeks after infection. The majority of the IFN‐γ+ IL‐4+ Th cells were thought to be related to a state of immune activation, and some were memory T cells. Moreover, we found that these S. japonicum infection‐induced IFN‐γ+ IL‐4+ cells could express interleukin‐2 (IL‐2), IL‐9, IL‐17 and high IL‐10 levels at 6 weeks after S. japonicum infection. Taken together, our data suggest the existence of a population of IFN‐γ+ IL‐4+ plasticity effector/memory Th cells following S. japonicum infection in C57BL/6 mice.  相似文献   

7.
We showed recently that M3 muscarinic acetylcholine receptor (M3R)‐reactive CD3+ T cells play a pathogenic role in the development of murine autoimmune sialadenitis (MIS), which mimics Sjögren's syndrome (SS). The aim of this study was to determine the effectiveness and mechanism of action of retinoic acid‐related orphan receptor‐gamma t (RORγt) antagonist (A213) in MIS. Splenocytes from M3R knockout (M3R–/–) mice immunized with murine M3R peptide mixture were inoculated into recombination‐activating gene 1 knockout (Rag‐1–/–) mice (M3R–/–→Rag‐1–/–) with MIS. Immunized M3R–/– mice (pretransfer treatment) and M3R–/–→Rag‐1–/– mice (post‐transfer treatment) were treated with A213 every 3 days. Salivary volume, severity of sialadenitis and cytokine production from M3R peptide‐stimulated splenocytes and lymph node cells were examined. Effects of A213 on cytokine production were analysed by enzyme‐linked immunosorbent assay (ELISA) and on T helper type 1 (Th1), Th17 and Th2 differentiation from CD4+ T cells by flow cytometry. Pretransfer A213 treatment maintained salivary volume, improved MIS and reduced interferon (IFN)‐γ and interleukin (IL)‐17 production significantly compared with phosphate‐buffered saline (PBS) (P < 0·05). These suppressive effects involved CD4+ T cells rather than CD11c+ cells. Post‐transfer treatment with A213 increased salivary volume (P < 0·05), suppressed MIS (P < 0·005) and reduced IFN‐γ and IL‐17 production (P < 0·05). In vitro, A213 suppressed IFN‐γ and IL‐17 production from M3R‐stimulated splenocytes and CD4+ T cells of immunized M3R–/– mice (P < 0·05). In contrast with M3R specific responses, A213 suppressed only IL‐17 production from Th17 differentiated CD4+ T cells without any effect on Th1 and Th2 differentiation in vitro. Our findings suggested that RORγt antagonism is potentially suitable treatment strategy for SS‐like sialadenitis through suppression of IL‐17 and IFN‐γ production by M3R‐specific T cells.  相似文献   

8.
Interstitial pneumonia (IP) is a chronic progressive interstitial lung disease associated with poor prognosis and high mortality. However, the pathogenesis of IP remains to be elucidated. The aim of this study was to clarify the role of pulmonary γδT cells in IP. In wild‐type (WT) mice exposed to bleomycin, pulmonary γδT cells were expanded and produced large amounts of interferon (IFN)‐γ and interleukin (IL)‐17A. Histological and biochemical analyses showed that bleomycin‐induced IP was more severe in T cell receptor (TCR‐δ‐deficient (TCRδ–/–) mice than WT mice. In TCRδ–/– mice, pulmonary IL‐17A+CD4+ Τ cells expanded at days 7 and 14 after bleomycin exposure. In TCRδ–/– mice infused with γδT cells from WT mice, the number of pulmonary IL‐17A+ CD4+ T cells was lower than in TCRδ–/– mice. The examination of IL‐17A–/– TCRδ–/– mice indicated that γδT cells suppressed pulmonary fibrosis through the suppression of IL‐17A+CD4+ T cells. The differentiation of T helper (Th)17 cells was determined in vitro, and CD4+ cells isolated from TCRδ–/– mice showed normal differentiation of Th17 cells compared with WT mice. Th17 cell differentiation was suppressed in the presence of IFN‐γ producing γδT cells in vitro. Pulmonary fibrosis was attenuated by IFN‐γ‐producing γδT cells through the suppression of pulmonary IL‐17A+CD4+ T cells. These results suggested that pulmonary γδT cells seem to play a regulatory role in the development of bleomycin‐induced IP mouse model via the suppression of IL‐17A production.  相似文献   

9.
10.
Microbial infections are a major cause of infant mortality worldwide because of impaired immune defences in this population. The nature of this work was to further understand the mechanistic limitations of the neonatal and infant immune response. Interleukin‐27 (IL‐27) is a heterodimeric cytokine of the IL‐12 family that is produced primarily by antigen‐presenting cells and is immunosuppressive toward a variety of immune cell types. We show that IL‐27 gene expression is elevated in cord blood‐derived macrophages relative to macrophages originating from healthy adults. We also evaluated the duration over which elevated IL‐27 gene expression may impact immune responses in mice. Age‐dependent analysis of IL‐27 gene expression indicated that levels of IL‐27 remained significantly elevated throughout infancy and then declined in adult mice. Flow cytometric analysis of intracellular cytokine‐stained splenocytes further confirmed these results. Interleukin‐27 may be induced during pregnancy to contribute to the immunosuppressive environment at the fetal–maternal interface because we demonstrate dose‐responsive gene expression to progesterone in macrophages. Neutralization of IL‐27 in neonatal macrophages improved the ability of these cells to limit bacterial replication. Moreover, neutralization of IL‐27 during incubation with the Mycobacterium bovis bacillus Calmette–Guérin vaccine augmented the level of interferon‐γ elicited from allogeneic CD4+ T lymphocytes. This suggests that blocking IL‐27 during vaccination and infection may improve immune responses in newborn and infant populations. Furthermore, mice will be a suitable model system to further address these possibilities.  相似文献   

11.
Interleukin (IL)‐12 family cytokines play critical roles in autoimmune diseases. Our previous study has shown that IL‐23p19 and Epstein–Barr virus‐induced 3 (Ebi3) form a new IL‐12 family heterodimer, IL‐23p19/Ebi3, termed IL‐39, and knock‐down of p19 or Ebi3 reduced diseases by transferred GL7+ B cells in lupus‐prone mice. In the present study, we explore further the possible effect of IL‐39 on murine lupus. We found that IL‐39 in vitro and in vivo induces differentiation and/or expansion of neutrophils. GL7+ B cells up‐regulated neutrophils by secreting IL‐39, whereas IL‐39‐deficient GL7+ B cells lost the capacity to up‐regulate neutrophils in lupus‐prone mice and homozygous CD19cre (CD19‐deficient) mice. Finally, we found that IL‐39‐induced neutrophils had a positive feedback on IL‐39 expression in activated B cells by secreting B cell activation factor (BAFF). Taken together, our results suggest that IL‐39 induces differentiation and/or expansion of neutrophils in lupus‐prone mice.  相似文献   

12.
13.
Cervical thymus mimics the thoracic thymus in supporting T‐cell development and exists in a subset of mice and humans. Importantly, it remains unknown whether the cervical thymus can generate T cells that are self‐tolerant in the complete absence of signals from the thoracic thymus. Using a fetal liver reconstitution model in thoracic thymectomized RAG?/? mice, we found that T cells could be generated without contribution from the thoracic thymus. However, these mice had decreased T cells, increased proportions of effector memory T cells and Treg phenotype cells, increased serum IgG1/2b, and increased frequency of T cells expressing IFN‐γ, IL‐17 or IL‐10. Half of the mice that received a thoracic thymectomy and fetal liver cells, unlike sham surgery controls, developed substantial morbidity with age. Disease was associated with lymphopenia‐driven activation rather than inherent defects in the cervical thymus, as both thoracic and cervical thymocytes could generate disease in lymphopenic recipients. Administration of the homeostatic cytokine IL‐7 caused a rapid, transient increase in T‐cell numbers and reduced the time to disease onset. Together the data suggests that the cervical thymus can function in the complete absence of the thoracic thymus; however, the T cells generated do not establish homeostasis.  相似文献   

14.
15.
Whether interleukin (IL)‐17 promotes a diabetogenic response remains unclear. Here we examined the effects of neutralization of IL‐17 on the progress of adoptively transferred diabetes. IL‐17‐producing cells in non‐obese diabetic (NOD) mice were identified and their role in the pathogenesis of diabetes examined using transfer and co‐transfer assays. Unexpectedly, we found that in vivo neutralization of IL‐17 did not protect NOD–severe combined immunodeficiency (SCID) mice against diabetes transferred by diabetic splenocytes. In NOD mice, γδ+ T cells were dominated by IL‐17‐producing cells and were found to be the major source of IL‐17. Interestingly, these IL‐17‐producing γδ T cells did not exacerbate diabetes in an adoptive transfer model, but had a regulatory effect, protecting NOD mice from diabetes by up‐regulating transforming growth factor (TGF)‐β production. Our data suggest that the presence of IL‐17 did not increase the chance of the development of diabetes; γδ T cells protected NOD mice from diabetes in a TGF‐β‐dependent manner, irrespective of their role as major IL‐17 producers.  相似文献   

16.
Although a major function of B cells is to mediate humoral immunity by producing antigen‐specific antibodies, a specific subset of B cells is important for immune suppression, which is mainly mediated by the secretion of the anti‐inflammatory cytokine interleukin‐10 (IL‐10). However, the mechanism by which IL‐10 is induced in B cells has not been fully elucidated. Here, we report that IκBNS, an inducible nuclear IκB protein, is important for Toll‐like receptor (TLR)‐mediated IL‐10 production in B cells. Studies using IκBNS knockout mice revealed that the number of IL‐10‐producing B cells is reduced in IκBNS?/? spleens and that the TLR‐mediated induction of cytoplasmic IL‐10‐positive cells and IL‐10 secretion in B cells are impaired in the absence of IκBNS. The impairment of IL‐10 production by a lack of IκBNS was not observed in TLR‐triggered macrophages or T‐cell‐receptor‐stimulated CD4+ CD25+ T cells. In addition, IκBNS‐deficient B cells showed reduced expression of Prdm1 and Irf4 and failed to generate IL‐10+ CD138+ plasmablasts. These results suggest that IκBNS is selectively required for IL‐10 production in B cells responding to TLR signals, so defining an additional role for IκBNS in the control of the B‐cell‐mediated immune responses.  相似文献   

17.
Recent studies have revealed IL‐33 as a key factor in promoting antiviral T‐cell responses. However, it is less clear as to how IL‐33 regulates innate immunity. In this study, we infected wild‐type (WT) and IL‐33?/? mice with lymphocytic choriomeningitis virus and demonstrated an essential role of infection‐induced IL‐33 expression for robust innate IFN‐γ production in the liver. We first show that IL‐33 deficiency resulted in a marked reduction in the number of IFN‐γ+ γδ T and NK cells, but an increase in that of IL‐17+ γδ T cells at 16 h postinfection. Recombinant IL‐33 (rIL‐33) treatment could reverse such deficiency via increasing IFN‐γ‐producing γδ T and NK cells, and inhibiting IL‐17+ γδ T cells. We also found that rIL‐33‐induced type 2 innate lymphoid cells were not involved in T‐cell responses and liver injury, since the adoptive transfer of type 2 innate lymphoid cells neither affected the IFN‐γ and TNF‐α production in T cells, nor liver transferase levels in lymphocytic choriomeningitis virus infected mice. Interestingly, we found that while IL‐33 was not required for costimulatory molecule expression, it was critical for DC proliferation and cytokine production. Together, this study highlights an essential role of IL‐33 in regulating innate IFN‐γ‐production and DC function during viral hepatitis.  相似文献   

18.
Inflammatory bowel diseases (IBD) are key risk factors for the development of colorectal cancer, but the mechanisms that link intestinal inflammation with carcinogenesis are insufficiently understood. Card9 is a myeloid cell‐specific signaling protein that regulates inflammatory responses downstream of various pattern recognition receptors and which cooperates with the inflammasomes for IL‐1β production. Because polymorphisms in Card9 were recurrently associated with human IBD, we investigated the function of Card9 in a colitis‐associated cancer (CAC) model. Card9?/? mice develop smaller, less proliferative and less dysplastic tumors compared to their littermates and in the regenerating mucosa we detected dramatically impaired IL‐1β generation and defective IL‐1β controlled IL‐22 production from group 3 innate lymphoid cells. Consistent with the key role of immune‐derived IL‐22 in activating STAT3 signaling during normal and pathological intestinal epithelial cell (IEC) proliferation, Card9?/? mice also exhibit impaired tumor cell intrinsic STAT3 activation. Our results imply a Card9‐controlled, ILC3‐mediated mechanism regulating healthy and malignant IEC proliferation and demonstrates a role of Card9‐mediated innate immunity in inflammation‐associated carcinogenesis.  相似文献   

19.
IL‐7 is a major regulator of lymphocyte homeostasis; however, little is known about the mechanisms that regulate IL‐7 production. To study Il7 gene regulation in vivo, we generated a novel IL‐7‐reporter mouse, which allows the non‐invasive quantification of Il7 gene activity in live mice and, additionally, the simultaneous activation/inactivation of target genes in IL‐7‐producing cells. With these IL‐7‐reporter mice, we identify thymus, skin and intestine as major sources of IL‐7 in vivo. Importantly, we show that IFN‐γ and the commensal microflora promote steady‐state IL‐7 production in the intestine. Furthermore, we demonstrate that the blockade of IFN‐γ signaling in intestinal epithelial cells strongly reduces their IFN‐γ‐driven IL‐7 production. In summary, our data suggest a feedback loop in which commensal bacteria drive IFN‐γ production by lymphocytes, which in turn promotes epithelial cell IL‐7 production and the survival of IL‐7‐dependent lymphocytes.  相似文献   

20.
Regulatory CD4+ T cells are important for the homeostasis of immune cells, and their absence correlates with autoimmune disorders. However, how the immune system regulates Treg homeostasis remains unclear. We found that IFN‐γ‐deficient‐mice had more forkhead box P3 (FOXP3+) cells than WT mice in all secondary lymphoid organs except the thymus. However, T‐bet‐ or IL‐4Rα‐deficient mice did not show a similar increase. In vitro differentiation studies showed that conversion of naïve T cells into FOXP3+ cells (neo‐generated inducible Treg (iTreg)) by TGF‐β was significantly inhibited by IFN‐γ in a STAT‐1‐dependent manner. Moreover, an in vivo adoptive transfer study showed that inhibition of FOXP3+ iTreg generation by IFN‐γ was a T‐cell autocrine effect. This inhibitory effect of IFN‐γ on iTreg generation was significantly abrogated after N‐acetyl‐L ‐cysteine treatment both in vitro and in vivo, indicating that IFN‐γ regulation of iTreg generation is dependent on ROS‐mediated apoptosis. Therefore, our results suggest that autocrine IFN‐γ can negatively regulate the neo‐generation of FOXP3+ iTreg through ROS‐mediated apoptosis in the periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号