首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity contributes to systemic inflammation, which is associated with the varied pathogenesis of neurodegenerative diseases. Growing evidence has demonstrated that endurance exercise (EE) mitigates obesity‐induced brain inflammation. However, exercise‐mediated anti‐inflammatory mechanisms remain largely unknown. We investigated how treadmill exercise (TE) reverses obesity‐induced brain inflammation, mainly focusing on toll‐like receptor‐4 (TLR‐4)‐dependent neuroinflammation in the obese rat brain after 20 weeks of a high‐fat diet (HFD). TE in HFD‐fed rats resulted in a significant lowering in the homeostasis model assessment of insulin resistance index, the area under the curve for glucose and abdominal visceral fat, and also improved working memory ability in a passive avoidance task relative to sedentary behaviour in HFD‐fed rats, with the exception of body weight. More importantly, TE revoked the increase in HFD‐induced proinflammatory cytokines (tumour necrosis factor α and interleukin‐1β) and cyclooxygenase‐2, which is in parallel with a reduction in TLR‐4 and its downstream proteins, myeloid differentiation 88 and tumour necrosis factor receptor associated factor 6, and phosphorylation of transforming growth factor β‐activated kinase 1, IkBα and nuclear factor‐κB. Moreover, TE reduced an indicator of microglia activation, ionised calcium‐binding adapter molecule‐1, and also decreased glial fibrillary acidic protein, an indicator of gliosis formed by activated astrocytes in the cerebral cortex and the hippocampal dentate gyrus, compared to HFD‐fed sedentary rats. Finally, EE up‐regulated the expression of anti‐apoptotic protein, Bcl‐2, and suppressed the expression of pro‐apoptotic protein, Bax, in the hippocampus compared to HFD‐fed sedentary rats. Taken together, these data suggest that TE may exert neuroprotective effects as a result of mitigating the production of proinflammatory cytokines by inhibiting the TLR4 signalling pathways. The results of the present study suggest that the unique combination of the beneficial effects of TE on the restoration of the blood profile and the anti‐inflammatory and anti‐apoptotic effects on cognitive function should inspire further investigations into its therapeutic potential for metabolic disorders and neurodegenerative diseases.  相似文献   

2.
A major obstacle to presymptomatic diagnosis and disease-modifying therapy for Alzheimer's disease (AD) is inadequate understanding of molecular mechanisms of AD pathogenesis. For example, impaired brain insulin signaling is an AD hallmark, but whether and how it might contribute to the synaptic dysfunction and neuron death that underlie memory and cognitive impairment has been mysterious. Neuron death in AD is often caused by cell cycle reentry (CCR) mediated by amyloid-β oligomers (AβOs) and tau, the precursors of plaques and tangles. We now report that CCR results from AβO-induced activation of the protein kinase complex, mTORC1, at the plasma membrane and mTORC1-dependent tau phosphorylation, and that CCR can be prevented by insulin-stimulated activation of lysosomal mTORC1. AβOs were also shown previously to reduce neuronal insulin signaling. Our data therefore indicate that the decreased insulin signaling provoked by AβOs unleashes their toxic potential to cause neuronal CCR, and by extension, neuron death.  相似文献   

3.
Increased consumption of high‐fat diet (HFD) leads to obesity and adverse neurocognitive outcomes. Childhood and adolescence are important periods of brain maturation shaping cognitive function. These periods could consequently be particularly sensitive to the detrimental effects of HFD intake. In mice, juvenile and adulthood consumption of HFD induce similar morphometric and metabolic changes. However, only juvenile exposure to HFD abolishes relational memory flexibility, assessed after initial radial‐maze concurrent spatial discrimination learning, and decreases neurogenesis. Our results identify a critical period of development covering adolescence with higher sensitivity to HFD‐induced hippocampal dysfunction at both behavioral and cellular levels. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Neuroprotective effect of astaxanthin-s-allyl cysteine diester (AST-SAC) against high glucose (HG)-induced oxidative stress in in vitro and cognitive decline under diabetes conditions in in vivo has been explored. Pretreatment of AST-SAC (5, 10 and 15 μM) dose-dependently preserved the neuronal cells (SH-SY5Y) viability against HG toxicity through i) decreasing oxidative stress (decreasing reactive oxygen species generation and increasing endogenous antioxidants level); ii) protecting mitochondrial function [oxidative phosphorylation (OXPHOS) complexes activity and mitochondrial membrane potential (MMP)]; and iii) decreasing p53 level thereby subsequently decreasing the level of apoptotic marker proteins. Male Spraque-Dawley rats were orally administered AST-SAC (1 mg/kg/day) for 45 days in streptozotocin-induced diabetes mellitus (DM) rats. AST-SAC administration prevented the loss of spatial memory in DM rats as determined using the novel object location test. AST-SAC administration alleviated the DM-induced injury in brain such as increased cholinesterases activity, elevated oxidative stress and mitochondrial dysfunction. Altogether, the results from the present study demonstrated that AST-SAC averted the neuronal apoptosis and preserved the cognitive function against HG toxicity under DM conditions.  相似文献   

5.
The phosphodiesterase‐3B (PDE3B)‐cAMP pathway plays an important role in transducing the action of leptin in the hypothalamus. Obesity is usually associated with hyperleptinaemia and resistance to anorectic and body weight‐reducing effects of leptin. To determine whether the hypothalamic PDE3B‐cAMP pathway of leptin signalling is impaired during the development of diet‐induced obesity (DIO), we fed male FVB/N mice a high‐fat diet (HFD: 58% kcal as fat) or low‐fat diet (LFD: 6% kcal as fat) for 4 weeks. HFD fed mice developed DIO in association with hyperphagia, hyperleptinaemia and hyperinsulinaemia. Leptin (i.p.) significantly increased hypothalamic PDE3B activity and phosphorylated (p)‐Akt levels in LFD‐fed but not in HFD‐fed mice. However, basal p‐Akt levels in hypothalamus were increased in DIO mice. Additionally, amongst six‐microdissected brain nuclei examined, leptin selectively decreased cAMP levels in the arcuate nucleus (ARC) of LFD‐fed mice but failed to do so in HFD‐fed mice. We next tested whether both the PBE3B and Akt pathways of leptin signalling remained impaired in DIO mice on the HFD for 12 weeks (long‐term). DIO mice were hyperinsulinaemic and hyperleptinaemic in association with impaired glucose and insulin tolerance. Although, in LFD‐fed mice, leptin significantly increased PDE3B activity and p‐Akt levels in the hypothalamus, it failed to do so in HFD‐fed mice. Also, basal p‐Akt levels in the hypothalamus were increased in DIO mice and leptin had no further effect. Similarly, immunocytochemistry showed that leptin increased the number of p‐Akt‐positive cells in the ARC of LFD‐fed but not in HFD‐fed mice, and there was an increased basal number of p‐Akt positive cells in the ARC of DIO mice. These results suggest that the PDE3B‐cAMP‐ and Akt‐pathways of leptin signalling in the hypothalamus are impaired during the development of DIO. Thus, a defect in the regulation by leptin of the hypothalamic PDE3B‐cAMP pathway and Akt signalling may be one of the mechanisms of central leptin resistance and the development of DIO.  相似文献   

6.
7.
High-fat diet (HFD)-induced obesity is reaching worldwide proportions. In addition to causing obesity, HFDs also induce a variety of health disorders, which includes cognitive decline. Hippocampal function may be particularly vulnerable to the negative consequences of HFD, and it is suspected that ‘primed’ neuroinflammatory processes may mediate this response. To examine the link between diet, hippocampal function and neuroinflammation, male Wistar rats were fed a medium or HFD. Hippocampal memory function was measured using contextual pre-exposure fear conditioning (CPE-FC). Rats fed a HFD demonstrated impaired memory, an effect that was augmented with longer duration of HFD consumption. HFD-induced memory impairments were linked to potentiated levels of interleukin-1 beta (IL-1β) protein in the hippocampus 2 h after the foot-shock that occurs during CPE-FC. Central IL-1 receptor antagonism, with intracisterna magna (ICM) administration of hIL-1RA prior to the foot-shock prevented the diet-induced memory disruption, suggesting a critical role for IL-1β in this phenomenon. Additionally, obese animals whose diet regimen was reversed from HFD back to standard chow recovered memory function and did not demonstrate a foot-shock-induced hippocampal IL-1β increase. Interestingly, dietary reversal neutralized the negative impact of HFD on memory and IL-1β, yet animals maintained physiological evidence of obesity (increased body mass and serum leptin), indicating that dietary components, not body mass, may mediate the negative effects on memory.  相似文献   

8.
Aims: Pioglitazone, known as a peroxisome proliferator‐activated receptor γ (PPARγ) agonist, is used to treat type 2 diabetes mellitus (T2DM). T2DM has been associated with reduced performance on numerous domains of cognitive function. Here, we investigated the effects of pioglitazone on memory impairment in a mouse model with defects in insulin sensitivity and secretion, namely high‐fat diet (HFD) streptozotocin (STZ)‐induced diabetic mice. Methods: ICR mice were fed with HFD for 4 weeks and then injected with a single low dose of STZ followed by continued HFD feeding for an additional 4 weeks. Pioglitazone (18 mg/kg, 9 mg/kg body weight) was orally administered for 6 weeks once daily. Y‐maze test and Morris water maze test (MWM) were employed for testing learning and memory. Serum glucose, serum insulin, serum triglyceride, brain β‐amyloid peptide (Aβ), brain β‐site amyloid precursor protein cleaving enzyme (BACE1), brain nuclear factor κB (NF‐κB), and brain receptor for advanced glycation end products (RAGE) were also tested. Results: The STZ/HFD diabetic mice, characterized by hyperglycemia, hyperlipemia and hypoinsulinemia, performed poorly on Y‐maze and MWM hence reflecting impairment of learning and memory behavior with increases of Aβ40/Aβ42, BACE1, NF‐κB, and RAGE in brain. Treatment of PPARγ agonist, pioglitazone (18 or 9 mg/kg body weight), significantly reversed diabetes‐induced impairment of learning and memory behavior, which is involved in decreases of Aβ40/Aβ42 via inhibition of NF‐κB, BACE1 and RAGE in brain as well as attenuation of hyperglycemia, hyperlipemia, and hypoinsulinemia. Conclusions: It is concluded that PPARγ agonist pioglitazone may be considered as potential pharmacological agents for the management of cognitive dysfunction in T2DM.  相似文献   

9.
The hypothalamus has been identified as a main insulin target tissue for regulating normal body weight and glucose metabolism. Recent observations suggest that c‐Jun‐N‐terminal kinase (JNK)‐signalling plays a crucial role in the development of obesity and insulin resistance because neuronal JNK‐1 ablation in the mouse prevented high‐fat diet‐induced obesity (DIO) and increased energy expenditure, as well as insulin sensitivity. In the present study, we investigated whether central JNK inhibition is associated with sensitisation of hypothalamic insulin signalling in mice fed a high‐fat diet for 3 weeks and in leptin‐deficient mice. We determined whether i.c.v. injection of a pharmacological JNK‐inhibitor (SP600125) improved impaired glucose homeostasis. By immunohistochemistry, we first observed that JNK activity was increased in the arcuate nucleus (ARC) and the ventromedial hypothalamus (VMH) in both mouse models, relative to normoglycaemic controls. This suggests that up‐regulation of JNK in these regions is associated with glucose intolerance and obesity, independent of leptin levels. Acute i.c.v. injection of SP600125 ameliorated glucose tolerance within 30 min in both leptin‐deficient and DIO mice. Given the acute nature of i.c.v. injections, these effects cannot be attributed to changes in food intake or energy balance. In a hypothalamic cell line, and in the ARC and VMH of leptin‐deficient mice, JNK inhibition by SP600125 consistently improved impaired insulin signalling. This was determined by a reduction of phospho‐insulin receptor substrate‐1 [IRS‐1(Ser612)] protein in a hypothalamic cell line and a decline in the number of pIRS‐1(Ser612) immunoreactive cells in the ARC and VMH. Serine 612 phosphorylation of IRS‐1 is assumed to negatively regulate insulin signalling. In leptin‐deficient mice, in both nuclei, central inhibition of JNK increased the number of cells immunoreactive for phospho‐Akt (Ser473) and phospho‐GSK‐3β (Ser9), which are important markers of insulin signalling. Collectively, our data suggest that the acute inhibition of central JNK improves impaired glucose homeostasis and is associated with sensitisation of hypothalamic insulin signalling.  相似文献   

10.
The combined effects of high fat diet (HFD) and chronic stress on the hippocampus-dependent spatial learning and memory were studied in rats using the radial arm water maze (RAWM). Chronic psychosocial stress and/or HFD were simultaneously administered for 3 months to young adult male Wister rats. In the RAWM, rats were subjected to 12 learning trials as well as short-term and long-term memory tests. This procedure was applied on a daily basis until the animal reaches days to criterion (DTC) in the 12th learning trial and in memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Groups were compared based on the number of errors per trial or test as well as on the DTC. Chronic stress, HFD and chronic stress/HFD animal groups showed impaired learning as indicated by committing significantly (P < 0.05) more errors than untreated control group in trials 6 through 9 of day 4. In memory tests, chronic stress, HFD and chronic stress/HFD groups showed significantly impaired performance compared to control group. Additionally, the stress/HFD was the only group that showed significantly impaired performance in memory tests on the 5th training day, suggesting more severe memory impairment in that group. Furthermore, DTC value for above groups indicated that chronic stress or HFD, alone, resulted in a mild impairment of spatial memory, but the combination of chronic stress and HFD resulted in a more severe and long-lasting memory impairment. The data indicated that the combination of stress and HFD produced more deleterious effects on hippocampal cognitive function than either chronic stress or HFD alone.  相似文献   

11.
Statins are potent cholesterol biosynthesis inhibitors that exert protective effects in humans and in experimental models of stroke. The mechanisms involved in these protective actions are not completely understood. This study evaluates whether atorvastatin (ATV) treatment affects the GluN1 and GluN2B subunits of the N‐methyl‐D‐aspartic acid receptor in the somatosensory cerebral cortex at short and long periods following ischemia. Sham and ischemic male Wistar rats received 10 mg/kg of ATV or placebo by gavage every 24 hr for 3 consecutive days. The first dose was administered 6 hr after ischemia–reperfusion or the sham operation. ATV treatment resulted in faster recovery of neurological scores than placebo, prevented the appearance of pyknotic neurons, and restored microtubule‐associated protein 2 and neuronal nuclei staining to control values in the somatosensory cerebral cortex and the hippocampus at 72 hr and 15 days postischemia. Furthermore, ATV prevented spatial learning and memory deficits caused by cerebral ischemia. Cerebral ischemia reduced the number of GluN1/PSD‐95 and GluN2B/PSD‐95 colocalization clusters in cortical pyramidal neurons and reduced the levels of brain‐derived neurotrophic factor (BDNF) in the cerebral cortex. These effects of the ischemic insult were prevented by ATV, which also induced GluN2B/PSD‐95 colocalization in neuronal processes and an association of GluN2B with TrkB. The GluN2B pharmacological inhibitor ifenprodil prevented the increase in BDNF levels and the motor and cognitive function recovery caused by ATV in ischemic rats. These findings indicate that GluN2B is involved in the neuroprotective mechanism elicited by ATV to promote motor and cognitive recovery after focal cerebral ischemia. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Epidemiological studies have pointed at diabetes as a risk factor for Alzheimer's disease (AD) and this has been supported by several studies in animal models of both type 1 and type 2 diabetes. However, side-by-side comparison of the two types of diabetes is limited. We investigated the role of insulin deficiency and insulin resistance in the development of memory impairments and the effect of Exendin-4 (Ex4) treatment in a mouse model of AD. Three–4-month-old female wild type (WT) mice and mice overexpressing human tau and amyloid precursor protein (TAPP) were injected with streptozotocin (STZ) or fed a high-fat diet (HFD). A second study was performed in TAPP-STZ mice treated with Ex4, a long-lasting analog of GLP-1. Plasma and brain were collected at study termination for ELISA, Western blot, and immunohistochemistry analysis. Learning and memory deficits were impaired in TAPP transgenic mice compared with WT mice at the end of the study. Deficits were exaggerated by insulin deficiency in TAPP mice but 12 weeks of insulin resistance did not affect memory performances in either WT or TAPP mice. Levels of phosphorylated tau were increased in the brain of WT-STZ and TAPP-STZ mice but not in the brain of WT or TAPP mice on HFD. In the TAPP-STZ mice, treatment with Ex4 initiated after established cognitive deficits ameliorated learning, but not memory, impairments. This was accompanied by the reduction of amyloid β and phosphorylated tau expression. Theses studies support the role of Ex4 in AD, independently from its actions on diabetes.  相似文献   

13.
Tobacco smoking and high-fat diet (HFD) independently impair short-term memory. E-cigarettes produce e-vapour containing flavourings and nicotine. Here, we investigated whether e-vapour inhalation interacts with HFD to affect short-term memory and neural integrity. Balb/c mice (7 weeks, male) were fed a HFD (43% fat, 20 kJ/g) for 16 weeks. In the last 6 weeks, half of the mice were exposed to tobacco-flavoured e-vapour from nicotine-containing (18 mg/L) or nicotine-free (0 mg/L) e-fluids twice daily. Short-term memory function was measured in week 15. HFD alone did not impair memory function, but increased brain phosphorylated (p)-Tau and astrogliosis marker, while neuron and microglia levels were decreased. E-vapour exposure significantly impaired short-term memory function independent of diet and nicotine. Nicotine free e-vapour induced greater changes compared to the nicotine e-vapour and included, increased systemic cytokines, increased brain p-Tau and decreased postsynaptic density protein (PSD)-95 levels in chow-fed mice, and decreased astrogliosis marker, increased microglia and increased glycogen synthase kinase levels in HFD-fed mice. Increased hippocampal apoptosis was also differentially observed in chow and HFD mice. In conclusion, E-vapour exposure impaired short-term memory independent of diet and nicotine, and was correlated to increased systemic inflammation, reduced PSD-95 level and increased astrogliosis in chow-fed mice, but decreased gliosis and increased microglia in HFD-fed mice, indicating the inflammatory nature of e-vapour leading to short term memory impairment.  相似文献   

14.
Increasing evidence indicates that physical exercise induces adaptations at the cellular, molecular, and systemic levels that positively affect the brain. Insulin plays important functional roles within the brain that are mediated by insulin‐receptor (IR) signaling. In the hippocampus, insulin improves synaptic plasticity, memory formation, and learning via direct modulation of GABAergic and glutamatergic receptors. Separately, physical exercise and central insulin administration exert relevant roles in cognitive function. We here use CF1 mice to investigate (i) the effects of voluntary exercise on hippocampal insulin signaling and memory performance and (ii) whether central insulin administration alters the effects of exercise on hippocampal insulin signaling and memory performance. Adult mice performed 30 days of voluntary exercise on running wheel and afterward both, sedentary and exercised groups, received intracerebroventricular (icv) injection of saline or insulin (0.5–5 mU). Memory performance was assessed using the inhibitory avoidance and water maze tasks. Hippocampal tissue was measured for [U‐14C] glucose oxidation and the immunocontent of insulin receptor/signaling (IR, pTyr, pAktser473). Additionally, the phosphorylation of the glutamate NMDA receptor NR2B subunit and the capacity of glutamate uptake were measured, and immunohistochemistry was used to determine glial reactivity. Exercise significantly increased insulin peripheral sensitivity, spatial learning, and hippocampal IR/pTyrIR/pAktser473 immunocontent. Glucose oxidation, glutamate uptake, and astrocyte number also increased relative to the sedentary group. In both memory tasks, 5 mU icv insulin produced amnesia but only in exercised animals. This amnesia was associated a rapid (15 min) and persistent (24 h) increase in hippocampal pNR2B immunocontent that paralleled the increase in glial reactivity. In conclusion, physical exercise thus increased hippocampal insulin signaling and improved water maze performance. Overstimulation of insulin signaling in exercised animals, however, via icv administration impaired behavioral performance. This effect was likely the result of aberrant phosphorylation of the NR2B subunit. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Cortical dysplasias (CDs) include a spectrum of cerebral lesions resulting from cortical development abnormalities during embryogenesis that lead to cognitive disabilities and epilepsy. The experimental model of CD obtained by means of in utero administration of BCNU (1‐3‐bis‐chloroethyl‐nitrosurea) to pregnant rats on embryonic day 15 mimics the histopathological abnormalities observed in many patients. The aim of this study was to investigate the behavioural, electrophysiological and anatomical profile of BCNU‐treated rats in order to determine whether cortical and hippocampal lesions can directly lead to cognitive dysfunction. The BCNU‐treated rats showed impaired short‐term working memory but intact long‐term aversive memory, whereas their spontaneous motor activity and anxiety‐like response were normal. The histopathological and immunohistochemical analyses, made after behavioural tests, revealed the disrupted integrity of neuronal populations and connecting fibres in hippocampus and prefrontal and entorhinal cortices, which are involved in memory processes. An electrophysiological evaluation of the CA1 region of in vitro hippocampal slices indicated a decrease in the efficiency of excitatory synaptic transmission and impaired paired pulse facilitation, but enhanced long‐term potentiation (LTP) associated with hyperexcitability in BCNU‐treated rats compared with controls. The enhanced LTP, associated with hyperexcitability, may indicate a pathological distortion of long‐term plasticity. These findings suggest that prenatal developmental insults at the time of peak cortical neurogenesis can induce anatomical abnormalities associated with severe impairment of spatial working memory in adult BCNU‐treated rats and may help to clarify the pathophysiological mechanisms of cognitive dysfunction that is often associated with epilepsy in patients with CD.  相似文献   

16.
Increasing evidence suggests that abnormal brain accumulation of amyloid-β(1-42) (Aβ(1-42)) oligomers plays a causal role in Alzheimer's disease (AD), and in particular may cause the cognitive deficits that are the hallmark of AD. In vitro, Aβ(1-42) oligomers impair insulin signaling and suppress neural functioning. We previously showed that endogenous insulin signaling is an obligatory component of normal hippocampal function, and that disrupting this signaling led to a rapid impairment of spatial working memory, while delivery of exogenous insulin to the hippocampus enhanced both memory and metabolism; diet-induced insulin resistance both impaired spatial memory and prevented insulin from increasing metabolism or cognitive function. Hence, we tested the hypothesis that Aβ(1-42) oligomers could acutely impair hippocampal metabolic and cognitive processes in vivo in the rat. Our findings support this hypothesis: Aβ(1-42) oligomers impaired spontaneous alternation behavior while preventing the task-associated dip in hippocampal ECF glucose observed in control animals. In addition, Aβ(1-42) oligomers decreased plasma membrane translocation of the insulin-sensitive glucose transporter 4 (GluT4), and impaired insulin signaling as measured by phosphorylation of Akt. These data show in vivo that Aβ(1-42) oligomers can rapidly impair hippocampal cognitive and metabolic processes, and provide support for the hypothesis that elevated Aβ(1-42) leads to cognitive impairment via interference with hippocampal insulin signaling.  相似文献   

17.
Background and purpose: The study aims to describe the frequency, pattern and determinants of cognitive function in patients with newly diagnosed Parkinson’s disease (PD); to compare patients with impaired cognition to patients with intact cognition; and to compare to matched healthy controls. Methods: Patients were identified in a longitudinal population based study of idiopathic non‐drug induced parkinsonism. Eighty‐eight newly diagnosed patients with PD and no dementia were included during a four year period. The patients and 30 age‐ and sex‐matched healthy control subjects underwent a comprehensive neuropsychological assessment. Results: Patients performed significantly worse than healthy controls in a majority of neuropsychological tests. Test results in attention, psychomotor function, episodic memory (free recall), executive function and category fluency were significantly lower in the patient group. Comparison with normative data revealed that 30% of the patients had deficits in ≥1 cognitive domain (episodic memory, executive function and verbal function). Seventy per cent of the patients had normal performance. Unified Parkinson's Disease Rating Scale (UPDRS) III sub scores; speech, facial expression, rigidity and bradykinesia were significantly higher, and disease duration shorter amongst the cognitively impaired than amongst the cognitively intact patients. Tremor showed no difference. Education level was an independent predictor of dysfunction in patients with ≥2 cognitive domains affected. Conclusion: Cognitive dysfunction is common in untreated patients in early PD, affecting attention, psychomotor function, episodic memory, executive function and category fluency. Education level was an independent predictor of severe cognitive dysfunction.  相似文献   

18.
Hino K  Nishikawa M  Sato E  Inoue M 《Brain research》2005,1053(1-2):77-87
Hypoglycemia sometimes occurs in patients with diabetes mellitus who receive excessive doses of insulin. Severe hypoglycemia has been known to induce mitochondrial swelling followed by neuronal death in the brain. Since L-carnitine effectively preserves mitochondrial function in various cells both in vitro and in vivo, we investigated its effects on the neuronal damage induced by hypoglycemic insult in male Wistar rats. Animals were given L-carnitine-containing water (0.1%) for 1 week and then received insulin (20 U/kg, i.p.) to induce hypoglycemia. Although L-carnitine did not affect the mortality of animals that developed hypoglycemic shock, it improved the cognitive function of the survived animals as assessed by the Morris water-maze test. L-carnitine effectively inhibited the increase in oxidized glutathione and mitochondrial dysfunction in the hippocampus and prevented neuronal injury. L-carnitine also inhibited the decrease in mitochondrial membrane potential and the generation of reactive oxygen species in hippocampal neuronal cells cultured in glucose-deprived medium. These results suggest that L-carnitine prevents hypoglycemia-induced neuronal damage in the hippocampus, presumably by preserving mitochondrial functions. Thus, L-carnitine may have therapeutic potential in patients with hypoglycemia induced by insulin overdose.  相似文献   

19.
Type 1 diabetes is associated with cognitive dysfunction. Cognitive processing, particularly memory acquisition, depends on the regulated enhancement of expression and function of glutamate receptor subtypes in the hippocampus. Impairment of memory was been detected in rodent models of type 1 diabetes induced by streptozotocin (STZ). This study examines the functional properties of synaptic α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptors and the expression of synaptic molecules that regulate glutamatergic synaptic transmission in the hippocampus of STZ‐diabetic rats. The AMPA receptor‐mediated miniature excitatory postsynaptic currents (mEPSCs) and single‐channel properties of synaptosomal AMPA receptors were examined after 4 weeks of diabetes induction. Results show that amplitude and frequency of mEPSCs recorded from CA1 pyramidal neurons were decreased in diabetic rats. In addition, the single‐channel properties of synaptic AMPA receptors from diabetic rat hippocampi were different from those of controls. These impairments in synaptic currents gated by AMPA receptors were accompanied by decreased protein levels of AMPA receptor subunit GluR1, the presynaptic protein synaptophysin, and the postsynaptic anchor protein postsynaptic density protein 95 in the hippocampus of diabetic rats. Neural cell adhesion molecule (NCAM), an extracellular matrix molecule abundantly expressed in the brain, and the polysialic acid (PSA) attached to NCAM were also downregulated in the hippocampus of diabetic rats. Insulin treatment, when initiated at the onset of diabetes induction, reduced these effects. These findings suggest that STZ‐induced diabetes may result in functional deteriorations in glutamatergic synapses in the hippocampus of rats and that these effects may be reduced by insulin treatment. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Although it is well documented that soluble beta amyloid (Aβ) oligomers are critical factors in the pathogenesis of Alzheimer's disease (AD) by causing synaptic dysfunction and neuronal death, the primary mechanisms by which Aβ oligomers trigger neurodegeneration are not entirely understood. We sought to investigate whether toxic small Aβ1–42 oligomers induce changes in plasma membrane potential of cultured neurons and glial cells in rat cerebellar granule cell cultures leading to neuronal death and whether these effects are sensitive to the N‐methyl‐D‐aspartate receptor (NMDA‐R) antagonist MK801. We found that small Aβ1–42 oligomers induced rapid, protracted membrane depolarization of both neurons and microglia, whereas there was no change in membrane potential of astrocytes. MK801 did not modulate Aβ‐induced neuronal depolarization. In contrast, Aβ1?42 oligomer‐induced decrease in plasma membrane potential of microglia was prevented by MK801. Small Aβ1–42 oligomers significantly elevated extracellular glutamate and caused neuronal necrosis, and both were prevented by MK801. Also, small Aβ1–42 oligomers decreased resistance of isolated brain mitochondria to calcium‐induced opening of mitochondrial permeability transition pore. In conclusion, the results suggest that the primary effect of toxic small Aβ oligomers on neurons is rapid, NMDA‐R‐independent plasma membrane depolarization, which leads to neuronal death. Aβ oligomers‐induced depolarization of microglial cells is NMDA‐R dependent. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号