首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pelizaeus–Merzbacher disease (PMD) is caused in most cases by either duplications or point mutations in the PLP1 gene. This disease, a dysmyelinating disorder affecting mainly the central nervous system, has a wide clinical spectrum and its causing mutations act through different molecular mechanisms. Eighty‐eight male patients with leukodystrophy were studied. PLP1 gene analysis was performed by the Multiplex Ligation‐dependent Probe Amplification technique and DNA sequencing, and, in duplicated cases of PLP1, gene dosage was completed by using array‐CGH. We have identified 21 patients with mutations in the PLP1 gene, including duplications, short and large deletions and several point mutations in our cohort. A customized array‐CGH at the Xq22.2 area identified several complex rearrangements within the PLP1 gene region. Mutations found in the PLP1 gene are the cause of PMD in around 20% of the patients in this series.  相似文献   

2.
Bilir B, Yapici Z, Yalcinkaya C, Baris I, Carvalho CMB, Bartnik M, Ozes B, Eraksoy M, Lupski JR, Battaloglu E. High frequency of GJA12/GJC2 mutations in Turkish patients with Pelizaeus–Merzbacher disease. Pelizaeus–Merzbacher disease is an early onset dysmyelinating leukodystrophy. About 80% of PMD cases have been associated with duplications and mutations of the proteolipid protein 1 (PLP1) gene. Pelizaeus–Merzbacher‐like disease is a genetically heterogeneous autosomal recessive disease and rarely caused by mutations in gap junction protein α12 (GJA12/GJC2) gene. The molecular basis of the disease was investigated in a cohort of 19 Turkish families. This study identified novel chromosomal rearrangements proximal and distal to, and exclusive of the PLP1 gene, showed equal frequencies of PLP1 and GJA12/GJC2 mutations at least in our cohort, and suggested further genetic heterogeneity.  相似文献   

3.
We report on a family in which an X;14 translocation has been identified. A phenotypically normal female, carrier of an apparently balanced X-autosome translocation t(X;14) (q22;q24.3) in all her cells and a small interstitial deletion of band 15q 112 in some of her cells had 2 offspring. She represents a fifth case of balanced X-autosome translocation with the break point inside the postulated critical region of Xq(q13 q26) associated with fertility. The break point in this case is located in Xq22, the same band as in four previously published exceptional cases. In most of her cells, the normal X was inactivated. Her daughter, the proposita, has an unbalanced karyotype 46,X,der(X), t(X;14)(q22;q24.3)mat, del(15)(q11.1q11.3)mat. She is mildly retarded and has some Prader-Willi syndrome manifestations. She has two normal 14 chromosomes, der(X), and deletion 15q11.2. Her clinical abnormalities probably could be attributed to the deletions 15q and Xq rather than 14q duplication. In most of cells, der(X) was inactivated. We assume that spreading of inactivation was extended to the 14q segment on the derivative X. Late replication and gene dose studies support this view. Another daughter, who inherited the balanced X;14 translocation and not deletion 15 chromosome, is phenotypically normal.  相似文献   

4.
We reported on a male patient with rare leukoencephalopathy and skeletal abnormalities. The condition was first noticed as a developmental delay, nystagmus and ataxia at 1 year of age. At 4 years of age, he was diagnosed as hypomyelination with skeletal abnormalities from clinical features, brain magnetic resonance imaging (MRI) and skeletal X‐rays. His brain MRI revealed diffuse hypomyelination. These findings suggested the classical type of Pelizaeus–Merzbacher disease (PMD) caused by proteolipid protein (PLP)‐1 gene or Pelizaeus–Merzbacher‐like disease (PMLD). However, we found neither mutation nor duplication of PLP‐1. The patient had severe growth retardation and general skeletal dysplasia compatible with spondylo‐epi‐metaphyseal dysplasia; however the mutation of discoidin domain receptor (DDR) 2 gene was absent. The co‐morbidity of hypomyelination with skeletal abnormalities is rare. We performed array CGH and no causal copy number variation was recognized. Alternatively, this condition may have been caused by a mutation of the gene encoding a molecule that functions in both cerebral myelination and skeletal development. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
A female patient with non-syndromic mental retardation was shown by high resolution GTL banding to have inherited an apparently balanced translocation, 46,X,t(X;8)(q28;q12)mat. Replication studies in the mother and daughter showed a skewed X inactivation pattern in lymphocytes, with the normal X chromosome preferentially inactivated. The mother also had significant intellectual disability. To investigate the possibility that a novel candidate gene for XLMR was disrupted at the X chromosome translocation breakpoint, we mapped the breakpoint using fluorescence in situ hybridisation (FISH). This showed that the four known genes involved in non-syndromic mental retardation in Xq28, FMR2, SLC6A8, MECP2, and GDI1, were not involved in the translocation. Intriguingly, we found that the X chromosome breakpoint in the daughter could not be defined by a single breakpoint spanning genomic clone and further analysis showed a 650 kb submicroscopic duplication between DXS7067 and DXS7060 on either side of the X chromosome translocation breakpoint. This duplicated region contains 11 characterised genes, of which nine are expressed in brain. Duplication of one or several of the genes within the 650 kb interval is likely to be responsible for the mental retardation phenotype seen in our patient. Xq28 appears to be an unstable region of the human genome and genomic rearrangements are recognised as major causes of two single gene defects, haemophilia A and incontinentia pigmenti, which map within Xq28. This patient therefore provides further evidence for the instability of this genomic region.  相似文献   

6.
The identification of a de novo apparently balanced structural chromosome rearrangement at prenatal diagnosis can be problematic and raises unique genetic counseling issues. Two breakpoint rearrangements such as reciprocal translocations or inversions have a 6.7% empiric risk of phenotypic abnormality. Abnormal phenotypes are thought to result from gene disruption, position effect, or deletion at one of the breakpoints. Prenatal diagnosis of de novo X;autosome translocations is rare, and presents additional unique risks due to the effects of X-inactivation and the possibility of disruption of the single active copy of an X-linked gene. We report the identification of a de novo apparently balanced t(X;6)(q26;q23) ascertained after amniocentesis for advanced maternal age. The parents were counseled regarding the risk of a de novo apparently balanced translocation, including the potential risk of an X-linked Mendelian disorder resulting from disruption of a gene at the Xq26 breakpoint. While the normal X chromosome was late replicating in all metaphases, no conclusions from this data could be drawn as the X-inactivation ratio in amniocytes might not be representative of other tissues. The possibility of future premature ovarian failure was also noted due to the position of the breakpoint at Xq26, although no specific risk could be ascribed. The parents elected to continue the pregnancy, and at 17 months of age, the proband was phenotypically and developmentally normal. Long-term follow-up will be required to assess development delay and any fertility issues. Based on review of the few cases reported to date and excluding any risk for later reproductive abnormalities, we estimated the risk of phenotypic abnormality or developmental delay in a prenatally ascertained de novo X;autosome carrier to be as high as 50%. This case illustrates the complexities in counseling for prenatally ascertained de novo X;autosome translocations and the need for additional cases to be reported.  相似文献   

7.
Proteolipid protein 1 (PLP1) gene‐related disorders due to mutations in the PLP1 include a wide spectrum of X‐linked disorders ranging from severe connatal Pelizaeus–Merzbacher disease (PMD) to spastic paraplegia 2 (SPG2). Duplications, deletions or point mutations in coding and noncoding regions of the PLP1 gene may occur. We report the clinical, neuroradiologic and molecular findings in six patients from two unrelated families. The affected males showed severe mental retardation, spastic tetraparesis, inability of walking and pes cavus at onset in early infancy. Brain magnetic resonance imaging (MRI) showed hypomyelination and brain atrophy. Nystagmus was never observed. The affected females showed adult‐onset progressive spastic paraparesis leading to wheel‐chair dependency and subtle white matter changes on brain MRI. Molecular studies in the two families identified two different intronic mutations, the novel c.622+2T>C and the known c.622+1G>A, leading to the skipping of PLP1‐exon 4. The clinical presentation of the affected males did not consistently fit in any of the PLP1‐related disorder subtypes (i.e., connatal or classic PMD, SPG2 and ‘PLP1 null syndrome’), and in addition, the carrier females were symptomatic despite the severe clinical picture of their respective probands. This study provides new insight into the genotype–phenotype correlations of patients with PLP1 splice‐site mutations.  相似文献   

8.
We report on a family in which an X;14 translocation has been identified. A phenotypically normal female, carrier of an apparently balanced X-autosome translocation t(X;14)(q22;q24.3) in all her cells and a small interstitial deletion of band 15q112 in some of her cells had 2 offspring. She represents a fifth case of balanced X-autosome translocation with the break point inside the postulated critical region of Xq(q13 q26) associated with fertility. The break point in this case is located in Xq22, the same band as in four previously published exceptional cases. In most of her cells, the normal X was inactivated. Her daughter, the proposita, has an unbalanced karyotype 46,X,der(X), t(X;14)(q22;q24.3)mat, del(15)(q11.1q11.3)mat. She is mildly retarded and has some Prader-Willi syndrome manifestations. She has two normal 14 chromosomes, der(X), and deletion 15q11.2. Her clinical abnormalities probably could be attributed to the deletions 15q and Xq rather than 14q duplication. In most of cells, der(X) was inactivated. We assume that spreading of inactivation was extended to the 14q segment on the derivative X. Late replication and gene dose studies support this view. Another daughter, who inherited the balanced X;14 translocation and not deletion 15 chromosome, is phenotypically normal.  相似文献   

9.
The inherited disorders of CNS myelin formation represent a heterogeneous group of leukodystrophies. The proteolipoprotein (PLP1) gene has been implicated in two X‐linked forms, Pelizaeus‐Merzbacher disease (PMD) and spastic paraplegia type 2, and the gap junction protein α12 (GJA12) gene in a recessive form of PMD. The myelin basic protein (MBP) gene, which encodes the second most abundant CNS myelin protein after PLP1, presents rearrangements in hypomyelinating murine mutants and is always included in the minimal region deleted in 18q‐ patients with an abnormal hypomyelination pattern on cerebral MRI. In this study, we looked at the genomic copy number at the Golli‐MBP locus in 195 patients with cerebral MRI suggesting a myelin defect, who do not have PLP1 mutation. Although preliminary results obtained by FISH suggested the duplication of Golli‐MBP in 3 out of 10 patients, no abnormal gene quantification was found using Quantitative Multiplex PCR of Short Fluorescent fragments (QMPSF), Multiplex Amplifiable Probe Hybridization (MAPH), or another FISH protocol using directly‐labelled probes. Pitfalls and interest in these different techniques to detect duplication events are emphasised. Finally, the study of this large cohort of patients suggests that Golli‐MBP deletion or duplication is rarely involved in inherited defects of myelin formation.  相似文献   

10.
We present a balanced translocation (X;9) (q28;q21) in which the normal X chromosome is preferentially active. The derivative X chromosome is inactive in 93% of fibroblasts, but the X portion translocated onto chromosome 9 is not inactivated, as apparent from DNA methylation and chromosome replication patterns. Consequently, the patient is functionally disomic for the part of Xq28 distal to the locus LICAM.  相似文献   

11.
We report a patient with a maternally inherited unbalanced complex chromosomal rearrangement (CCR) involving chromosomes 4, 9, and 11 detected by microarray comparative genomic hybridization (aCGH) and fluorescence in situ hybridization (FISH). This patient presents with clinical features of 9p deletion syndrome and Silver‐Russell syndrome (SRS). Chromosome analysis performed in 2000 showed what appeared to be a simple terminal deletion of chromosome 9p22.1. aCGH performed in 2010 revealed a 1.63 Mb duplication at 4q28.3, a 15.48 Mb deletion at 9p24.3p22.3, and a 1.95 Mb duplication at 11p15.5. FISH analysis revealed a derivative chromosome 9 resulting from an unbalanced translocation between chromosomes 9 and 11, a chromosome 4 fragment inserted near the breakpoint of the translocation. The 4q28.3 duplication does not contain any currently known genes. The 9p24.3p22.3 deletion region contains 36 OMIM genes including a 3.5 Mb critical region for the 9p‐phenotype. The 11p15.5 duplication contains 49 OMIM genes including H19 and IGF2. Maternal aCGH was normal. However, maternal chromosomal and FISH analyses revealed an apparently balanced CCR involving chromosomes 4, 9, and 11. To the best of our knowledge, this is the first report of a patient with maternally inherited trans‐duplication of the entire imprinting control region 1 (ICR1) among the 11p15.5 duplications reported in SRS patients. This report supports the hypothesis that the trans‐duplication of the maternal copy of ICR1 alone is sufficient for the clinical manifestation of SRS and demonstrates the usefulness of combining aCGH with karyotyping and FISH for detecting cryptic genomic imbalances. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Copy number variants of the X‐chromosome are a common cause of X‐linked intellectual disability in males. Duplication of the Xq28 band has been known for over a decade to be the cause of the Lubs X‐linked Mental Retardation Syndrome (OMIM 300620) in males and this duplication has been narrowed to a critical region containing only the genes MECP2 and IRAK1. In 2009, four families with a distal duplication of Xq28 not including MECP2 and mediated by low‐copy repeats (LCRs) designated “K” and “L” were reported with intellectual disability and epilepsy. Duplication of a second more distal region has been described as the cause of the Int22h‐1/Int22h‐2 Mediated Xq28 Duplication Syndrome, characterized by intellectual disability, psychiatric problems, and recurrent infections. We report two additional families possessing the K/L‐mediated Xq28 duplication with affected males having intellectual disability and epilepsy similar to the previously reported phenotype. To our knowledge, this is the second cohort of individuals to be reported with this duplication and therefore supports K/L‐mediated Xq28 duplications as a distinct syndrome.
  相似文献   

13.
Constitutional translocations, typically involving chromosome 3, have been recognized as a rare cause of inherited predisposition to renal cell carcinoma (RCC) for four decades. However, knowledge of the molecular basis of this association is limited. We have characterized the breakpoints by genome sequencing (GS) of constitutional chromosome abnormalities in five individuals who presented with RCC. In one individual with constitutional t(10;17)(q11.21;p11.2), the translocation breakpoint disrupted two genes: the known renal tumor suppressor gene (TSG) FLCN (and clinical features of Birt‐Hogg‐Dubé syndrome were detected) and RASGEF1A. In four cases, the rearrangement breakpoints did not disrupt known inherited RCC genes. In the second case without chromosome 3 involvement, the translocation breakpoint in an individual with a constitutional t(2;17)(q21.1;q11.2) mapped 12 Kb upstream of NLK. Interestingly, NLK has been reported to interact indirectly with FBXW7 and a previously reported RCC‐associated translocation breakpoint disrupted FBXW7. In two cases of constitutional chromosome 3 translocations, no candidate TSGs were identified in the vicinity of the breakpoints. However, in an individual with a constitutional chromosome 3 inversion, the 3p breakpoint disrupted the FHIT TSG (which has been reported previously to be disrupted in two apparently unrelated families with an RCC‐associated t(3;8)(p14.2;q24.1). These findings (a) expand the range of constitutional chromosome rearrangements that may be associated with predisposition to RCC, (b) confirm that chromosome rearrangements not involving chromosome 3 can predispose to RCC, (c) suggest that a variety of molecular mechanisms are involved the pathogenesis of translocation‐associated RCC, and (d) demonstrate the utility of GS for investigating such cases.  相似文献   

14.
Menkes disease is an X-linked recessive disorder of copper metabolism, characterized by progressive neurological degeneration, abnormal hair and connective tissue manifestations. We present a female Menkes patient, with classical Menkes features, carrying a de novo balanced translocation 46, X, t(X;1)(q13;q12). The breakpoint on the X chromosome was narrowed down to Xq13.3 within a 1 Mb YAC contig containing the Menkes gene, using fluorescence in situ hybridization. The translocated X chromosome was of paternal origin and non-randomly active leading to the expression of the disease. This was additional evidence for paternal origin of de novo chromosome rearrangements, including all the X; autosomal translocations examined so far.  相似文献   

15.
Yp‐specific sequences, including the testicular determinant gene SRY, have been detected and located in a 46,XX true hermaphrodite individual, using PCR amplification and fluorescent in situ hybridization (FISH). Among different Y chromosome loci tested, it was only possible to detect Yp sequences. The Y‐centromere and Yq sequences were absent. Unexpectedly, the Y fragment was translocated to the long arm of one of the X chromosomes, at the Xq28 level, and the derivative (X) chromosome of the patient lacked q‐telomeric sequences. To our knowledge, this is the first Yp/Xq translocation reported. The coexistence of testicular and ovarian tissue in the patient may have arisen by differential inactivation of the Y‐bearing X chromosome, in which Xq telomeric sequences are missing. The possible origin of the Yp/Xq translocation, during paternal meiosis or in somatic paternal cells, is discussed. Am. J. Med. Genet. 90:25–28, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

16.
Pelizaeus–Merzbacher disease (PMD) is an X-linked myelination disorder most frequently caused by duplication of a genomic segment of variable length containing the PLP1 gene. We studied five PMD male patients affected by the classic PMD form carrying a PLP1 gene duplication. On the basis of clinical and neuroradiological features, two of the five patients appeared to be the most severely affected. In order to establish a possible genotype–phenotype correlation, the extent of the duplication was determined in each patient and in the respective mother by quantifying the copy number of genomic markers surrounding the PLP1 gene by a real-time PCR-based approach. Duplications, ranging in size from 167–195 to 580–700 kb, were in the same genomic interval of the majority of the reported duplications. The extent of the duplicated genomic segments does not correlate with the clinical severity. Interestingly enough, each duplication had one of the two breakpoints in or near to low copy repeats (LCRs), supporting recent evidence concerning a possible role of LCRs in the generation of the duplications in PMD.  相似文献   

17.
Segmental duplications or low-copy repeats (LCRs) on chromosome 22q11 have been implicated in several chromosomal rearrangements. The presence of AT-rich regions in these duplications may lead to the formation of hairpin structures, which facilitate chromosomal rearrangement. Here we report the involvement of such a low-copy repeat in a t(X;22) associated with a neural tube defect. Molecular analysis of the chromosomal breakpoints revealed that the chromosome 22 breakpoint maps in the palindromic non-AT-rich NF1-like region of low-copy repeat B (LCR-B). No palindromic region was encountered near the breakpoint on chromosome X. Our findings confirm that there is no single mechanism leading to translocations with chromosome 22q11 involvement. Because LCR-B does not contain genes involved in neural tube development, we believe that the gene responsible for the observed phenotype is most likely localized on chromosome X.  相似文献   

18.
Approximately one in 500 individuals carries a reciprocal translocation. Of the 121 monosomy 1p36 subjects ascertained by our laboratory, three independent cases involved unbalanced translocations of 1p and 9q, all of which were designated t(1;9)(p36.3;q34). These derivative chromosomes were inherited from balanced translocation carrier parents. To understand better the causes and consequences of chromosome breakage and rearrangement in the human genome, we characterized each derivative chromosome at the DNA sequence level and identified the junctions between 1p36 and 9q34. The breakpoint regions were unique in all individuals. Insertions and duplications were identified in two balanced translocation carrier parents and their unbalanced offspring. Sequence analyses revealed that the translocation breakpoints disrupted genes. This study demonstrates that apparently balanced reciprocal translocations in phenotypically normal carriers may have cryptic imbalance at the breakpoints. Because disrupted genes were identified in the phenotypically normal translocation carriers, caution should be exercised when interpreting data on phenotypically abnormal carriers with apparently balanced rearrangements that disrupt putative candidate genes.  相似文献   

19.
We describe monozygotic twins with partially discordant phenotypes who were found to have a duplication of chromosome region 4q28.3‐qter. The duplicated region of chromosome 4 resulted from an unbalanced segregation of a balanced maternal (4;22)(q28.3;p13) translocation. Duplication of the long arm of chromosome 4 has been described in >60 patients; however, it usually results from the unbalanced segregation of a parental balanced translocation and has an associated monosomy. Twenty cases of dup 4q without an associated monosomy have been reported, and this is the only case of dup 4q28.3‐qter. All cases of dup 4q are reviewed, and phenotypic aspects are analyzed. Issues of monozygotic twinning and other birth defects also are addressed. Am. J. Med. Genet. 94:125–140, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

20.
Pelizaeus — Merzbacher disease (PMD) is an X-linked neurologicaldisorder characterized by dysmyelination in the central nervoussystem (CNS). Recently mutations of the myelln proteollpid protein(PLP) gene which encodes both PLP and Its Isoform, DM-20 generatedby alternative spllcing, have been demonstrated In PMD patients.We analyzed the seven exons of the PLP gene of a Japanese boyaffected with PMD by direct sequencing and identified an Insertionevent In exon Vll of the PLP gene. This mutation was also presentIn his carrier mother, but was absent In ninety-five X chromosomesof normal Japanese. The frame-shift mutation leads to the productionof truncated PLP with altered carboxyl terminal amlno acid sequences,resulting In conslderable change of the structure of PLP andDM-20 necessary for functional purposes. This is the first reportof a mutation In exon Vll of the PLP gene associated with PMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号