首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis   总被引:24,自引:0,他引:24  
Lan KH  Sheu ML  Hwang SJ  Yen SH  Chen SY  Wu JC  Wang YJ  Kato N  Omata M  Chang FY  Lee SD 《Oncogene》2002,21(31):4801-4811
  相似文献   

3.
4.
A subset of DNA helicases, the RecQ family, has been found to be associated with the p53-mediated apoptotic pathway and is involved in maintaining genomic integrity. This family contains the BLM and WRN helicases, in which germline mutations are responsible for Bloom and Werner syndromes, respectively. TFIIH DNA helicases, XPB and XPD, are also components in this apoptotic pathway. We hypothesized that there may be some redundancy between helicases in their ability to complement the attenuated p53-mediated apoptotic levels seen in cells from individuals with diseases associated with these defective helicase genes. The attenuated apoptotic phenotype in Bloom syndrome cells was rescued not only by ectopic expression of BLM, but also by WRN or XPB, both 3' --> 5' helicases, but not expression of the 5' --> 3' helicase XPD. Overexpression of Sgs1, a WRN/BLM yeast homolog, corrected the reduction in BS cells only, which is consistent with Sgs1 being evolutionarily most homologous to BLM. A restoration of apoptotic levels in cells from WS, XPB or XPD patients was attained only by overexpression of the specific helicase. Our data suggest a limited redundancy in the pathways of these RecQ helicases in p53-induced apoptosis.  相似文献   

5.
6.
7.
Apoptosis resistance is crucially involved in cancer development and progression, represents the leading cause for failure of anticancer therapy and is caused, for example, by downregulation of proapoptotic intracellular signaling molecules such as caspase-8. We found that the cytotoxic drugs methotrexate (MTX) and 5-fluorouracil (5-FU) were both able to sensitize resistant tumor cells for induction of apoptosis by p53-mediated upregulation of caspase-8. Increase in caspase-8 messenger RNA and protein expression disabled tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced proliferation and restored sensitivity toward TRAIL-induced apoptosis which was inhibited by transfection of p53 decoy oligonucleotides, p53 shRNA and caspase-8 shRNA. Upregulation of caspase-8 and sensitization toward TRAIL-induced apoptosis was found both in a broad panel of tumor cell lines with downregulated caspase-8 and in TRAIL-resistant primary tumor cells of children with acute leukemia. Taken together, we have identified caspase-8 as an important p53 target gene regulated by cytotoxic drugs. These findings highlight a new drug-induced modulation of physiological apoptosis pathways, which may be involved in successful anticancer therapy using MTX and 5-FU in leukemia and solid tumors over decades.  相似文献   

8.
9.
The loss of mdm2 induces p53-mediated apoptosis   总被引:3,自引:0,他引:3  
de Rozieres S  Maya R  Oren M  Lozano G 《Oncogene》2000,19(13):1691-1697
The p53 tumor suppressor gene product is negatively regulated by the product of its downstream target, mdm2. The deletion of mdm2 in the mouse results in embryonic lethality at 5.5 days post coitum (d.p.c.) which can be overcome by simultaneous loss of the p53 tumor suppressor, substantiating the importance of the negative regulatory function of MDM2 on p53 function in vivo. Hence, the loss of MDM2 allowed the unregulated p53 protein to continuously exert its growth-suppressing activity, which either led to a complete G1 arrest or induced the p53-dependent apoptotic pathway, resulting in the death of the mdm2-/- embryos. To determine which of these possibilities is occurring, mouse embryo fibroblasts (MEFs) from p53 null and p53/mdm2 double null embryos were transfected with a retroviral vector carrying a temperature-sensitive p53 (tsp53) cDNA. Shifting of single-cell clonal populations to the permissive temperature caused the p53-/-mdm2-/- fibroblasts expressing tsp53 to undergo apoptosis in a dose-dependent manner. This phenotype was not observed in the tsp53 expressing p53-/- clones nor the parental cell lines. Thus, our data indicate that the simple loss of mdm2 can induce the p53-dependent apoptotic pathway in vivo.  相似文献   

10.
11.
Death and decoy receptors and p53-mediated apoptosis.   总被引:21,自引:0,他引:21  
M S Sheikh  A J Fornace 《Leukemia》2000,14(8):1509-1513
Recently, several tumor necrosis factor receptor 1 (TNF-R1) and Fas-related death receptors have been discovered and include DR3, DR4, DR5 and DR6. These receptors contain an extracellular region containing varying numbers of cysteine-rich domains and an intracellular region that contains the death domain. The death receptors are activated in a ligand-dependent or independent manner and transduce apoptotic signals via their respective intracellular death domains. In addition to death receptors, several decoy molecules have also been identified and include DcR1/TRID, DcR2/TRUNDD, DcR3 and osteoprotegrin (OPG). The decoy molecules do not transduce apoptotic signals but rather compete with the death receptors for ligand binding and thereby inhibit ligand-induced apoptosis. Recent evidence suggests that p53 upregulates the expression of death receptors Fas and DR5, and thus, may mediate apoptosis in part via Fas and/or DR5. However, p53 also regulates the expression of TRAIL decoy receptors DcR1/TRID and DR2/TRUNDD. Although the significance of p53-dependent regulation of decoy receptors remains unclear, evidence suggests that DcR1/TRUNDD appears to inhibit 53-mediated apoptosis. It is, therefore, possible that p53 may blunt its DR5-dependent apoptotic effects by controlling the levels of decoy receptors.  相似文献   

12.
13.
14.
15.
16.
17.
Perez-Losada J  Wu D  DelRosario R  Balmain A  Mao JH 《Oncogene》2005,24(35):5521-5524
p53 is one of the most important tumor suppressor genes in human cancer, but the roles of its homologues p63 and p73 in tumor suppression, alone or in collaboration with p53, remains controversial. Both p63 and p73 can be deregulated after DNA damage, and induce cell cycle arrest and apoptosis, but mice carrying inactive alleles of these genes do not develop spontaneous tumors. Since heterozygous loss of p53 confers strong sensitization to radiation-induced lymphoma development, we investigated the possibility that radiation exposure may reveal previously undetected tumor suppressor properties in p63 or p73, alone or in combination with p53. Animals heterozygous for p63 or p73, as well as both double heterozygous p53/p63 or p53/p73 mice, showed no significant differences in tumor latency, spectrum or frequency after gamma-radiation, compared to their control counterparts. Deletions were found near the p63 locus on chromosome 16 in radiation-induced tumors, but these frequently included the knockout allele. No deletions or LOH involving the p73 gene were detected, and expression of both genes was maintained in the tumors. We conclude that p53 homologues do not contribute to p53 tumor suppressor activity in lymphoma development.  相似文献   

18.
Normal human fibroblasts grown in cell culture undergo a reversible growth arrest when incubated at 28 degrees C. During incubation at 28 degrees C, levels of p53 and p21 rise in these cells and cell cycle analysis shows that they have undergone a cell cycle arrest. To examine the importance of p53 in mediating this arrest, mouse embryo fibroblasts that are either wild-type or that are defective in p53 were also subjected to hypothermia. Only those cells with wild-type p53 undergo a cell cycle arrest, indicating that p53 has a role in mediating this response. Because many tumor cells have defective p53, this suggests that hypothermia may increase the selective toxicity of chemotherapeutic agents for tumor cells.  相似文献   

19.
Cisplatin is a DNA-damaging chemotherapeutic drug that may have a role in the adjuvant chemotherapy of several solid tumors, such as malignant glioblastoma, and the status of p53 tumor suppressor protein is a critical determinant of cisplatin chemosensitivity. In the present study, we showed the relationship of p53 status and chemosensitivity of cisplatin between two human malignant glioblastoma cell lines, A172 and T98G, harboring wild-type and mutant-type p53, respectively. Cisplatin was found to be more cytotoxic to A172 than T98G cells in a time- and concentration-dependent manner. Cisplatin-induced cytotoxicity manifested as apoptosis, characterized by genomic DNA fragmentation, nuclear condensation and an increase in sub-G1 population. Cisplatin induced the accumulation of p53 and p21 proteins in A172 cells, but not in T98G cells. The introduction of the adenovirus-mediated wild-type p53 gene into T98G cells resulted in the decrease of viability as well as the increase in sub-G1 population with p53 accumulation, activation of caspase-3 protease and release of cytochrome c from the mitochondria. These data strongly suggest that the expression of p53 is essential for the cytotoxic effect of cisplatin in human malignant glioblastoma cells, A172 and T98G, and the introduction of apoptotic signal molecules, such as p53, will be beneficial to achieve chemosensitivity in malignant glioma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号