首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured interaural time difference (ITD) sensitivity of 72 cells in the inferior colliculus of the anaesthetised guinea pig as a function of frequency and interaural level difference (ILD). For many units there was a "null" frequency, where varying the ILD made no difference to the position of the peak of the ITD sensitivity. This null frequency was not necessarily at the characteristic frequency (CF): it occurred at CF in less than a third of the neurons for which we had sufficient data (14/50). Equally often, the null occurred below (15/50) and less often, above CF (8/50). The remaining (13/50) neurons showed clear phase changes, but these were erratic or parallel and no null could be attributed. In 33 of the 37 neurons with an identifiable null frequency, the peak ITD moved towards the recording side with increasing ILD, for frequencies above the null, and away for frequencies below the null. The changes in ITD sensitivity expressed as phase were maximally about 0.2-0.3 cycles. Many of the changes in response phase with ILD are in the same direction and magnitude as changes in the phase locking with sound level in auditory nerve fibres. Thus, these changes in phase sensitivity at the basilar membrane and auditory nerve are maintained through to ITD tuning in the IC. This is consistent with a coincidence detection mechanism. However, some of the more complex phenomena which we observe are consistent with convergence at the IC.  相似文献   

2.
Interaural time differences in the envelope of a sound (envelope ITDs) can potentially provide spatial information at high frequencies where interaural phase differences (IPDs) are not available. Interaural intensity differences (IIDs) also provide important spatial information at high frequencies. Both IIDs and envelope ITDs can influence spatial perception at high frequencies, but behavioral and physiological studies suggest that IIDs dominate perception. This study examines envelope ITD sensitivity in the auditory cortex of the pallid bat, a species that uses passive sound localization at the low end of its audible range to find prey. Its auditory system is entirely 'high-frequency' in that phase-locking does not occur at the low end of its audible range. If the bat uses ITDs, they must be derived from the envelope of the signal. A previous study of envelope ITD sensitivity in its inferior colliculus (IC) reported that neurons are sensitive to the small +/-70 micros range of available ITDs. This study extends these findings to the cortical level to assess the transformation of ITD sensitivity and the binaural response properties that underlie this sensitivity. Two measures of sensitivity were used. The dynamic ITD range measures the range of ITDs over which the maximum response of a neuron decreases by 80%. When presented with square-wave amplitude-modulated tones statically delayed in arrival time, the average dynamic ITD range in the IC is 304 micros, but dropped to 175 micros in auditory cortex. IC neurons average a 38% change in maximum response over the relevant ITD range, while cortical neurons average a 67% change. Also measured were time-intensity trading ratios, which index the extent to which a change in IID can cause a shift the dynamic ITD range. Average trading ratios are approximately the same in the IC and auditory cortex (17.9 micros/dB vs. 16.7 micros/dB, respectively). Binaural interactions changed from the IC to auditory cortex. In IC, ITD sensitivity is an inhibitory, subtractive process in which ITDs reduce the response evoked by contralateral monaural stimulation. In the auditory cortex, both binaural inhibition and facilitation occur. In the majority of cortical neurons, IID and ITD functions were remarkably similar in shape, having stepped, step-peaked or peaked functions. The binaural interactions (inhibition and/or facilitation) evoked by ITDs and IIDs were also typically similar. These results suggest that IIDs and envelope ITDs are having similar effects on output of the same binaural comparator system.  相似文献   

3.
This study investigated learning, in normal-hearing adults, associated with training (i.e. repeated practice) on the discrimination of ongoing interaural time difference (ITD). Specifically, the study addressed an apparent disparity in the conclusions of previous studies, which reported training-induced learning at high frequencies but not at low frequencies. Twenty normal-hearing adults were trained with either low- or high-frequency stimuli, associated with comparable asymptotic thresholds, or served as untrained controls. Overall, trained listeners learnt more than controls and over multiple sessions. The magnitudes and time-courses of learning with the low- and high-frequency stimuli were similar. While this is inconsistent with the conclusion of a previous study with low-frequency ITD, this previous conclusion may not be justified by the results reported. Generalization of learning across frequency was found, although more detailed investigations of stimulus-specific learning are warranted. Overall, the results are consistent with the notion that ongoing ITD processing is functionally uniform across frequency. These results may have implications for clinical populations, such as users of bilateral cochlear implants.  相似文献   

4.
Phillips and Hall [Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level, Hear. Res., 202 (2005) 188-199.] recently described the frequency-specific, selective adaptation of perceptual channels for interaural differences in level (ILD) and time (ITD). Psychometric functions for laterality based on ITD or ILD were obtained before and after exposure to adaptor tones of two frequencies presented alternately and highly lateralized to opposite sides. Following adaptation, points of perceived centrality (PPCs) were displaced towards the sides of the adaptor tones, and in opposite directions for the two frequencies. That is, laterality judgements showed a shift away from the adapted side, particularly for test cue values near the middle of the range. These data were congruent with a two-channel, opponent-process model of sound laterality coding. The present study used the same general paradigm to explore the independence of perceptual ITD and ILD processing. Psychometric functions for laterality based on ITD or ILD were obtained for each of two frequencies concurrently, before and after exposure to adaptor tones lateralized using the complementary cue. Once again, PPCs derived from the psychometric functions were displaced towards the sides of the adaptor tones, consistent with an opponent-process account of sound laterality coding. The size of the adaptation effect was at least as great as that described in the earlier study. Thus, a quarter cycle ITD adapting stimulus effected a 3 dB shift in the mean ILD-based PPC, and a 12 dB ILD adapting stimulus effected a 100 micros shift in the mean ITD-based PPC. These data offer new evidence concerning interaction in the processing of ITDs and ILDs.  相似文献   

5.
Human listeners' sensitivity to interaural time differences (ITD) was assessed for 1000?Hz tone bursts (500?ms duration) preceded by trains of 500-ms "adapter" tone bursts (7?s total adapter duration, frequencies of 200, 665, 1000, or 1400?Hz) carrying random ITD, or by an equal-duration period of silence. Presentation of the adapter burst train reduced ITD sensitivity in a frequency-specific manner. The observed effect differs from previously described forms of location-specific psychophysical adaptation, as it was produced using a binaurally diffuse sequence of tone bursts (i.e., a location-nonspecific adapter stimulus). Results are discussed in the context of pre-binaural adaptation.  相似文献   

6.
D.R.F. Irvine   《Hearing research》1987,30(2-3):169-179
Two alternative methods for the measurement of neural sensitivity to interaural intensity differences (IIDs) were used to obtain IID-sensitivity functions for samples of excitatory-inhibitory (EI) neurons from the central nucleus of the inferior colliculus and the primary auditory cortex of the cat. In one, the EMI-constant method, intensity was held constant in the ear providing excitatory input and varied above and below that level in the other ear. In the alternative (ABI-constant) method, intensity at the two ears was varied symmetrically about a constant base intensity, in a manner roughly approximating the pattern of changes that occur when a free-field stimulus is moved in azimuth from the median sagittal plane. For neurons with monotonie or near-monotonic rate-intensity functions for the excitatory ear, the two methods generated IID-sensitivity functions that were identical or near-identical by a number of quantitative criteria. For neurons with non-monotonic rate-intensity functions, however, the IID functions generated by the two methods were very different: those produced by the EMI-constant method were monotonie, whereas those generated by the ABI-constant method were non-monotonic and sharply peaked. The advantages and disadvantages of the two methods, and the implications of the results for the neural encoding of IIDs and for the azimuthal sensitivity of E.I neurons with non-monotonic rate-intensity functions, are discussed.  相似文献   

7.
This research investigated whether brainstem neural mechanisms that mediate lateralization of sounds can be extracted from the frequency-following response (FFR). Monaural and binaural FFRs were obtained from normal-hearing subjects to low-frequency (500 Hz) linearly gated tone bursts (4-4-4 msec) at 40, 50, and 60 dB SL and four interaural time differences (ITDs) (0, 333, 500, and 667 microsec). FFRs were also recorded to ITDs and intensity presented in concert and in opposition (lateralization stimuli). The results show that overall intensity and interaural time differentially affect the FFR. The FFRs evoked by ITDs and intensity (in concert and in opposition) are strikingly different. The normalized amplitudes of the binaural interaction component (BIC) are minimally altered by ITDs and intensity. The study presents strong evidence that ITDs of 0, 333, 500, and 667 microsec and lateralization stimuli, easily discriminated perceptually, evoke clearly distinguishable FFR waveforms. These ITDs provide the cues that mammals use to localize sound in a freefield. The BIC is essentially unaffected by overall intensity, ITDs, and lateralization stimuli. Based on the findings of this study, the FFR has the potential to become a tool for identification of normal and abnormal binaural processing at lower brainstem levels.  相似文献   

8.
The advent of bilateral cochlear implants (CIs) has increased interest in learning on binaural tasks, and studies in normal-hearing listeners provide important background information. However, few studies have considered learning with discrimination of interaural time difference (ITD). Here, learning with ITD was explored using stimuli that are more relevant to bilateral CIs than used previously. Inexperienced listeners were trained with envelope-based ITD using high-frequency amplitude-modulated tones with or without an interaural carrier frequency difference (IFD), the former to simulate asymmetrical bilateral CI insertions. All were tested with and without IFD before and after training. In most listeners, ITD thresholds improved substantially with training, not necessarily reaching asymptote after 3,000 trials. In these, the magnitude and time-course of learning was larger than anticipated from a previous study with low-frequency ITD. Learning generalized across IFD and the effect of IFD on ITD thresholds at post-test was smaller than reported previously. These results have implications for studies of bilateral CIs, such as the need to provide extensive training to avoid over-estimating any apparent 'impairment'.  相似文献   

9.
The ability to detect small interaural time differences (delta t) was determined in 4 subjects using clicks or long tone pips of various interaural signal disparities which are expressed as the extent of interaural spectral overlaps. The interaural signal disparity was varied by changing (a) the interaural pulse duration difference (delta d) for clicks, or (b) the interaural carrier frequency difference (delta f) for tone pips. In either case, the sensitivity to delta t was maximal under diotic presentations and declined with delta d or delta f. The overall sensitivity to delta t was remarkably higher for clicks than for long tone pips. The results indicate that both (a) the extent of binaural spectral overlaps and (b) the structure of acoustic stimuli are important in detecting small interaural time differences of binaural sounds.  相似文献   

10.
Psychometric measurements with an 80-Hz pulse series signal showed that the lag of sound localization due to interaural intensity-differences is significantly smaller than the due to interaural time-difference.

These results seem to be contradictory to the hypothesis that the ear converts intensity-differences into time-differences before perceiving the direction of the sound sensation.  相似文献   

11.
12.
Soeta Y  Nakagawa S 《Hearing research》2006,220(1-2):106-115
The detection of interaural time differences (ITD) for sound localization depends on the similarity between the left and right ear signals, namely interaural correlation (IAC). Human localization performance deteriorates with decreasing IACs. In order to examine activity related to localization performance in the human cortex, auditory evoked magnetic fields to the ITD of bandpass noises with different IACs were analyzed. When the IAC was 0.95, the N1m amplitudes, i.e., the estimated equivalent current dipole moments, increased with increasing ITD. However the effect of ITD on the N1m amplitudes was not significant when the IAC was 0.5. When the ITD was 0.7 ms, the N1m amplitudes decreased with decreasing IACs. There were no systematic changes in the source location of N1m in the auditory cortex related to changes in ITD or IAC. The results suggest that localization performance is reflected in N1m amplitudes.  相似文献   

13.
Chen GD  Sinex DG 《Hearing research》1999,138(1-2):29-44
The responses of 100 inferior colliculus neurons to syllables differing in voice onset time (VOT) presented binaurally were studied. As in a previous study of monaural responses (Chen et al., 1996), the responses consisted of 1-3 response 'components', referred to as release responses, VOT responses or vowel responses. The discharge rate of all response components could vary cyclically with the interaural time difference (ITD). The maximal rate often occurred at an ITD around +0.2 ms (contralateral ear leading). Response frequencies (RF) based on the periodicity of the delay curves varied with the characteristic frequency (CF) and VOT. RF also varied across response components. Overall, RF was correlated with the 'most effective frequency', the spectral component with the highest amplitude, relative to the tuning curve. VOT response latency for a given syllable could change by a few ms with ITD, but those changes were small, relative to the range of latencies observed over the entire range of VOTs. Changes in ITD produced large changes in the overall shape of the peristimulus time histogram. There was no relation between the histogram shape and perceptual consonant categories.  相似文献   

14.
Furukawa S  Maki K 《Hearing research》2006,212(1-2):48-57
This study examines the extent to which the auditory middle latency response (MLR) of the guinea pig is sensitive to sound localization cues such as interaural level and time differences (ILD and ITD, respectively). The MLR was recorded with an epidural electrode placed over the auditory cortex of an anesthetized guinea pig. Click stimuli were presented monaurally or binaurally with various ILDs and ITDs. The MLR was much larger for contralateral stimulation than for ipsilateral stimulation, and its amplitude was intermediate for diotic stimulation. The MLR amplitude was sensitive to both ILD and ITD: it decreased as the ipsilateral stimulus increased in level or advanced in time relative to the contralateral stimulus. The steep slope of the amplitude-versus-ITD function fell within an ITD range of +/-330 micros, namely the guinea pig's physiological ITD range. The response reduction that resulted from increasing the relative level of the ipsilateral level could be cancelled out by advancing the contralateral onset time relative to the ipsilateral onset time. This parallels the "time-intensity trading" in sound lateralization exhibited in human psychophysics. The results imply that the binaural interaction in the guinea pig MLR reflects aspects of neural processes that are involved in sound localization.  相似文献   

15.
Binaural evoked responses were recorded with glass micropipettes from the central nucleus of the rat's inferior colliculus (ICC) before and after transection of the commissure of Probst (CP) with a microsurgical knife. The peak-to-peak amplitude of the averaged evoked response was measured for binaural clicks with interaural time differences (ITDs) between −1.0 and +30.0 ms (positive values reflecting ipsilateral-leading-contralateral click pairs). Before transection, the amplitude of the evoked response decreased as the ITD was shifted in favor of larger ipsilateral lead times. After transection of the CP, acoustic stimulation of the ipsilateral ear was much less effective in reducing evoked response amplitude. Responses to both short (+/−1.0 ms) and long (1.0–30.0 ms) ITD intervals were affected. After recordings were made, both anterograde and retrograde tract tracing methods were used to verify that the CP was completely transected and that all crossed projections from the dorsal nucleus of the lateral lemniscus (DNLL) to ICC were destroyed. The surgery completely eliminated the retrograde transport of fluorogold from the ICC to the opposite DNLL and blocked the anterograde transport of biotinylated dextran to contralateral DNLL and ICC. The physiological consequences of CP transection are attributed to the complete destruction of decussating, inhibitory (GABAergic) efferent projections from the DNLL.  相似文献   

16.
The effect of interaural time differences (ITDs) on stream segregation for successive tone bursts was investigated. Obligatory stream segregation was inferred from the threshold for detecting a rhythmic irregularity in an otherwise isochronous sequence of interleaved "A" and "B" tones (task 1). Subjective stream segregation was evaluated by requiring listeners to indicate whether they heard one or two streams during presentation of a 30-s long sequence (task 2). The A and B tones had equal but opposite ITDs and had the same or different frequencies of 500 and/or 707?Hz. The ITDs ranged from 0 to 2?ms in study 1, and from 0 to 0.5?ms in study 2. Sensitivity on task 1 was poor in both studies when A and B had different frequencies, and was little affected by ITD. Thresholds for the same-frequency conditions worsened somewhat with increasing ITD up to 0.5?ms and then (for study 1) flattened off. There was a small increase in subjective streaming as the ITD was increased up to 0.5?ms, but little streaming for larger ITDs (study 1). We conclude that ITD, at most, has weak effects in producing obligatory and subjective stream segregation.  相似文献   

17.
Phillips DP  Hall SE 《Hearing research》2005,202(1-2):188-199
Human listeners were studied for their ability to lateralize single target tones of each of two frequencies relative to midline clicks. They did so before and after exposure to adaptor tones of the same frequencies. The adaptor tones were strongly lateralized, and in opposite directions for each frequency, by either an interaural time difference (ITD, Experiment 1) or interaural level difference (ILD, Experiment 2). Following adaptation, psychometric functions for ITD (Exp. 1) and ILD (Exp. 2) were obtained for target tones for the two frequencies separately. These were found to be shifted in the direction of the fatigued side. In the case of ILD, this was in the absence of a shift in monaural sensitivity sufficient to account for the effect. For both ITD and ILD studies, shifts in perceived laterality were induced in opposite directions at two frequencies concurrently. This effect was induced with only seconds of intermittent exposure to the adaptor tones. The fact that it could be induced at two frequencies in opposite directions at the same time, suggests (a), that these data constitute new psychophysical evidence for the frequency specificity of ITD and ILD coding in the human brain, and (b), that the effect was not due to the introduction of some response bias at the decision level of perceptual judgement. The data are interpreted in terms of a two- or three-channel opponent process model.  相似文献   

18.
19.
Interaural latency differences for wave V (IT5) were measured for 406 patients having cochlear hearing loss and for 36 patients with VIIIth nerve tumors. The incidence of IT5 values exceeding 0.2, 0.3, and 0.4 msec was plotted as a function of the degree of asymmetry in hearing sensitivity for 2,000-4,000 Hz. In general, the patients with cochlear hearing loss and the greatest degree of hearing asymmetry yielded IT5 values that exceeded 0.2, 0.3, or 0.4 msec more frequently than patients with more symmetric hearing losses, and this trend was apparent for all degrees of hearing loss. For the VIIIth nerve tumor patients, IT5 data were scattered widely regardless of symmetry or asymmetry of hearing sensitivity. The false-negative rate was 8% when IT5 was greater than 0.4 msec.  相似文献   

20.
OBJECTIVES: To assess the sensitivity of two bilateral cochlear implant users to interaural level and time differences (ILDs and ITDs) for various signals presented through the auxiliary inputs of clinical sound processors that discard fine timing information and only preserve envelope cues. DESIGN: In a lateralization discrimination experiment, the just noticeable difference (JND) for ILDs and envelope ITDs was measured by means of an adaptive 2-AFC method. Different stimuli were used, including click trains at varying repetition rates, a speech fragment, and noise bursts. For one cochlear implant listener and one stimulus, the sensitivity to envelope ITDs was also determined with the method of constant stimuli. The dependency of ILD-JNDs on the interaural place difference was studied with stimulation at single electrode pairs by using sinusoidal input signals in combination with appropriate single-channel processor fittings. In a lateralization position experiment, subjects were required to use a visual pointer on a computer screen to indicate in-the-head positions for blocks of stimuli containing either ILD or ITD cues. All stimuli were loudness balanced (before applying ILD) and fed directly into the auxiliary inputs of the BTE processors (TEMPO+, Med-El Corp.). The automatic gain control and the processors' microphones were deactivated. RESULTS: Both cochlear implant listeners were highly sensitive to ILDs in all broadband stimuli used; JNDs approached those of normal-hearing listeners. Pitch-matched single electrode pairs showed significantly lower ILD-JNDs than pitch-mismatched electrode pairs. Envelope ITD-JNDs of cochlear implant listeners obtained with the adaptive method were substantially higher and showed a higher test-retest variability than waveform ITD-JNDs of normal-hearing control listeners and envelope ITD-JNDs of normal-hearing listeners reported in the literature for comparable signals. The envelope ITD-JNDs for the click trains were significantly lower than for the speech token or the noise bursts. The best envelope ITD-JND measured was ca. 250 mus for the click train at 100 cycles per sec. Direct measurement of the psychometric function for envelope ITD by the method of constant stimuli showed discrimination above chance level down to 150 micros. The lateralization position experiment showed that both ILDs and envelope ITDs can lead to monotonic changes in lateral percept. CONCLUSIONS: The two cochlear implant users tested showed strong effects of ILDs in various broadband stimuli with respect to JNDs as well as lateralization position. The high dependency of ILD-JNDs on the interaural pitch difference suggests the potential importance of pitch-matched assignment of electrodes in the two ears by the speech processors. Envelope ITDs appear to be more ambiguous cues than ILDs, as reflected by the higher and more variable JNDs compared with normal-hearing listeners. The envelope ITD-JNDs of cochlear implant listeners depended on the stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号