首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Selective activation of the Group II metabotropic glutamate receptors 2/3 (mGlu2/3) by either full agonists or positive allosteric modulators (PAMs) show anxiolytic activity. In the present study the anxiolytic profile of mGlu2/3 receptor agonists LY-354740 and LY-404039 and the mGlu2 receptor PAM 1-methyl-2-((cis-3-methyl-4-(4-trifluoromethyl-2-methoxy)-phenyl)piperidin-1-yl)-1H-imidazo[4,5-b]pyridine (MTFIP) were evaluated using neurophysiology-based assays. Activation of mGlu2/3 receptors by these compounds, as well as the positive control diazepam, significantly decreased the frequency of hippocampal theta oscillation elicited by stimulation of the brainstem nucleus pontis oralis (nPO), a characteristic action of anxiolytic compounds. Since the nPO is a critical region involved in regulation of rapid eye movement sleep, mGlu2/3 receptor activators were also tested on sleep parameters, as well as on cortical and hippocampal encephalography (EEG) activity. Both mGlu2/3 agonists and the mGlu2 PAM significantly prolonged REM sleep latency and reduced total REM sleep duration while during the active awake state all compounds lowered hippocampal peak theta frequency. However, diazepam and mGlu2/3 agonists/PAM elicited opposite changes in cortical EEG delta and beta bands. Delta power significantly increased after any of the mGlu2/3 compounds but decreased after diazepam. In the beta band, mGlu2/3 receptor agonists dose-dependently decreased beta power in contrast to the well-known beta activation by diazepam. These effects lasted 3-4h and could not be explained by modest, transient changes (<1h) in waking and slow wave sleep. The current observations support the role of mGlu2/3 receptor activators as potential anxiolytic compounds, but indicate a distinct action on cortical EEG activity which is different from the effects of GABA(A) PAMs. This article is part of a Special Issue entitled 'Anxiety and Depression'.  相似文献   

2.
Previous published work with the novel anticonvulsant, analgesic and anti-anxiety medication, pregabalin (Lyrica®), has shown that it has anxiolytic-like actions in several animal behavioral models. However, pregabalin is structurally and pharmacologically different from other classes of known anxiolytic drugs, and the mechanisms that alter brain activity to produce anxiolytic-like actions are not well understood. In an effort to determine more about the cellular mechanisms of pregabalin, we studied its effects on hippocampal theta activity of urethane-anesthetized rats that was elicited by electrical stimulation of the nucleus pontis oralis (nPO) in the brainstem. We found that systemic administration of pregabalin significantly reduced the frequency of stimulation-induced hippocampal theta activity similarly to the effects of diazepam. In addition, pregabalin (but not diazepam) significantly altered the stimulus intensity/frequency relationship, and increased slow delta oscillation (<3.0 Hz) in spontaneous hippocampal EEG in a dose-dependent manner. Our findings suggest that pregabalin may alter evoked theta frequency activity in the hippocampus by reducing neurotransmitter-mediated activation of either the septal nucleus or the hippocampus, and that its actions are unlikely to be mediated by direct activation of GABA neurotransmitter systems. These observations provide further insight to the action of pregabalin, and support the utilization of stimulation-induced theta model in discovery of novel anxiolytic drugs.  相似文献   

3.
With the exception of obsessive compulsive disorder, benzodiazepines (BZs) remain a major first line treatment for anxiety disorders. However, as well as being anxiolytic, BZs also cause sedation acutely, related to the fact that BZs are also used as hypnotics, and chronically may have abuse potential as well as cause physical dependence which manifests itself as the demonstration of a number of adverse events upon discontinuation. The molecular mechanisms of BZs are now well defined in that they enhance the actions of the inhibitory neurotransmitter GABA by binding to a specific recognition site on GABA(A) receptors containing alpha1, alpha2, alpha3 and alpha5 subunits. Compounds that bind at this modulatory site and enhance the inhibitory actions of GABA are classified as agonists, those that decrease the actions of GABA are termed inverse agonists whereas compounds which bind but have no effect on GABA inhibition are termed antagonists. The clinically used BZs are full agonists and between the opposite ends of the spectrum, i.e. full agonist and full inverse agonist, are a range of compounds with differing degrees of efficacy, such as partial agonists and partial inverse agonists. Attempts have been made to develop compounds which are anxioselective in that they retain the anxiolytic properties of the full agonist BZs but have reduced sedation and dependence (withdrawal) liabilities. Such compounds may interact with all four (i.e. alpha1-, alpha2-, alpha3- and alpha5-containing) GABA(A) receptor subtypes and have partial rather than full agonist efficacies. Examples of nonselective partial agonists include bretazenil, imidazenil, FG 8205, abecarnil, NS 2710, pagoclone, RWJ-51204 and (S)-desmethylzopiclone. Alternatively, a compound might have comparable binding affinity but different efficacies at the various subtypes, thereby preferentially exerting its effects at subtypes thought to be associated with anxiety (alpha2- and/or alpha3-containing receptors) rather than the subtype associated with sedation (alpha1-containing receptors). Examples of efficacy selective compounds include L-838417, NGD 91-3 and SL651498. For each compound, preclinical and where available clinical data will be reviewed. Emerging themes include the lack of definitive intrinsic efficacy data for certain compounds (e.g. abecarnil, ocinaplon, pagoclone) and the difficulty in translating robust anxiolysis and a separation between anxiolytic and sedative doses of non-selective partial agonists in preclinical species into consistent clinical benefit in man (e.g. bretazenil, abecarnil, pagoclone). With respect to efficacy selective compounds, NGD 91-3 was not anxiolytic in man but in the absence of efficacy data, these results are difficult to interpret. Nevertheless, efficacy selective compounds represent a novel approach to targeting specific subtypes of the GABA(A) receptor, the ultimate test of which will be evaluation in the clinic.  相似文献   

4.
We have mutated a conserved leucine in the putative membrane-spanning domain to serine in human GABA(A) beta2 and investigated the actions of a number of GABA(A) agonists, antagonists and modulators on human alpha1beta2deltaL259Sgamma2s compared to wild type alpha1beta2gamma2s GABA(A) receptors, expressed in Xenopus oocytes. The mutation resulted in smaller maximum currents to gamma-aminobutyric acid (GABA) compared to alpha1beta2gamma2s receptors, and large leak currents resulting from spontaneous channel opening. As reported, this mutation significantly decreased the GABA EC50 (110 fold), and reduced desensitization. Muscimol and the partial agonists 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) and piperidine-4-sulphonic acid (P4S) also displayed a decrease in EC50. In addition to competitively shifting GABA concentration response curves, the antagonists bicuculline and SR95531 both inhibited the spontaneous channel activity on alpha1beta2deltaL259Sgamma2s receptors, with different degrees of maximum inhibition. The effects of a range of allosteric modulators, including benzodiazepines and anaesthetics were examined on a submaximal GABA concentration (EC20). Compared to wild type, none of these modulators potentiated the EC20 response of alpha1beta2deltaL259Sgamma2s receptors, however they all directly activated the receptor in the absence of GABA. To conclude, the above mutation resulted in receptors which exhibit a degree of spontaneous activity, and are more sensitive to agonists. Benzodiazepines and other agents modulate constitutive activity, but positive modulation of GABA is lost. The competitive antagonists bicuculline and SR95531 can also act as allosteric channel modulators through the same GABA binding site.  相似文献   

5.
Current neurobiological concepts attribute a central role of the hippocampal formation in cognitive and affective processes. Recent studies indicate that the hippocampus is affected in human depression, and antidepressant drugs induce hippocampal adaptive changes that are thought to be associated with their therapeutic action. In the present study, we investigated the action of various antidepressant drugs on the activity of the septo-hippocampal system, its oscillatory activity in particular. The acute effects of the norepinephrine (NE) reuptake inhibitors reboxetine and desipramine, and the selective serotonin reuptake inhibitor fluvoxamine were evaluated. Extracellular single-unit recordings were performed from the medial septum/diagonal band of Broca (MS/DBv), with simultaneous hippocampal EEG recordings of anesthetized rats. Systemic administration of reboxetine synchronized hippocampal EEG, resulting in a significant increase in power at theta frequency, and an increase in frequency and power of gamma-wave activity. Parallel to EEG synchrony, reboxetine induced or enhanced theta oscillation of MS/DBv neurons. Oscillatory frequencies of MS/DBv neurons were identical, and phase locked to the corresponding hippocamapal theta frequencies. Under the same experimental conditions, reboxetine induced a two-fold increase in extracellular NE (but not serotonin) levels in the hippocampus as revealed by microdialysis. Desipramine, but not the serotonin reuptake inhibitor fluvoxamine, evoked responses similar to those of reboxetine regarding septo-hippocampal theta activity. The present findings indicate that even though both NE and serotonin reuptake inhibitors are clinically effective antidepressant drugs, their action on the septo-hippocampal oscillatory behavior is different. It is presumed that selective NE reuptake inhibitors could modulate various cognitive processes associated with hippocampal oscillatory activity.  相似文献   

6.
Non-selective benzodiazepine (BZ) binding-site full agonists, exemplified by diazepam, act by enhancing the inhibitory effects of GABA at GABA(A) receptors containing either an alpha1, -2, -3 or -5 subunit. However, despite their proven clinical anxiolytic efficacy, such compounds possess a relatively narrow window between doses that produce anxiolysis and those that cause sedation, and are also associated with physical dependence and a potential for abuse. In the late 1980s and early 1990s a number of non-selective partial agonists, exemplified by bretazenil, pazinaclone and abecarnil, were described. Their reduced intrinsic efficacy relative to full agonists such as diazepam resulted in an improved preclinical pharmacological profile in that there was a large window between anxiolytic and sedative doses and their dependence and abuse liabilities were much lower. Unfortunately, these compounds failed, for a variety of reasons, to translate into clinical benefit, and as the public perception of BZs deteriorated interest in the area waned. However, the advent of molecular genetic and pharmacological approaches has begun to delineate which GABA(A) receptor subtypes are associated with the various pharmacological effects of the non-selective BZs. More specifically, the alpha2- and/or alpha3-containing GABA(A) receptors play a role in anxiety whereas the alpha1 subtype is involved in sedation, raising the possibility of a compound that selectively modulates alpha2- and/or alpha3-containing receptors but does not affect alpha1-containing receptors would be a non-sedating anxiolytic. In order to achieve selectivity for the alpha2/alpha3 subtypes relative to alpha1, two approaches may be used; selective affinity or selective efficacy. Selective affinity relies on a compound binding with higher affinity to the alpha2/alpha3 compared with alpha1 subtypes, but to date no such compounds have been described. On the other hand, subtype-selective efficacy relies on a compound binding to all subtypes but having different efficacies at various subtypes (relative selective efficacy, for example SL654198 or pagoclone) or having efficacy at some subtypes but none at others (absolute selective efficacy; for example, L-838417). The status of these and other BZ site compounds with claimed, but often not explicitly stated, GABA(A) subtype selectivity (such as ELB-139 and ocinaplon) will be reviewed in relation to their development as non-sedating anxiolytics for the treatment of generalised anxiety disorder.  相似文献   

7.
The pyrazolopyrimidine zaleplon is a hypnotic agent that acts at the benzodiazepine recognition site of GABA(A) receptors. Zaleplon, like the hypnotic agent zolpidem but unlike classical benzodiazepines, exhibits preferential affinity for type I benzodiazepine (BZ(1)/omega(1)) receptors in binding assays. The modulatory action of zaleplon at GABA(A) receptors has now been compared with those of zolpidem and the triazolobenzodiazepine triazolam. Zaleplon potentiated GABA-evoked Cl(-) currents in Xenopus oocytes expressing human GABA(A) receptor subunits with a potency that was higher at alpha1beta2gamma2 receptors than at alpha2- or alpha3-containing receptors. Zolpidem, but not triazolam, also exhibited selectivity for alpha1-containing receptors. However, the potency of zaleplon at these various receptors was one-third to one-half that of zolpidem. Zaleplon and zolpidem also differed in their actions at receptors containing the alpha5 or gamma3 subunit. Zaleplon, zolpidem, and triazolam exhibited similar patterns of efficacy among the different receptor subtypes. The affinities of zaleplon for [(3)H]flunitrazepam or t-[(35)S]butylbicyclophosphorothionate ([(35)S]TBPS) binding sites in rat brain membranes were lower than those of zolpidem or triazolam. Furthermore, zaleplon, unlike zolpidem, exhibited virtually no affinity for the peripheral type of benzodiazepine receptor.  相似文献   

8.
Previous studies have demonstrated that classical benzodiazepines decrease hypothalamic-pituitary-adrenocortical cortex (HPA) axis activity. Paradoxically, high doses of benzodiazepines also stimulate basal circulating corticosterone levels in some conditions. Because benzodiazepine agonists display little selectivity to any of the alpha subtypes of the gamma-amino butyric acid (GABA)(A) receptor to which they bind, we propose that the unequivocal results are due to an alpha subtype-dependent modulation of the hypothalamic-pituitary-adrenocortical cortex axis output. To test this, basal hormonal output and induction of Fos in the hypothalamic paraventricular nucleus were measured after administration of various benzodiazepine ligands in mice. Zolpidem, a selective alpha1 subtype agonist, produced a very strong increase in plasma adrenocorticotropic hormone and corticosterone whereas the inverse agonist FG7142 induced a small rise in plasma corticosterone. More surprisingly, the non-selective full agonists diazepam and zopiclone induced a lower increase in circulating corticosterone than after zolpidem. In contrast, the alpha(2,3,5)-selective benzodiazepine agonist and alpha1 antagonist L-838,417 had no effect on corticosterone levels. Strong induction of Fos in the paraventricular nucleus was found in response to zolpidem, diazepam, and zopiclone, but not after L-838,417. Finally, pre-administration of L-838,417 prior to zolpidem strongly inhibited the effect of zolpidem on corticosterone. Likewise, the non-selective agonists diazepam and zopiclone at a dose that alone had no effect on corticosterone also inhibited the effect of zolpidem. Taken together, these results suggest that benzodiazepine ligands modulate the hypothalamic-pituitary-adrenocortical cortex axis through partly opposite mechanisms; and that the net effect is dependent on the composition of the GABA(A) receptor subunits to which they bind.  相似文献   

9.
Benzodiazepine receptor anxiolytics show no selectivity between gamma-aminobutyric acid-A receptors containing alpha1, alpha2, alpha3 or alpha5 subunits. Pharmacological studies and data emerging from transgenic mouse models, however, predict that compounds with selective affinity and/or efficacy for gamma-aminobutyric acid-A receptor subtypes would have novel pharmacological profiles. Thus, the gamma-aminobutyric acid-A-alpha1 'affinity selective' drug zolpidem has a sedative-hypnotic profile, whereas L838,417, which has 'selective efficacy' for gamma-aminobutyric acid-A-alpha2, alpha3 and alpha5 receptors, has an anxiolytic-like profile. Here, we compare the nonselective benzodiazepine-site-positive modulators diazepam, lorazepam, midazolam, alprazolam and zopiclone with (i) gamma-aminobutyric acid-AA-alpha1 affinity selective compounds zolpidem and CL218,872 and (ii) L838,417, in the rat-conditioned emotional response test after systemic administration. Given the role of the basolateral amygdala in anxiety and the expression of alpha1, alpha2 and alpha3 subunits in this region, we also assessed the effects of bilateral infusion of L838,417 and midazolam directly into basolateral amygdala in the conditioned emotional response test. Nonselective modulators at low-moderate doses produced anxiolytic effects and sedation at higher doses. Zolpidem was inactive as an anxiolytic and engendered severe sedation, whereas CL218,872 produced an anxiolytic-like profile with minimal sedation. L838,417 produced an anxiolytic-like profile with no sedation, albeit producing behavioural disturbance at high doses. Infusion of midazolam and L838,417 into basolateral amygdala engendered anxiolytic-like effects, although both compounds were more effective after systemic injections, implicating additional brain sites in their anxiolytic-like actions after systemic administration. In conclusion, the diversity of effects of the compounds studied implicates both intrinsic efficacy and/or subtype selectivity as important determinants of anxiolytic-like effects in the rat-conditioned emotional response test.  相似文献   

10.
Miltirone, a tanshinone isolated from the root of Salvia miltiorrhiza, has been characterized as a low-affinity ligand for central benzodiazepine receptors. We have now shown that this compound bound with low affinity (micromolar range) to central benzodiazepine recognition sites but did not interact with peripheral benzodiazepine receptors. It failed to potentiate Cl(-) currents induced by gamma-aminobutyric acid (GABA) both in Xenopus oocytes expressing recombinant human GABA(A) receptors and in cultured rat hippocampal pyramidal cells, but it inhibited the ability of diazepam to potentiate the effect of GABA in these systems. Miltirone (1-10 microM) also partially inhibited the increase in the abundance of the mRNA for the alpha(4) subunit of the GABA(A) receptor induced by ethanol withdrawal in cultured hippocampal neurons. These results suggest that miltirone might ameliorate the symptoms associated with discontinuation of long-term administration of ethanol or of other positive modulators of the GABA(A) receptor.  相似文献   

11.
GABA(A) receptor subtypes: dissecting their pharmacological functions   总被引:12,自引:0,他引:12  
The enhancement of GABA-mediated synaptic transmission underlies the pharmacotherapy of various neurological and psychiatric disorders. GABA(A) receptors are pluripotent drug targets that display an extraordinary structural heterogeneity: they are assembled from a repertoire of at least 18 subunits (alpha1-6, beta1-3, gamma1-3, delta, epsilon, theta, rho1-3). However, differentiating defined GABA(A) receptor subtypes on the basis of function has had to await recent progress in the genetic dissection of receptor subtypes in vivo. Evidence that the various actions of allosteric modulators of GABA(A) receptors, in particular the benzodiazepines, can be attributed to specific GABA(A) receptor subtypes will be discussed. Such discoveries could open up new avenues for drug development.  相似文献   

12.
The in vitro and in vivo properties of L-655,708, a compound with higher affinity for GABA(A) receptors containing an alpha5 compared to an alpha1, alpha2 or alpha3 subunit have been examined further. This compound has weak partial inverse agonist efficacy at each of the four subtypes but, and consistent with the binding data, has higher functional affinity for the alpha5 subtype. In a mouse hippocampal slice model, L-655,708 was able to enhance the long-term potentiation produced by a theta burst stimulation, consistent with a potential role for the alpha5 subtype in processes involving synaptic plasticity, such as learning and memory. When administered in a formulation specifically designed to achieve relatively constant plasma drug concentrations, and therefore maintain selective occupancy of alpha5- compared to alpha1-, alpha2- and alpha3-containing receptors (75+/-4% versus 22+/-10%, respectively), L-655,708 did not alter the dose of pentylenetetrazole required to induce seizures, indicating that the inverse agonist effects of L-655,708 at the alpha5 subtype are not associated with a proconvulsant liability. In the Morris water maze, L-655,708 enhanced performance not only during acquisition but also in a probe trial, demonstrating that this compound has cognition enhancing effects. These data further support the potential of alpha5-containing GABA(A) receptors as a target for novel cognition enhancing drugs.  相似文献   

13.
BACKGROUND AND PURPOSE: Neuroactive steroids are potent modulators of GABA(A) receptors and are thus of interest for their sedative, anxiolytic, anticonvulsant and anaesthetic properties. Cyclodextrins may be useful tools to manipulate neuroactive effects of steroids on GABA(A) receptors because cyclodextrins form inclusion complexes with at least some steroids that are active at the GABA(A) receptor, such as (3alpha,5alpha)-3-hydroxypregnan-20-one (3alpha5alphaP, allopregnanolone). EXPERIMENTAL APPROACH: To assess the versatility of cyclodextrins as steroid modulators, we investigated interactions between gamma-cyclodextrin and neuroactive steroids of different structural classes. KEY RESULTS: Both a bioassay based on electrophysiological assessment of GABA(A) receptor function and optical measurements of cellular accumulation of a fluorescent steroid analogue suggest that gamma-cyclodextrin sequesters steroids rather than directly influencing GABA(A) receptor function. Neither a 5beta-reduced A/B ring fusion nor a sulphate group at carbon 3 affected the presumed inclusion complex formation between steroid and gamma-cyclodextrin. Apparent dissociation constants for interactions between natural steroids and gamma-cyclodexrin ranged from 10-60 microM. Although gamma-cyclodextrin accommodates a range of natural and synthetic steroids, C(11) substitutions reduced inclusion complex formation. Using gamma-cyclodextrin to remove steroid not directly bound to GABA(A) receptors, we found that cellular retention of receptor-unbound steroid rate limits potentiation by 3alpha- hydroxysteroids but not inhibition by sulphated steroids. CONCLUSIONS AND IMPLICATIONS: We conclude that gamma-cyclodextrins can be useful, albeit non-specific, tools for terminating the actions of multiple classes of naturally occurring neuroactive steroids.  相似文献   

14.
The tonic form of GABA-mediated inhibition requires the presence of slowly desensitizing GABA(A) receptors with high affinity, which has not yet been directly demonstrated in hippocampal neurons. Low concentration of GABA (1 microM) persistently increased baseline noise, increased membrane slope conductance, but did not affect spontaneous inhibitory postsynaptic currents (sIPSCs) in dentate granule cells (DGCs). Higher concentrations of GABA (10-100 microM) desensitized synaptic currents quickly, and there was a large residual current. Saturating concentration of GABA (1 mM) completely desensitized synaptic currents and revealed a slowly desensitizing, persistent current. Penicillin (300 microM) inhibited baseline noise without affecting mean current and inhibited decay time of sIPSCs. GABA(A) receptors mediating baseline noise in DGCs were sensitive to allopregnanolone, furosemide, and loreclezole and insensitive to diazepam and zolpidem. These studies demonstrate persistently open GABA(A) receptors on DGCs with high affinity for GABA, slow desensitization rate, and pharmacological properties similar to those of recombinant receptors containing alpha(4), beta(1), and the delta subunits.  相似文献   

15.
The modulation of ionotropic gamma-aminobutyric acid (GABA) receptors (GABA-gated Cl(-) channels) by a group of natural and synthetic flavonoids was studied in electrophysiological experiments. Quercetin, apigenin, morine, chrysin and flavone inhibited ionic currents mediated by alpha(1)beta(1)gamma(2s) GABA(A) and rho(1) GABA(C) receptors expressed in Xenopus laevis oocytes in the micromolar range. alpha(1)beta(1)gamma(2s) GABA(A) and rho(1) GABA(C) receptors differ largely in their sensitivity to benzodiazepines, but they were similarly modulated by different flavonoids. Quercetin produced comparable actions on currents mediated by alpha(4)beta(2) neuronal nicotinic acetylcholine, serotonin 5-HT(3A) and glutamate AMPA/kainate receptors. Sedative and anxiolytic flavonoids, like chrysin or apigenin, failed to potentiate but antagonized alpha(1)beta(1)gamma(2s) GABA(A) receptors. Effects of apigenin and quercetin on alpha(1)beta(1)gamma(2s) GABA(A) receptors were insensitive to the benzodiazepine antagonist flumazenil. Results indicate that mechanism/s underlying the modulation of ionotropic GABA receptors by some flavonoids differs from that described for classic benzodiazepine modulation.  相似文献   

16.
Benzodiazepines are among the most widely prescribed therapeutic agents, having anxiolytic, anticonvulsant, sedative/hypnotic, and amnestic properties (Mehta and Ticku, Brain Res. Rev. 29 (1999) 196). Recent research indicates that these disparate actions are dissociable (Nature 401 (1999) 796; Science 290 (2000) 131; Kralic et al., Neuropharmacology 43 (2002) 685). Behavioral studies indicate that the amygdala plays a critical role in the anxiolytic effect of benzodiazepines (Nagy et al., Neuropharmacology 18 (1979) 573; The amygdala: anxiety and benzodiazepines. The Amygdala: a Functional Analysis. p. 195). However, the neuronal substrates of this anxiolytic effect remain unclear. Our study characterizes the physiological response to acute application of the benzodiazepine diazepam and the non-benzodiazepine sedative zolpidem using whole cell patch recording in two discrete amygdala subnuclei. We found that acute application of diazepam enhances GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) with equal potency in the basolateral (BL) and central (Ce) amygdala subnuclei. However, zolpidem enhanced IPSCs with similar potency only in the BL, and was effective in the Ce only at high concentrations. This finding is in agreement with histochemical data regarding the localization of GABA(A) receptor isoforms in the amygdala (J. Comp. Neurol. 359 (1995) 154; Brain Res. 964 (2003) 91) and suggests that anxiolytic effects of allosteric modulators of the GABA(A) receptor may be further dissociated from their hypnotic/sedative effects.  相似文献   

17.
18.
Whereas advances in the molecular biology of GABA(A) receptor complex using knock-out and knock-in mice have been valuable in unveiling the structure, composition, receptor assembly, and several functions of different GABA(A) receptor subtypes, the mechanism(s) underlying benzodiazepine (BZ) tolerance and withdrawal remain poorly understood. Studies using specific GABA(A) receptor subunit knock-in mice suggest that tolerance to sedative action of diazepam requires long-term activation of alpha1 and alpha5 GABA(A) receptor subunits. We investigated the role of long-term activation of these GABA(A) receptor subunits during anticonvulsant tolerance using high affinity and high intrinsic efficacy ligands for GABA(A) receptors expressing the alpha5 subunit (imidazenil) or alpha1 subunit (zolpidem), and a non-selective BZ recognition site ligand (diazepam). We report here that long-term activation of GABA(A) receptors by zolpidem and diazepam but not by imidazenil elicits anticonvulsant tolerance. Although anticonvulsant cross-tolerance occurs between diazepam and zolpidem, there is no cross-tolerance between imidazenil and diazepam or zolpidem. Furthermore, diazepam or zolpidem long-term treatment decreased the expression of mRNA encoding the alpha1 GABA(A) receptor subunit in prefrontal cortex by 43% and 20% respectively. In addition, diazepam but not zolpidem long-term treatment produced a 30% increase in the expression of the alpha5 GABA(A) receptor subunit mRNA in prefrontal cortex. In contrast, imidazenil which is devoid of anticonvulsant tolerance does not elicit significant changes in the expression of alpha1 or alpha5 GABA(A) receptor subunit. These findings suggest that long-term activation of GABA(A) receptors containing the alpha1 or other subunits but not the alpha5 receptor subunit is essential for the induction of anticonvulsant tolerance.  相似文献   

19.
Zolpidem is an imidazopyridine with high affinity at gamma-aminobutyric acid(A) (GABA(A)) receptors expressing alpha1 subunits. In squirrel monkeys trained to discriminate a high dose of zolpidem (> or =3.0 mg/kg) from saline, zolpidem and another GABA(A)/alpha1 receptor-preferring agonist, zaleplon, substituted dose-dependently for zolpidem, whereas the non-selective agonists diazepam and triazolam were did not substitute at any dose tested. These findings offer the first evidence for a selective role of GABA(A)/alpha1 receptors in the interoceptive effects of high doses of zolpidem.  相似文献   

20.
Potentiation of GABA(A) receptor activation through allosteric benzodiazepine (BZ) sites produces the anxiolytic, anticonvulsant and sedative/hypnotic effects of BZs. Using a mouse line lacking alpha1 subunit expression, we investigated the contribution of the alpha1 subunit to GABA(A) receptor pharmacology, function and related behaviors in response to BZ site agonists. Competitive [(3)H]flunitrazepam binding experiments using the Type I BZ site agonist, zolpidem, and the Type I and II BZ site non-specific agonist, diazepam, demonstrated the complete loss of Type I BZ binding sites in alpha1(-/-) mice and a compensatory increase in Type II BZ binding sites (41+/-6%, P<0.002). Chloride uptake analysis in alpha1(-/-) mice revealed an increase (108+/-10%, P<0.001) in the efficacy (E(max)) of flunitrazepam while the EC(50) of zolpidem was increased 495+/-26% (alpha1(+/+): 184+/-56 nM; alpha1(-/-): 1096+/-279 nM, P<0.01). An anxiolytic effect of diazepam was detected in both alpha1(+/+) and alpha1(-/-) mice as measured on the elevated plus maze; however, alpha1(-/-) mice exhibited a greater percentage of open arm entries and percentage of open arm time following 0.6 mg/kg diazepam. Furthermore, alpha1(-/-) mice were more sensitive to the motor impairing/sedative effects of diazepam (1-10 mg/kg) as measured by locomotor activity in the open field. Knockout mice were insensitive to the anticonvulsant effect of diazepam (1-15 mg/kg, P<0.001). The hypnotic effect of zolpidem (60 mg/kg) was reduced by 66% (P<0.001) in alpha1(-/-) mice as measured by loss of righting reflex while the effect of diazepam (33 mg/kg) was increased 57% in alpha1(-/-) mice (P<0.05). These studies demonstrate that compensatory adaptations in GABA(A) receptor subunit expression result in subunit substitution and assembly of functional receptors. Such adaptations reveal important relationships between subunit expression, receptor function and behavioral responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号